We contribute to the discussion of the insightful article “Assessing predictability of environmental time series with statistical and machine learning models” by Bonas et al. (2024), in which the authors commend their effort in comparing a wide range of methodologies for the challenging task of predicting environmental time series data. We focus our discussion on two topics of interest to us. First, we consider extensions of the explored methodologies that allow for heteroscedastic error terms. Second, we consider non-Gaussianity and fitting models on transformed data. For both of these points, we will make use of the authors' supplied code and data in order to extend their examples. Ultimately, we find that modeling of heteroscedasticity error terms has the potential to improve both point and interval estimates for these environmental time series. We also find that the use of transformations to handle non-Gaussianity can improve interval estimates.
{"title":"Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models”","authors":"Paolo Maranzano, Paul A. Parker","doi":"10.1002/env.70001","DOIUrl":"https://doi.org/10.1002/env.70001","url":null,"abstract":"<p>We contribute to the discussion of the insightful article “Assessing predictability of environmental time series with statistical and machine learning models” by Bonas et al. (2024), in which the authors commend their effort in comparing a wide range of methodologies for the challenging task of predicting environmental time series data. We focus our discussion on two topics of interest to us. First, we consider extensions of the explored methodologies that allow for heteroscedastic error terms. Second, we consider non-Gaussianity and fitting models on transformed data. For both of these points, we will make use of the authors' supplied code and data in order to extend their examples. Ultimately, we find that modeling of heteroscedasticity error terms has the potential to improve both point and interval estimates for these environmental time series. We also find that the use of transformations to handle non-Gaussianity can improve interval estimates.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jens Riis Baalkilde, Niels Richard Hansen, Signe Marie Jensen
In dose-response modeling, several models can often yield satisfactory fits to the observed data. The current practice in risk assessment is to use model averaging, which is a way to combine multiple models in a weighted average. A key parameter in risk assessment is the benchmark dose, the dose resulting in a predefined abnormal change in response. Current practice when applying frequentist model averaging is to use weights based on the Akaike Information Criterion (AIC). This paper introduces stacking weights as an alternative for dose-response modeling and generalizes a Diversity Index from dichotomous to continuous responses for model space selection. Three simulation studies were conducted to evaluate the new methods. They showed that, in three realistic scenarios, recommended strategies generally performed well, with stacking weights outperforming AIC weights in several cases. Strategies involving model selection were less effective. However, in a challenging scenario, none of the methods performed well. Due to the promising results of stacking weights, they have been added to the R package “bmd.”
在剂量-反应模型中,几种模型通常可以对观测数据产生满意的拟合。目前风险评估的实践是使用模型平均,即将多个模型组合在一个加权平均中。风险评估的一个关键参数是基准剂量,即引起预先确定的反应异常变化的剂量。目前应用频率模型平均的做法是使用基于赤池信息准则(Akaike Information Criterion, AIC)的权重。本文引入了叠加权作为剂量-反应模型的替代方法,并推广了从二分类到连续响应的多样性指数,用于模型空间的选择。通过三个仿真研究对新方法进行了评价。他们表明,在三个现实的场景中,推荐的策略通常表现良好,在一些情况下,堆叠权重优于AIC权重。涉及模型选择的策略效果较差。然而,在一个具有挑战性的场景中,没有一种方法表现良好。由于堆叠权值的有希望的结果,它们被添加到R包“bmd”中。
{"title":"Stacking Weights and Model Space Selection in Frequentist Model Averaging for Benchmark Dose Estimation","authors":"Jens Riis Baalkilde, Niels Richard Hansen, Signe Marie Jensen","doi":"10.1002/env.70002","DOIUrl":"https://doi.org/10.1002/env.70002","url":null,"abstract":"<p>In dose-response modeling, several models can often yield satisfactory fits to the observed data. The current practice in risk assessment is to use model averaging, which is a way to combine multiple models in a weighted average. A key parameter in risk assessment is the benchmark dose, the dose resulting in a predefined abnormal change in response. Current practice when applying frequentist model averaging is to use weights based on the Akaike Information Criterion (AIC). This paper introduces stacking weights as an alternative for dose-response modeling and generalizes a Diversity Index from dichotomous to continuous responses for model space selection. Three simulation studies were conducted to evaluate the new methods. They showed that, in three realistic scenarios, recommended strategies generally performed well, with stacking weights outperforming AIC weights in several cases. Strategies involving model selection were less effective. However, in a challenging scenario, none of the methods performed well. Due to the promising results of stacking weights, they have been added to the R package “bmd.”</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The relative merits of machine learning and statistical methods are discussed recently by Bonas et al. 2004, who raise important open questions for the statistical community regarding the value-added benefits of data science and the future role of environmental statistics. Specifically, they identify three major knowledge gaps where statistics is seen as crucial to strengthening inference in machine learning (ML): to provide an ML model-based framework amenable to explainability, to determine the best approach for quantifying uncertainty in relation to complex environmental dynamics, and to comprehensively identify ML's value-added benefits. We continue this discussion by exploring these general questions and sharing our perspective and insights from our modeling of marine and terrestrial ecosystem dynamics. We propose several lines of inquiry where environmental statisticians and data scientists could collaboratively advance predictive analytics.
