首页 > 最新文献

Dynamics of Atmospheres and Oceans最新文献

英文 中文
Comparative evaluation of meteorological inputs for improved storm surge modeling: A case study of tropical Cyclone Vayu 改进风暴潮建模的气象输入比较评估:热带气旋瓦尤的案例研究
IF 1.7 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-05-18 DOI: 10.1016/j.dynatmoce.2024.101461
Pubali Mukherjee, Rajendiran S, Beulah Hepzibah Ravikumar, Balaji Ramakrishnan

The selection of meteorological inputs in storm surge is crucial, with wind and pressure fields playing a significant role in energy transfer and the study area's bathymetry. While using observed track information for wind and pressure drop has been the standard approach for the past decade, recent studies have highlighted the need for atmospheric inputs from models like the Weather Research and Forecast model (WRF) for storm surge forecast. This study aims to compare the performance of a DELFT-3D FM storm surge model forced with inputs from IMD (India Meteorological Department) observed the best track and pressure drop (EXP-1) and wind and pressure fields from WRF (EXP-2) for Tropical Cyclone Vayu, which occurred in the southern Arabian Sea basin in June 2019. The study compares the simulated storm water levels and highlights the benefits of using time and space-varying wind and pressure input for improved surge representation. Results show that the WRF-DELFT setup outperforms the IMD-DELFT setup, particularly for tide gauge locations close to the storm eye. The simulated storm surge captures the intensified stage of Vayu and provides a more realistic representation than the model forced with IMD track data. However, biases and limitations, such as inadequate representation of land surface parameterization, are identified. The study suggests further exploring wave-induced effects on total water level and multiple cyclone scenarios to enhance wind speed and track displacement prediction accuracy and improved land-sea parameterization can help address these limitations.

风暴潮气象输入的选择至关重要,风场和气压场在能量传递和研究区域的水深测量中起着重要作用。在过去十年中,使用观测到的轨迹信息进行风力和压力下降的预测一直是标准方法,但最近的研究突出表明,在风暴潮预测中需要气象研究和预测模型(WRF)等模型的大气输入。本研究旨在比较 DELFT-3D FM 风暴潮模型的性能,该模型采用了 IMD(印度气象局)观测到的最佳路径和压力降(EXP-1)以及 WRF 的风场和压力场(EXP-2),用于预测 2019 年 6 月发生在阿拉伯海盆地南部的热带气旋 "瓦尤"。该研究比较了模拟的风暴水位,并强调了使用时空变化的风压输入改进浪涌表示的好处。结果表明,WRF-DELFT 设置优于 IMD-DELFT 设置,尤其是在靠近风暴眼的验潮位置。模拟的风暴潮捕捉到了 "瓦尤 "的加强阶段,比使用 IMD 跟踪数据的模型提供了更真实的表现。然而,也发现了一些偏差和局限性,如对陆地表面参数化的表述不够充分。研究建议进一步探索波浪对总水位和多种气旋情景的影响,以提高风速和路径位移预测的准确性,改进海陆参数化有助于解决这些局限性。
{"title":"Comparative evaluation of meteorological inputs for improved storm surge modeling: A case study of tropical Cyclone Vayu","authors":"Pubali Mukherjee,&nbsp;Rajendiran S,&nbsp;Beulah Hepzibah Ravikumar,&nbsp;Balaji Ramakrishnan","doi":"10.1016/j.dynatmoce.2024.101461","DOIUrl":"10.1016/j.dynatmoce.2024.101461","url":null,"abstract":"<div><p>The selection of meteorological inputs in storm surge is crucial, with wind and pressure fields playing a significant role in energy transfer and the study area's bathymetry. While using observed track information for wind and pressure drop has been the standard approach for the past decade, recent studies have highlighted the need for atmospheric inputs from models like the Weather Research and Forecast model (WRF) for storm surge forecast. This study aims to compare the performance of a DELFT-3D FM storm surge model forced with inputs from IMD (India Meteorological Department) observed the best track and pressure drop (EXP-1) and wind and pressure fields from WRF (EXP-2) for Tropical Cyclone Vayu, which occurred in the southern Arabian Sea basin in June 2019. The study compares the simulated storm water levels and highlights the benefits of using time and space-varying wind and pressure input for improved surge representation. Results show that the WRF-DELFT setup outperforms the IMD-DELFT setup, particularly for tide gauge locations close to the storm eye. The simulated storm surge captures the intensified stage of Vayu and provides a more realistic representation than the model forced with IMD track data. However, biases and limitations, such as inadequate representation of land surface parameterization, are identified. The study suggests further exploring wave-induced effects on total water level and multiple cyclone scenarios to enhance wind speed and track displacement prediction accuracy and improved land-sea parameterization can help address these limitations.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"107 ","pages":"Article 101461"},"PeriodicalIF":1.7,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141144362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modern methods to explore the dynamics between aerosols and convective precipitation: A critical review 探索气溶胶与对流降水之间动力学的现代方法:评论
IF 1.7 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-05-16 DOI: 10.1016/j.dynatmoce.2024.101465
Samruddhi Metangley , Anirban Middey , Rakesh Kadaverugu

