Caterina Morelli, Simone Boccaletti, Paolo Maranzano, Philipp Otto
The assessment of corporate sustainability performance is extremely relevant in facilitating the transition to a green and low-carbon intensity economy. However, companies located in different areas may be subject to different sustainability and environmental risks and policies. Henceforth, the main objective of this paper is to investigate the spatial and temporal pattern of the sustainability evaluations of European firms. We leverage a large dataset containing information about companies' sustainability performances, measured by MSCI ESG ratings, and geographical coordinates of firms in Western Europe between 2013 and 2023. By means of a modified version of the Chavent et al. (2018) hierarchical algorithm, we conduct a spatial clustering analysis, combining sustainability and spatial information, and a spatiotemporal clustering analysis, which combines the time dynamics of multiple sustainability features and spatial dissimilarities, to detect groups of firms with homogeneous sustainability performance. We are able to build cross-national and cross-industry clusters with remarkable differences in terms of sustainability scores. Among other results, in the spatio-temporal analysis, we observe a high degree of geographical overlap among clusters, indicating that the temporal dynamics in sustainability assessment are relevant within a multidimensional approach. Our findings help to capture the diversity of ESG ratings across Western Europe and may assist practitioners and policymakers in evaluating companies facing different sustainability-linked risks in different areas.
对企业可持续发展绩效的评估对于促进向绿色低碳强度经济的转型至关重要。然而,位于不同地区的公司可能面临不同的可持续性和环境风险和政策。因此,本文的主要目的是研究欧洲企业可持续发展评价的时空格局。我们利用了一个大型数据集,其中包含有关公司可持续发展绩效的信息,该信息由MSCI ESG评级衡量,以及2013年至2023年西欧公司的地理坐标。本文采用改进的Chavent et al.(2018)分层算法,结合可持续性和空间信息进行空间聚类分析,并结合多种可持续性特征的时间动态和空间差异性进行时空聚类分析,以检测具有同质可持续性绩效的企业群体。我们能够建立跨国和跨行业的集群,在可持续性得分上存在显著差异。此外,在时空分析中,我们观察到集群之间存在高度的地理重叠,表明可持续性评估中的时间动态在多维方法中是相关的。我们的研究结果有助于了解整个西欧地区ESG评级的多样性,并可能有助于从业者和政策制定者评估不同地区面临不同可持续性相关风险的公司。
{"title":"Multidimensional Spatiotemporal Clustering – An Application to Environmental Sustainability Scores in Europe","authors":"Caterina Morelli, Simone Boccaletti, Paolo Maranzano, Philipp Otto","doi":"10.1002/env.2893","DOIUrl":"https://doi.org/10.1002/env.2893","url":null,"abstract":"<p>The assessment of corporate sustainability performance is extremely relevant in facilitating the transition to a green and low-carbon intensity economy. However, companies located in different areas may be subject to different sustainability and environmental risks and policies. Henceforth, the main objective of this paper is to investigate the spatial and temporal pattern of the sustainability evaluations of European firms. We leverage a large dataset containing information about companies' sustainability performances, measured by MSCI ESG ratings, and geographical coordinates of firms in Western Europe between 2013 and 2023. By means of a modified version of the Chavent et al. (2018) hierarchical algorithm, we conduct a spatial clustering analysis, combining sustainability and spatial information, and a spatiotemporal clustering analysis, which combines the time dynamics of multiple sustainability features and spatial dissimilarities, to detect groups of firms with homogeneous sustainability performance. We are able to build cross-national and cross-industry clusters with remarkable differences in terms of sustainability scores. Among other results, in the spatio-temporal analysis, we observe a high degree of geographical overlap among clusters, indicating that the temporal dynamics in sustainability assessment are relevant within a multidimensional approach. Our findings help to capture the diversity of ESG ratings across Western Europe and may assist practitioners and policymakers in evaluating companies facing different sustainability-linked risks in different areas.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2893","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandra De Iaco, Claudia Cappello, Monica Palma, Klaus Nordhausen
One of the main issues facing agrometeorological studies involves measuring and modeling the evolution of different environmental variables over time; this often requires a dense monitoring network. Spatio-temporal geostatistics has the potential to provide techniques and tools to estimate the spatio-temporal multiple covariance function and define an appropriate multivariate correlation function capable of reliable predictions. This paper presents a spatio-temporal multivariate geostatistical modeling approach based on the joint diagonalization of the empirical covariance matrix evaluated at different spatio-temporal lags. The possibility to consider a reduced number of uncorrelated variables (lower than the number of observed variables) and separately model the spatio-temporal evolution of these uncorrelated components represents a substantial simplification for multivariate modeling. A space–time linear coregionalization model (ST-LCM) with appropriate parametric models for the latent components was fitted to the matrix-valued covariance function estimated for five relevant agrometeorological variables, including evapotranspiration, minimum and maximum humidity, maximum temperature, and precipitation. The analyses highlight how to identify space–time components and choose the corresponding model by evaluating some characteristics of these components, such as symmetry, separability, and type of non-separability. The predictive results of this multivariate study will be of interest for agriculture, in particular for addressing drought emergencies.
{"title":"A Multivariate Approach for Modeling Spatio-Temporal Agrometeorological Variables","authors":"Sandra De Iaco, Claudia Cappello, Monica Palma, Klaus Nordhausen","doi":"10.1002/env.2891","DOIUrl":"https://doi.org/10.1002/env.2891","url":null,"abstract":"<p>One of the main issues facing agrometeorological studies involves measuring and modeling the evolution of different environmental variables over time; this often requires a dense monitoring network. Spatio-temporal geostatistics has the potential to provide techniques and tools to estimate the spatio-temporal multiple covariance function and define an appropriate multivariate correlation function capable of reliable predictions. This paper presents a spatio-temporal multivariate geostatistical modeling approach based on the joint diagonalization of the empirical covariance matrix evaluated at different spatio-temporal lags. The possibility to consider a reduced number of uncorrelated variables (lower than the number of observed variables) and separately model the spatio-temporal evolution of these uncorrelated components represents a substantial simplification for multivariate modeling. A space–time linear coregionalization model (ST-LCM) with appropriate parametric models for the latent components was fitted to the matrix-valued covariance function estimated for five relevant agrometeorological variables, including evapotranspiration, minimum and maximum humidity, maximum temperature, and precipitation. The analyses highlight how to identify space–time components and choose the corresponding model by evaluating some characteristics of these components, such as symmetry, separability, and type of non-separability. The predictive results of this multivariate study will be of interest for agriculture, in particular for addressing drought emergencies.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2891","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}