Bonas et al. 2004最近讨论了机器学习和统计方法的相对优点,他们就数据科学的增值效益和环境统计的未来角色为统计界提出了重要的开放性问题。具体来说,他们确定了三个主要的知识差距,其中统计学对于加强机器学习(ML)中的推理至关重要:提供一个基于ML模型的框架,可以解释,确定量化与复杂环境动态相关的不确定性的最佳方法,并全面确定ML的增值效益。我们将继续探讨这些一般性问题,并分享我们对海洋和陆地生态系统动力学建模的观点和见解。我们提出了几条调查路线,环境统计学家和数据科学家可以协同推进预测分析。
{"title":"“Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models”","authors":"Nathaniel K. Newlands, Vyacheslav Lyubchich","doi":"10.1002/env.70000","DOIUrl":"https://doi.org/10.1002/env.70000","url":null,"abstract":"<p>The relative merits of machine learning and statistical methods are discussed recently by Bonas et al. 2004, who raise important open questions for the statistical community regarding the value-added benefits of data science and the future role of environmental statistics. Specifically, they identify three major knowledge gaps where statistics is seen as crucial to strengthening inference in machine learning (ML): to provide an ML model-based framework amenable to explainability, to determine the best approach for quantifying uncertainty in relation to complex environmental dynamics, and to comprehensively identify ML's value-added benefits. We continue this discussion by exploring these general questions and sharing our perspective and insights from our modeling of marine and terrestrial ecosystem dynamics. We propose several lines of inquiry where environmental statisticians and data scientists could collaboratively advance predictive analytics.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Focusing on a sample of 39 countries in the period 1996–2017, we analyze whether the relationship between environmental taxes and CO2 emissions depends on the quality of political institutions. Our results show that an increase in the environmental tax revenue is related to a reduction in CO2 emissions only in countries with more consolidated democratic institutions, higher civil society participation, and less corrupt governments. Moreover, the relationship between CO2 emissions and revenue neutral shifts to different tax sources depends not only on the quality of political institutions, but also on the kind of externality the policymaker aims at correcting.
{"title":"Does the Quality of Political Institutions Matter for the Effectiveness of Environmental Taxes? An Empirical Analysis on CO2 Emissions","authors":"Donatella Baiardi, Simona Scabrosetti","doi":"10.1002/env.2895","DOIUrl":"https://doi.org/10.1002/env.2895","url":null,"abstract":"<p>Focusing on a sample of 39 countries in the period 1996–2017, we analyze whether the relationship between environmental taxes and CO<sub>2</sub> emissions depends on the quality of political institutions. Our results show that an increase in the environmental tax revenue is related to a reduction in CO<sub>2</sub> emissions only in countries with more consolidated democratic institutions, higher civil society participation, and less corrupt governments. Moreover, the relationship between CO<sub>2</sub> emissions and revenue neutral shifts to different tax sources depends not only on the quality of political institutions, but also on the kind of externality the policymaker aims at correcting.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2895","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ángel López-Oriona, Ying Sun, Rosa María Crujeiras
In environmental science, practitioners often deal with data recorded sequentially along time, such as time series of wind direction or wind speed. In this context, clustering of time series is a useful tool to carry out exploratory analyses. While most of the proposals are focused on real-valued time series, very few works consider circular time series, despite the frequent appearance of these objects in many disciplines. In this manuscript, a dissimilarity for circular time series is introduced and used in combination with a soft clustering method. The metric relies on a measure of serial dependence considering circular arcs, thus taking advantage of the directional character inherent to the series range. The clustering approach is able to group together time series generated from similar stochastic processes. Some simulations show that the method exhibits a reasonable clustering effectiveness, outperforming alternative techniques in many contexts. Two interesting applications involving time series of wind direction in Saudi Arabia show the potential of the proposed approach.