The Earth’s atmospheric interface is highly vulnerable to anthropogenic aerosol pollution and changes caused by numerous industrial and allied sectors. The boundary layer aerosol emissions interact directly or indirectly with the dynamics and microphysical processes, impact cloud properties, precipitation accumulations, and subsequently affect socio-economic growth. The primary objective of this study is to synthesize the aerosol-convection-precipitation interactions concerning atmospheric microphysics and identify the modern methods to explore such dynamics. The secondary objective of this study is to understand and analyze the scientific literature with a bibliometric analysis to find the significant theme of influence from the scientific literature. The results highlighted the main and critical trends in aerosol research and reveal that the research interest seemingly improved in the past 5 years with an annual scientific growth rate of approx. 6%. It is evident from a plethora of relevant research findings that aerosol loading in the atmosphere up to a certain effective droplet concentration may increase the precipitation, however, further increment in aerosol concentration will decrease the precipitation efficiency. Regional feedback mechanisms (boundary layer, radiative etc.) play a pivotal role in governing aerosol and convective precipitation dynamics. The combination of satellite observations from space and ground-based (in-situ) measurements and climate models offers a practical possibility for resolving the complexity in cloud micro-phenomenology.

地球的大气界面极易受到人为气溶胶污染以及众多工业和相关部门造成的变化的影响。边界层气溶胶排放直接或间接地与动力学和微物理过程相互作用,影响云的特性和降水累积,进而影响社会经济增长。本研究的主要目的是综合气溶胶-对流-降水之间有关大气微物理的相互作用,并确定探索这种动力学的现代方法。本研究的次要目标是通过文献计量学分析来了解和分析科学文献,从科学文献中找到具有重要影响的主题。研究结果强调了气溶胶研究的主要和关键趋势,并揭示了过去 5 年中研究兴趣似乎有所提高,年科学增长率约为 6%。大量相关研究结果表明,大气中的气溶胶负荷达到一定的有效液滴浓度时,降水量可能会增加,但气溶胶浓度的进一步增加会降低降水效率。区域反馈机制(边界层、辐射等)在控制气溶胶和对流降水动态方面起着关键作用。空间卫星观测、地面(现场)测量和气候模式的结合为解决云微观现象学的复杂性提供了切实可行的可能性。
{"title":"Modern methods to explore the dynamics between aerosols and convective precipitation: A critical review","authors":"Samruddhi Metangley ,&nbsp;Anirban Middey ,&nbsp;Rakesh Kadaverugu","doi":"10.1016/j.dynatmoce.2024.101465","DOIUrl":"10.1016/j.dynatmoce.2024.101465","url":null,"abstract":"<div><p>The Earth’s atmospheric interface is highly vulnerable to anthropogenic aerosol pollution and changes caused by numerous industrial and allied sectors. The boundary layer aerosol emissions interact directly or indirectly with the dynamics and microphysical processes, impact cloud properties, precipitation accumulations, and subsequently affect socio-economic growth. The primary objective of this study is to synthesize the aerosol-convection-precipitation interactions concerning atmospheric microphysics and identify the modern methods to explore such dynamics. The secondary objective of this study is to understand and analyze the scientific literature with a bibliometric analysis to find the significant theme of influence from the scientific literature. The results highlighted the main and critical trends in aerosol research and reveal that the research interest seemingly improved in the past 5 years with an annual scientific growth rate of approx. 6%. It is evident from a plethora of relevant research findings that aerosol loading in the atmosphere up to a certain effective droplet concentration may increase the precipitation, however, further increment in aerosol concentration will decrease the precipitation efficiency. Regional feedback mechanisms (boundary layer, radiative etc.) play a pivotal role in governing aerosol and convective precipitation dynamics. The combination of satellite observations from space and ground-based (in-situ) measurements and climate models offers a practical possibility for resolving the complexity in cloud micro-phenomenology.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"106 ","pages":"Article 101465"},"PeriodicalIF":1.7,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141027961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of surface current and temperature feedback on kinetic energy over the North-East Atlantic from a coupled ocean / atmospheric boundary layer model 从海洋/大气边界层耦合模式看表层洋流和温度反馈对东北大西洋动能的影响
IF 1.7 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-05-14 DOI: 10.1016/j.dynatmoce.2024.101464
Théo Brivoal , Guillaume Samson , Hervé Giordani , Romain Bourdallé-Badie , Florian Lemarié , Gurvan Madec

A one-dimensional Atmospheric Boundary Layer (ABL1D) model is coupled with the NEMO ocean model and implemented over the Iberian–Biscay–Ireland (IBI) area at 1/36° resolution to investigate the damping effect of the current and the thermal feedback on the kinetic energy (KE) at the mesoscale. This type of coupling between an ocean model and an ABL1D is a newly proposed approach as an alternative of intermediate complexity between bulk forcing and full coupling with an atmosphere model. In ABL1D, the prognostic tracers are nudged toward large-scale variables and the wind is guided by a low-frequency geostrophic wind provided from the ERA-Interim reanalyses. First, the ABL1D is successfully validated against satellite observations regarding the wind, and the dynamic coupling coefficient (linking the near surface wind and wind-stress to the of the surface currents) are consistent with the literature, over the period 2016–2017. Our results show that the thermal feedback has a negligible impact on kinetic energy (KE) and does not influence the strength of the current feedback in the region. Given the ABL1D physics, this further indicates that the changes in the vertical wind structure caused by CFB are primarily governed by local mechanical mechanisms associated with surface wind-stress condition, rather than by thermodynamic or non-local processes within the planetary boundary layer. The induced KE reduction by the current feedback amounts to 14% at the surface and propagates down to 2000 m, indicating that it can modify the vertical distribution of KE throughout the water column. KE reductions in the surface boundary layer (0 – 300 m) and in the interior (300 – 2000 m) are attributed to a reduction of the surface wind work by 4%, and of the pressure work by 7%, respectively. The Ekman pumping anomalies induced by the current feedback tend to attenuate eddy activity and horizontal pressure gradients at depth, illustrating the potential of the current feedback to induce a geostrophic adjustment on the water column. These results illustrate the relevance of the proposed ABL1D coupling approach for reproducing the wind-current coupling (a.k.a. current feedback effect) which cannot be taken into account straightforwardly with simple bulk forcing.

将一维大气边界层(ABL1D)模式与 NEMO 海洋模式耦合,在伊比利亚-比斯开-爱尔兰(IBI)地区以 1/36° 的分辨率实施,以研究洋流和热反馈对中尺度动能(KE)的阻尼效应。海洋模式和 ABL1D 之间的这种耦合是一种新提出的方法,是介于大体强迫和与大气模式完全耦合之间的一种中间复杂性替代方法。在 ABL1D 中,预报示踪剂被推向大尺度变量,风则由 ERA-Interim 再分析提供的低频地转风引导。首先,在 2016-2017 年期间,ABL1D 成功地与风的卫星观测数据进行了验证,动态耦合系数(将近表面风和风压与表面流联系起来)与文献一致。我们的结果表明,热反馈对动能(KE)的影响可以忽略不计,也不会影响该区域的海流反馈强度。考虑到 ABL1D 物理原理,这进一步表明 CFB 引起的垂直风结构变化主要受与表面风应力条件相关的局地机械机制支配,而非行星边界层内的热力学或非局地过程。海流反馈引起的 KE 值下降在表层达到 14%,并向下传播到 2000 米,表明它可以改变整个水体的 KE 值垂直分布。表层边界层(0-300 米)和内部(300-2000 米)的 KE 值降低分别归因于表层风功降低了 4%和压力功降低了 7%。海流反馈引起的埃克曼泵异常往往会减弱涡旋活动和深度的水平压力梯度,说明海流反馈有可能引起水体的地营调节。这些结果表明了所提出的 ABL1D 耦合方法在再现风-流耦合(又称海流反馈效应)方面的相关性。
{"title":"Impact of surface current and temperature feedback on kinetic energy over the North-East Atlantic from a coupled ocean / atmospheric boundary layer model","authors":"Théo Brivoal ,&nbsp;Guillaume Samson ,&nbsp;Hervé Giordani ,&nbsp;Romain Bourdallé-Badie ,&nbsp;Florian Lemarié ,&nbsp;Gurvan Madec","doi":"10.1016/j.dynatmoce.2024.101464","DOIUrl":"10.1016/j.dynatmoce.2024.101464","url":null,"abstract":"<div><p>A one-dimensional Atmospheric Boundary Layer (ABL1D) model is coupled with the NEMO ocean model and implemented over the Iberian–Biscay–Ireland (IBI) area at 1/36° resolution to investigate the damping effect of the current and the thermal feedback on the kinetic energy (KE) at the mesoscale. This type of coupling between an ocean model and an ABL1D is a newly proposed approach as an alternative of intermediate complexity between bulk forcing and full coupling with an atmosphere model. In ABL1D, the prognostic tracers are nudged toward large-scale variables and the wind is guided by a low-frequency geostrophic wind provided from the ERA-Interim reanalyses. First, the ABL1D is successfully validated against satellite observations regarding the wind, and the dynamic coupling coefficient (linking the near surface wind and wind-stress to the of the surface currents) are consistent with the literature, over the period 2016–2017. Our results show that the thermal feedback has a negligible impact on kinetic energy (KE) and does not influence the strength of the current feedback in the region. Given the ABL1D physics, this further indicates that the changes in the vertical wind structure caused by CFB are primarily governed by local mechanical mechanisms associated with surface wind-stress condition, rather than by thermodynamic or non-local processes within the planetary boundary layer. The induced KE reduction by the current feedback amounts to 14% at the surface and propagates down to 2000 m, indicating that it can modify the vertical distribution of KE throughout the water column. KE reductions in the surface boundary layer (0 – 300 m) and in the interior (300 – 2000 m) are attributed to a reduction of the surface wind work by 4%, and of the pressure work by 7%, respectively. The Ekman pumping anomalies induced by the current feedback tend to attenuate eddy activity and horizontal pressure gradients at depth, illustrating the potential of the current feedback to induce a geostrophic adjustment on the water column. These results illustrate the relevance of the proposed ABL1D coupling approach for reproducing the wind-current coupling (a.k.a. current feedback effect) which cannot be taken into account straightforwardly with simple bulk forcing.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"107 ","pages":"Article 101464"},"PeriodicalIF":1.7,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141040093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of cloud microphysical schemes on CMA-GD model prediction of a warm-sector heavy rainfall in South China 云微物理方案对华南暖扇区强降雨 CMA-GD 模型预测的影响
IF 1.7 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-05-14 DOI: 10.1016/j.dynatmoce.2024.101463
Yanxia Zhang, Weiguang Meng, Yanyan Huang