{"title":"Fuzzy Clustering of Circular Time Series With Applications to Wind Data","authors":"Ángel López-Oriona, Ying Sun, Rosa María Crujeiras","doi":"10.1002/env.2902","DOIUrl":"https://doi.org/10.1002/env.2902","url":null,"abstract":"<p>In environmental science, practitioners often deal with data recorded sequentially along time, such as time series of wind direction or wind speed. In this context, clustering of time series is a useful tool to carry out exploratory analyses. While most of the proposals are focused on real-valued time series, very few works consider circular time series, despite the frequent appearance of these objects in many disciplines. In this manuscript, a dissimilarity for circular time series is introduced and used in combination with a soft clustering method. The metric relies on a measure of serial dependence considering circular arcs, thus taking advantage of the directional character inherent to the series range. The clustering approach is able to group together time series generated from similar stochastic processes. Some simulations show that the method exhibits a reasonable clustering effectiveness, outperforming alternative techniques in many contexts. Two interesting applications involving time series of wind direction in Saudi Arabia show the potential of the proposed approach.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2902","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ilaria Pia, Elina Numminen, Lari Veneranta, Jarno Vanhatalo
Population growth models are essential tools for natural resources management and conservation since they provide understanding on factors affecting renewal of natural animal populations. However, we still do not properly understand how the processes underlying reproduction of natural animal populations are affected by the environment at the spatial scale at which reproduction actually happens. A particular challenge for analyzing these processes is that observations from different life cycle stages are often collected at different spatial scales, and there is a lack of statistical methods to link local and spatially aggregated information. We address this challenge by developing spatially explicit population growth models for annually reproducing fish. Our approach integrates mechanistic Ricker and Beverton–Holt population growth models with a zero-inflated species distribution model and utilizes the hierarchical Bayesian approach to estimate the model parameters from data with varying spatial support: local scale count data on offspring and environment, and areal data from commercial fisheries informing about a spawning stock size. We show, both theoretically and empirically, that our models are identifiable and have good inferential performance. As a proof of concept application, we used the proposed models to analyze the drivers of whitefish Coregonus laveratus (L.) s.l.) reproduction along the Finnish coast of the Gulf of Bothnia in the Baltic Sea. The results show that the proposed model provides novel understanding beyond what would be attainable with earlier methods. The distributions of the reproduction areas, spawner density, and maximum proliferation rate were strongly dependent on local environmental conditions, but the effects and the relative importance of the covariates varied between these processes. The proposed models can be extended to other systems and organisms and enable ecologists to extract a better understanding of processes driving animal reproduction.