This work evaluates the influence of cloud microphysical schemes on prediction of a warm-sector heavy rainfall with an operational modeling system of CMA-GD in Guangzhou Regional Meteorological Center (GRMC). The heavy rainfall is produced by a MCS occurred over Pearl River Delta in South China on May 21, 2020. Four cloud microphysical schemes (including WSM6, WDM6, THOMP and LIUMA) are investigated to understand their impacts on structure and evolution of rainfall system. Results show that the WSM6 over-predicts the 24-hour accumulated rainfall, while the other three schemes underestimate the rainfall. In general, these deviations of total rainfall are mainly caused by generated rainfall during mature stage of MCS. Four schemes all underestimate precipitation during this period, but the deviation is the least in WSM6 and WDM6 schemes. As far as both WSM6 and WDM6 schemes, quantitative verification shows that the threat score (TS) and the false alarm ratio (FAR) as well as the proportion of convective/stratiform precipitation in the WSM6 single-moment scheme are superior to those in the WDM6 double-moment scheme. Investigation of vertical distributions of precipitation particles and the associated thermodynamic response in the environment shows that compared with THOMP and LIUMA, WSM6 and WDM6 simulate more ice and snow in the upper level and more rain and cloud water in the low troposphere as MCS evolves into mature state. With the top-heavier heating and the strongest upward motion lasting longer time, WSM6 may lead to stronger dynamical feedback to large-scale environment compared with THOMP. All these reveal that WSM6 is the most accurate scheme simulating this warm-sector rainstorm and the importance of more accurate simulation on the evolution and structure of precipitation.

本研究利用广州区域气象中心的 CMA-GD 业务模式系统评估了云微观物理方案对暖扇区强降雨预报的影响。这次强降雨是由 2020 年 5 月 21 日发生在华南珠江三角洲上空的一次多云天气所引起的。研究了四种云微物理方案(包括 WSM6、WDM6、THOMP 和 LIUMA),以了解它们对降雨系统结构和演变的影响。结果表明,WSM6 高估了 24 小时累积降雨量,而其他三种方案则低估了降雨量。一般来说,总降雨量的这些偏差主要是由多气候系统成熟阶段产生的降雨造成的。四个方案都低估了这一时期的降水量,但偏差最小的是 WSM6 和 WDM6 方案。就 WSM6 和 WDM6 方案而言,定量验证表明,WSM6 单时刻方案的威胁分值(TS)和误报率(FAR)以及对流/层状降水比例均优于 WDM6 双时刻方案。对降水粒子垂直分布和环境中相关热力学响应的研究表明,与 THOMP 和 LIUMA 相比,WSM6 和 WDM6 在 MCS 演化到成熟状态时,在高层模拟了更多的冰雪,在对流层低层模拟了更多的雨水和云水。与 THOMP 相比,WSM6 的顶部加热程度更高,最强上升运动持续时间更长,可能会对大尺度环境产生更强的动力反馈。所有这些都揭示了 WSM6 是模拟这种暖扇区暴雨的最精确方案,以及更精确的模拟对降水演变和结构的重要性。
{"title":"Influence of cloud microphysical schemes on CMA-GD model prediction of a warm-sector heavy rainfall in South China","authors":"Yanxia Zhang,&nbsp;Weiguang Meng,&nbsp;Yanyan Huang","doi":"10.1016/j.dynatmoce.2024.101463","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2024.101463","url":null,"abstract":"<div><p>This work evaluates the influence of cloud microphysical schemes on prediction of a warm-sector heavy rainfall with an operational modeling system of CMA-GD in Guangzhou Regional Meteorological Center (GRMC). The heavy rainfall is produced by a MCS occurred over Pearl River Delta in South China on May 21, 2020. Four cloud microphysical schemes (including WSM6, WDM6, THOMP and LIUMA) are investigated to understand their impacts on structure and evolution of rainfall system. Results show that the WSM6 over-predicts the 24-hour accumulated rainfall, while the other three schemes underestimate the rainfall. In general, these deviations of total rainfall are mainly caused by generated rainfall during mature stage of MCS. Four schemes all underestimate precipitation during this period, but the deviation is the least in WSM6 and WDM6 schemes. As far as both WSM6 and WDM6 schemes, quantitative verification shows that the threat score (TS) and the false alarm ratio (FAR) as well as the proportion of convective/stratiform precipitation in the WSM6 single-moment scheme are superior to those in the WDM6 double-moment scheme. Investigation of vertical distributions of precipitation particles and the associated thermodynamic response in the environment shows that compared with THOMP and LIUMA, WSM6 and WDM6 simulate more ice and snow in the upper level and more rain and cloud water in the low troposphere as MCS evolves into mature state. With the top-heavier heating and the strongest upward motion lasting longer time, WSM6 may lead to stronger dynamical feedback to large-scale environment compared with THOMP. All these reveal that WSM6 is the most accurate scheme simulating this warm-sector rainstorm and the importance of more accurate simulation on the evolution and structure of precipitation.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"106 ","pages":"Article 101463"},"PeriodicalIF":1.7,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377026524000319/pdfft?md5=80657255744067246433202a01417d06&pid=1-s2.0-S0377026524000319-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141068733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The North Atlantic subpolar ocean dynamics during the past 21,000 years 过去 21,000 年北大西洋次极地海洋动力学
IF 1.7 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-05-13 DOI: 10.1016/j.dynatmoce.2024.101462
Gagan Mandal , Amali I. Hettiarachchi , Shail V. Ekka

Numerous studies have suggested that the North Atlantic subpolar gyre (SPG), Atlantic Meridional Overturning Circulation (AMOC), and Arctic sea ice impact the polar and global climate. Here, we use a fully linked atmosphere-ocean-sea ice Earth system model to investigate the North Atlantic subpolar ocean dynamics over the last 21 thousand years before the present (ka). We found that the SPG strength, net ocean surface heat flux, and mixed layer depth in the North Atlantic deep convection sites declined during the Heinrich 1 (H1; ∼19–17 ka) and Younger Dryas (YD; ∼12.9–11.3 ka) cold events. Consequently, the deep convection and AMOC strength declined, reducing the northward meridional heat transport and causing the expansion of Atlantic sea ice coverage. We also found that the North Atlantic subpolar net ocean surface heat flux varied coherently with AMOC strength throughout the past 21 ka. Subsequently, we observed a sea ice-capping mechanism wherein an increase (decrease) in Atlantic sea ice coverage during H1/YD (Bølling-Allerød (BA; ∼17–14.35 ka)) reduces (increases) net ocean surface heat flux and deep convection, thereby influencing the AMOC strength. Meanwhile, the SPG and AMOC strengths have been in-phase throughout the past 21 ka, except during the abrupt termination and input of freshwater flux during the BA and Meltwater Pulse 1 A (∼14.4–13.9 ka) events, respectively. In conclusion, our study suggests that a sudden shift in freshwater discharge into the subpolar North Atlantic may disturb the polar ocean dynamics.