{"title":"Spatially Explicit Model to Disentangle Effects of Environment on Annual Fish Reproduction","authors":"Ilaria Pia, Elina Numminen, Lari Veneranta, Jarno Vanhatalo","doi":"10.1002/env.2894","DOIUrl":"https://doi.org/10.1002/env.2894","url":null,"abstract":"<p>Population growth models are essential tools for natural resources management and conservation since they provide understanding on factors affecting renewal of natural animal populations. However, we still do not properly understand how the processes underlying reproduction of natural animal populations are affected by the environment at the spatial scale at which reproduction actually happens. A particular challenge for analyzing these processes is that observations from different life cycle stages are often collected at different spatial scales, and there is a lack of statistical methods to link local and spatially aggregated information. We address this challenge by developing spatially explicit population growth models for annually reproducing fish. Our approach integrates mechanistic Ricker and Beverton–Holt population growth models with a zero-inflated species distribution model and utilizes the hierarchical Bayesian approach to estimate the model parameters from data with varying spatial support: local scale count data on offspring and environment, and areal data from commercial fisheries informing about a spawning stock size. We show, both theoretically and empirically, that our models are identifiable and have good inferential performance. As a proof of concept application, we used the proposed models to analyze the drivers of whitefish <i>Coregonus laveratus</i> (L.) s.l.) reproduction along the Finnish coast of the Gulf of Bothnia in the Baltic Sea. The results show that the proposed model provides novel understanding beyond what would be attainable with earlier methods. The distributions of the reproduction areas, spawner density, and maximum proliferation rate were strongly dependent on local environmental conditions, but the effects and the relative importance of the covariates varied between these processes. The proposed models can be extended to other systems and organisms and enable ecologists to extract a better understanding of processes driving animal reproduction.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2894","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Francisco Mandujano Reyes, Ting Fung Ma, Ian P. McGahan, Daniel J. Storm, Daniel P. Walsh, Jun Zhu
Spatiotemporal causal inference methods are needed to detect the effect of interventions on indirectly measured epidemiological outcomes that go beyond studying spatiotemporal correlations. Chronic wasting disease (CWD) causes neurological degeneration and eventual death to white-tailed deer (Odocoileus virginianus) in Wisconsin. Targeted culling involves removing deer after traditional hunting seasons in areas with high CWD prevalence. The evaluation of the causal effects of targeted culling in the spread and growth of CWD is an important unresolved research and CWD management question that can guide surveillance efforts. Reaction–diffusion partial differential equations (PDEs) can be used to mechanistically model the underlying spatiotemporal dynamics of wildlife diseases, like CWD, allowing researchers to make inference about unobserved epidemiological quantities. These models indirectly regress spatiotemporal covariates on diffusion and growth rates parameterizing such PDEs, obtaining associational conclusions. In this work we develop an innovative method to obtain causal estimators for the effect of targeted culling interventions on CWD epidemiological processes using an inverse-probability-of-treatment-weighted technique by means of marginal structural models embedded in the PDE fitting process. Additionally we establish a novel scheme for sensitivity analysis under unmeasured confounder for testing the hypothesis of a significant causal effect in the indirectly measured epidemiological outcomes. Our methods can be broadly used to study the impact of spatiotemporal interventions and treatment exposures in the epidemiological evolution of infectious diseases that can help to inform future efforts to mitigate public health implications and wildlife disease burden.
{"title":"Spatiotemporal Causal Inference With Mechanistic Ecological Models: Evaluating Targeted Culling on Chronic Wasting Disease Dynamics in Cervids","authors":"Juan Francisco Mandujano Reyes, Ting Fung Ma, Ian P. McGahan, Daniel J. Storm, Daniel P. Walsh, Jun Zhu","doi":"10.1002/env.2901","DOIUrl":"https://doi.org/10.1002/env.2901","url":null,"abstract":"<p>Spatiotemporal causal inference methods are needed to detect the effect of interventions on indirectly measured epidemiological outcomes that go beyond studying spatiotemporal correlations. Chronic wasting disease (CWD) causes neurological degeneration and eventual death to white-tailed deer (<i>Odocoileus virginianus</i>) in Wisconsin. Targeted culling involves removing deer after traditional hunting seasons in areas with high CWD prevalence. The evaluation of the causal effects of targeted culling in the spread and growth of CWD is an important unresolved research and CWD management question that can guide surveillance efforts. Reaction–diffusion partial differential equations (PDEs) can be used to mechanistically model the underlying spatiotemporal dynamics of wildlife diseases, like CWD, allowing researchers to make inference about unobserved epidemiological quantities. These models indirectly regress spatiotemporal covariates on diffusion and growth rates parameterizing such PDEs, obtaining associational conclusions. In this work we develop an innovative method to obtain causal estimators for the effect of targeted culling interventions on CWD epidemiological processes using an inverse-probability-of-treatment-weighted technique by means of marginal structural models embedded in the PDE fitting process. Additionally we establish a novel scheme for sensitivity analysis under unmeasured confounder for testing the hypothesis of a significant causal effect in the indirectly measured epidemiological outcomes. Our methods can be broadly used to study the impact of spatiotemporal interventions and treatment exposures in the epidemiological evolution of infectious diseases that can help to inform future efforts to mitigate public health implications and wildlife disease burden.