大量研究表明,北大西洋副极地涡旋(SPG)、大西洋经向翻转环流(AMOC)和北极海冰影响着极地和全球气候。在此,我们利用大气-海洋-海冰完全关联的地球系统模式研究了距今 21000 年(ka)前北大西洋副极地海洋的动态变化。我们发现,在海因里希 1 期(H1;19-17 ka)和少干纪(YD;12.9-11.3 ka)寒冷事件期间,北大西洋深对流点的 SPG 强度、净海洋表面热通量和混合层深度下降。因此,深层对流和 AMOC 强度下降,减少了向北的经向热输送,导致大西洋海冰覆盖面积扩大。我们还发现,在过去的 21 ka 年中,北大西洋次极地海洋表面净热流量随 AMOC 强度的变化而变化。随后,我们观测到了海冰封盖机制,即H1/YD(Bølling-Allerød (BA; ∼17-14.35 ka))期间大西洋海冰覆盖面积的增加(减少)减少(增加)了净海洋表面热通量和深对流,从而影响了AMOC强度。同时,在过去的 21 ka 中,除了 BA 和融水脉冲 1 A(∼14.4-13.9 ka)事件期间淡水通量的突然终止和输入外,SPG 和 AMOC 的强度一直是同相位的。总之,我们的研究表明,北大西洋副极地淡水排放的突然转变可能会扰乱极地海洋动力学。
{"title":"The North Atlantic subpolar ocean dynamics during the past 21,000 years","authors":"Gagan Mandal ,&nbsp;Amali I. Hettiarachchi ,&nbsp;Shail V. Ekka","doi":"10.1016/j.dynatmoce.2024.101462","DOIUrl":"10.1016/j.dynatmoce.2024.101462","url":null,"abstract":"<div><p>Numerous studies have suggested that the North Atlantic subpolar gyre (SPG), Atlantic Meridional Overturning Circulation (AMOC), and Arctic sea ice impact the polar and global climate. Here, we use a fully linked atmosphere-ocean-sea ice Earth system model to investigate the North Atlantic subpolar ocean dynamics over the last 21 thousand years before the present (ka). We found that the SPG strength, net ocean surface heat flux, and mixed layer depth in the North Atlantic deep convection sites declined during the Heinrich 1 (H1; ∼19–17 ka) and Younger Dryas (YD; ∼12.9–11.3 ka) cold events. Consequently, the deep convection and AMOC strength declined, reducing the northward meridional heat transport and causing the expansion of Atlantic sea ice coverage. We also found that the North Atlantic subpolar net ocean surface heat flux varied coherently with AMOC strength throughout the past 21 ka. Subsequently, we observed a sea ice-capping mechanism wherein an increase (decrease) in Atlantic sea ice coverage during H1/YD (Bølling-Allerød (BA; ∼17–14.35 ka)) reduces (increases) net ocean surface heat flux and deep convection, thereby influencing the AMOC strength. Meanwhile, the SPG and AMOC strengths have been in-phase throughout the past 21 ka, except during the abrupt termination and input of freshwater flux during the BA and Meltwater Pulse 1 A (∼14.4–13.9 ka) events, respectively. In conclusion, our study suggests that a sudden shift in freshwater discharge into the subpolar North Atlantic may disturb the polar ocean dynamics.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"106 ","pages":"Article 101462"},"PeriodicalIF":1.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141034320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current and density observations on a flow through a contraction and over a bottom elevation at the southern edge of the Cycladic Plateau in the Aegean Sea – East Mediterranean 对爱琴海基克拉泽斯高原南缘通过收缩区和海底高地的水流和密度观测 - 东地中海
IF 1.7 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-26 DOI: 10.1016/j.dynatmoce.2024.101460
Harilaos Kontoyiannis , Larry J. Pratt , Vassilis Zervakis , Mathew H. Alford , Sarantis Sofianos , Alexander Theocharis

A CTD/ADCP/surface-drifter survey in fall 2004 reveals the behaviour of a mesoscale unidirectional flow coming from the Cretan sea in the south with depths ∼1000 m and entering a channel-like area of the Cycladic shelf in the north, that forms a contraction which leads to a bottom elevation (sill depth ∼100 m), and finally returning into the Cretan Sea in the lee-side of the sill. The flow decelerates/accelerates upstream/downstream of the sill. The along-stream density contours near the sill bottom are raised prior to reaching the sill, while they deepen in the lee side of it indicating supercriticality. The long-wavelength internal wave speeds with realistic stratification and no-rotation are higher than the section averaged flow speeds and indicate subcriticality. A key element in this apparent paradox is the large height of the sill that potentially increases the body (drag) force exerted on the flow by the sill while flow blocking is also observed upstream of the sill.

2004 年秋季进行的 CTD/ADCP/海面漂流勘测显示,一股中尺度单向流来自南部深度达 1000 米的克里特海,进入北部基克拉迪大陆架的一个类似通道的区域,形成一个收缩,导致海底抬升(岩床深度达 100 米),最后在岩床左侧返回克里特海。水流在岩壁上游/下游减速/加速。沿岸密度等值线在到达崖壁之前,靠近崖壁底部的密度等值线升高,而在崖壁左侧的密度等值线则加深,表明存在超临界现象。在实际分层和无旋转的情况下,长波内波速度高于断面平均流速,表明存在亚临界状态。造成这一明显矛盾的关键因素是台阶高度较大,可能会增加台阶对水流施加的体力(阻力),同时在台阶上游也观察到水流阻塞现象。
{"title":"Current and density observations on a flow through a contraction and over a bottom elevation at the southern edge of the Cycladic Plateau in the Aegean Sea – East Mediterranean","authors":"Harilaos Kontoyiannis ,&nbsp;Larry J. Pratt ,&nbsp;Vassilis Zervakis ,&nbsp;Mathew H. Alford ,&nbsp;Sarantis Sofianos ,&nbsp;Alexander Theocharis","doi":"10.1016/j.dynatmoce.2024.101460","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2024.101460","url":null,"abstract":"<div><p>A CTD/ADCP/surface-drifter survey in fall 2004 reveals the behaviour of a mesoscale unidirectional flow coming from the Cretan sea in the south with depths ∼1000 m and entering a channel-like area of the Cycladic shelf in the north, that forms a contraction which leads to a bottom elevation (sill depth ∼100 m), and finally returning into the Cretan Sea in the lee-side of the sill. The flow decelerates/accelerates upstream/downstream of the sill. The along-stream density contours near the sill bottom are raised prior to reaching the sill, while they deepen in the lee side of it indicating supercriticality. The long-wavelength internal wave speeds with realistic stratification and no-rotation are higher than the section averaged flow speeds and indicate subcriticality. A key element in this apparent paradox is the large height of the sill that potentially increases the body (drag) force exerted on the flow by the sill while flow blocking is also observed upstream of the sill.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"106 ","pages":"Article 101460"},"PeriodicalIF":1.7,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140825384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fractal approach to ocean Ekman transport 海洋埃克曼输运的分形方法
IF 1.7 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-23 DOI: 10.1016/j.dynatmoce.2024.101459
Rami Ahmad El-Nabulsi , Waranont Anukool

This work examines ocean Ekman current dynamics in fractal dimensions based on the concept of product-like fractal measure introduced recently by Li and Ostoja-Starzewski in their formulation of anisotropic continuum media. We show that fractal dimensions of the fluid affects the amplitude and the shape of the velocity profile. It was observed that fast-moving current occurs for fractal dimensions much less than unity whereas slow-moving current arises for fractal dimensions close to unity. A large flow velocity leads to a decrease in the shear rate and an increase in the viscosity, a fact that has been observed in physical oceanography.

这项研究基于 Li 和 Ostoja-Starzewski 最近在各向异性连续介质表述中引入的积样分形度量概念,研究了分形维度下的海洋埃克曼海流动力学。我们的研究表明,流体的分形维数会影响速度剖面的振幅和形状。我们观察到,当分形维数远小于 1 时,会出现快速流动的水流,而当分形维数接近 1 时,则会出现缓慢流动的水流。较大的流速会导致剪切率降低和粘度增加,这在物理海洋学中已被观察到。
{"title":"A fractal approach to ocean Ekman transport","authors":"Rami Ahmad El-Nabulsi ,&nbsp;Waranont Anukool","doi":"10.1016/j.dynatmoce.2024.101459","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2024.101459","url":null,"abstract":"<div><p>This work examines ocean Ekman current dynamics in fractal dimensions based on the concept of product-like fractal measure introduced recently by Li and Ostoja-Starzewski in their formulation of anisotropic continuum media. We show that fractal dimensions of the fluid affects the amplitude and the shape of the velocity profile. It was observed that fast-moving current occurs for fractal dimensions much less than unity whereas slow-moving current arises for fractal dimensions close to unity. A large flow velocity leads to a decrease in the shear rate and an increase in the viscosity, a fact that has been observed in physical oceanography.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"106 ","pages":"Article 101459"},"PeriodicalIF":1.7,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140651038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The analytical solutions of long waves over geometries with linear and nonlinear variations in the form of power-law nonlinearities with solid inclined wall 以幂律非线性形式的线性和非线性变化与固体倾斜壁上长波的解析解
IF 1.7 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-13 DOI: 10.1016/j.dynatmoce.2024.101458
Ali Rıza Alan , Cihan Bayındır

In this paper, we derive the exact analytical solutions for the long-wave equation in both linear and nonlinear power-law form depth and breadth geometries containing a solid inclined wall. Firstly, we give general information about the concept of partial reflection and its components, and formulate the solid inclined wall boundary condition. For these specific power-law forms of depth and breadth geometries, we show that in the presence of the solid inclined wall, the long-wave equation admits solutions in terms of Bessel-Z functions and the Cauchy–Euler series. Since the presence of solid vertical wall removes the singular point from the domain, the solution admits both the first and the second kind of the Bessel functions and Cauchy–Euler series terms. We derive results for the general case and also discuss their significance using six different geometries with solid inclined wall.

在本文中,我们推导了包含实心斜墙的线性和非线性幂律形式深度和广度几何中长波方程的精确解析解。首先,我们给出了部分反射概念及其组成部分的一般信息,并制定了实心斜墙边界条件。对于这些特定幂律形式的深度和广度几何图形,我们证明了在存在实心斜墙的情况下,长波方程可以用贝塞尔-Z 函数和考奇-欧勒级数求解。由于实心垂直壁的存在从域中移除了奇异点,因此解中既有第一类也有第二类贝塞尔函数和 Cauchy-Euler 级数项。我们推导出了一般情况下的结果,并利用六种不同的带有实心斜壁的几何形状讨论了这些结果的意义。
{"title":"The analytical solutions of long waves over geometries with linear and nonlinear variations in the form of power-law nonlinearities with solid inclined wall","authors":"Ali Rıza Alan ,&nbsp;Cihan Bayındır","doi":"10.1016/j.dynatmoce.2024.101458","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2024.101458","url":null,"abstract":"<div><p>In this paper, we derive the exact analytical solutions for the long-wave equation in both linear and nonlinear power-law form depth and breadth geometries containing a solid inclined wall. Firstly, we give general information about the concept of partial reflection and its components, and formulate the solid inclined wall boundary condition. For these specific power-law forms of depth and breadth geometries, we show that in the presence of the solid inclined wall, the long-wave equation admits solutions in terms of Bessel-Z functions and the Cauchy–Euler series. Since the presence of solid vertical wall removes the singular point from the domain, the solution admits both the first and the second kind of the Bessel functions and Cauchy–Euler series terms. We derive results for the general case and also discuss their significance using six different geometries with solid inclined wall.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"106 ","pages":"Article 101458"},"PeriodicalIF":1.7,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140558097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental mechanism of the SWCV nonlinear inertial waves SWCV 非线性惯性波的发展机制
IF 1.7 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-04-04 DOI: 10.1016/j.dynatmoce.2024.101457
Chun Liu , Yueqing Li , Jun Sun , Yunlong Zhao , Jiaqi Yu