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2901","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motivated by empirical case studies and discussions of Bonas et al. (2024), this discussion paper critically examines challenges in the predictability of environmental processes, focusing on three key spheres: (a) predictability and interpretability, (b) predictability in dynamic environments, and (c) predictability into unknown spaces. These spheres highlight the responsibilities within environmetrics to ensure that predictive models, particularly advanced machine learning and deep learning methods, are applied thoughtfully. First, we discuss the trade-off between interpretability and predictive complexity, contrasting the transparency of traditional statistical models with the “black-box” nature of machine learning but also highlighting their enormous potential for exploiting new data sources and types. Second, we address real-time adaptability, where models must handle concept drift and should, therefore, be continuously monitored. Finally, we consider the challenges of extrapolating predictions into unknown/nontrained areas, underscoring the risks of model overreach. This paper aims to contribute to the discussion in the field, emphasizing the critical role environmetricians play in advancing responsible, interpretable, and scientifically sound predictive practices.
{"title":"Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models” by Bonas et al.","authors":"Philipp Otto","doi":"10.1002/env.2898","DOIUrl":"https://doi.org/10.1002/env.2898","url":null,"abstract":"<p>Motivated by empirical case studies and discussions of Bonas et al. (2024), this discussion paper critically examines challenges in the predictability of environmental processes, focusing on three key spheres: (a) predictability and interpretability, (b) predictability in dynamic environments, and (c) predictability into unknown spaces. These spheres highlight the responsibilities within environmetrics to ensure that predictive models, particularly advanced machine learning and deep learning methods, are applied thoughtfully. First, we discuss the trade-off between interpretability and predictive complexity, contrasting the transparency of traditional statistical models with the “black-box” nature of machine learning but also highlighting their enormous potential for exploiting new data sources and types. Second, we address real-time adaptability, where models must handle concept drift and should, therefore, be continuously monitored. Finally, we consider the challenges of extrapolating predictions into unknown/nontrained areas, underscoring the risks of model overreach. This paper aims to contribute to the discussion in the field, emphasizing the critical role environmetricians play in advancing responsible, interpretable, and scientifically sound predictive practices.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2898","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco Finazzi, Jacopo Rodeschini, Lorenzo Tedesco
Building on the insights from Bonas et al. (2024), we explore the relationship between statistical and machine learning models in the analysis of environmental time series. We specifically address the unique challenges of environmental time series data, including the need to consider the multivariate approach and account for spatial dependence. Emphasizing the importance of various types of statistical inference in environmental studies—not limited to forecasting—we propose that viewing statistical and machine learning approaches as complementary rather than alternative methods can unlock innovative modeling strategies that enhance both predictive accuracy and interpretive power. To illustrate these concepts, we present a case study that highlights the key points raised in the discussion.
{"title":"Discussion on Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models","authors":"Francesco Finazzi, Jacopo Rodeschini, Lorenzo Tedesco","doi":"10.1002/env.2900","DOIUrl":"https://doi.org/10.1002/env.2900","url":null,"abstract":"<p>Building on the insights from Bonas et al. (2024), we explore the relationship between statistical and machine learning models in the analysis of environmental time series. We specifically address the unique challenges of environmental time series data, including the need to consider the multivariate approach and account for spatial dependence. Emphasizing the importance of various types of statistical inference in environmental studies—not limited to forecasting—we propose that viewing statistical and machine learning approaches as complementary rather than alternative methods can unlock innovative modeling strategies that enhance both predictive accuracy and interpretive power. To illustrate these concepts, we present a case study that highlights the key points raised in the discussion.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2900","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}