Based on the Boussinosq Approximation formulas in the symmetric, cylindric coordinates, the nonlinear effects of the internal inertial gravity waves on the meso-micro scale convective activities of Southwest China Vortex system are analyzed by the multi-scale and perturbation approximation methods. The results obtain two main conclusions: (1) When the atmospheric stratification is stable, the inertial gravity waves for Southwest China Vortex may also develop into finite-amplitude wave packet with a solitonic characteristics of large amplitude and short duration, forming a long-narrow wave band which activates and organizes severe convective activities like high wind and thunderstorm of Southwest China Vortex. When the atmospheric stratification is unstable, the inertial gravity waves exhibits attenuating oscillation characteristics and develops into finite-amplitude wave packet with large amplitude and fast speed, forming queue-type wave band that activates and organizes extreme weather like persistent heavy rainfall of Southwest China Vortex. (2) Under different atmospheric stratifications, the effects of thermal forcing on the inertial gravity waves for Southwest China Vortex are different. In the stable atmospheric stratification, the thermal forcing mainly intensifies the inertial gravity waves and has no significant effect on its duration. And in the unstable atmospheric stratification, the thermal forcing not only strengthens its growth but also obviously extends its duration. The research has revealed the some nonlinear characteristics of the internal inertial gravity waves for Southwest China Vortex, and improved the theoretical understanding about the critical role of the internal inertial gravity waves dynamic processes and its influence mechanism on the meso-micro scale severe convection weather for Southwest China Vortex.

基于对称圆柱坐标下的布西诺斯克近似公式,采用多尺度和扰动近似方法分析了中国西南大涡系统内部惯性重力波对中微尺度对流活动的非线性影响。结果得到两个主要结论:(1)当大气分层稳定时,西南低涡的惯性重力波也可能发展为有限振幅波包,具有振幅大、持续时间短的孤子特性,形成长窄波带,激活和组织西南低涡的大风、雷暴等强对流活动。当大气分层不稳定时,惯性重力波呈现衰减振荡特征,发展为振幅大、速度快的有限振幅波包,形成队列型波带,激活并组织西南低涡持续强降雨等极端天气。(2)在不同的大气分层条件下,热强迫对西南低涡惯性重力波的影响不同。在稳定的大气分层中,热强迫主要增强惯性重力波,对其持续时间无明显影响。而在不稳定的大气分层中,热强迫不仅加强了惯性重力波的增长,而且明显延长了其持续时间。该研究揭示了西南低涡内部惯性重力波的一些非线性特征,提高了理论界对西南低涡内部惯性重力波动力过程的关键作用及其对中-微尺度强对流天气影响机制的认识。
{"title":"Developmental mechanism of the SWCV nonlinear inertial waves","authors":"Chun Liu ,&nbsp;Yueqing Li ,&nbsp;Jun Sun ,&nbsp;Yunlong Zhao ,&nbsp;Jiaqi Yu","doi":"10.1016/j.dynatmoce.2024.101457","DOIUrl":"https://doi.org/10.1016/j.dynatmoce.2024.101457","url":null,"abstract":"<div><p>Based on the Boussinosq Approximation formulas in the symmetric, cylindric coordinates, the nonlinear effects of the internal inertial gravity waves on the meso-micro scale convective activities of Southwest China Vortex system are analyzed by the multi-scale and perturbation approximation methods. The results obtain two main conclusions: (1) When the atmospheric stratification is stable, the inertial gravity waves for Southwest China Vortex may also develop into finite-amplitude wave packet with a solitonic characteristics of large amplitude and short duration, forming a long-narrow wave band which activates and organizes severe convective activities like high wind and thunderstorm of Southwest China Vortex. When the atmospheric stratification is unstable, the inertial gravity waves exhibits attenuating oscillation characteristics and develops into finite-amplitude wave packet with large amplitude and fast speed, forming queue-type wave band that activates and organizes extreme weather like persistent heavy rainfall of Southwest China Vortex. (2) Under different atmospheric stratifications, the effects of thermal forcing on the inertial gravity waves for Southwest China Vortex are different. In the stable atmospheric stratification, the thermal forcing mainly intensifies the inertial gravity waves and has no significant effect on its duration. And in the unstable atmospheric stratification, the thermal forcing not only strengthens its growth but also obviously extends its duration. The research has revealed the some nonlinear characteristics of the internal inertial gravity waves for Southwest China Vortex, and improved the theoretical understanding about the critical role of the internal inertial gravity waves dynamic processes and its influence mechanism on the meso-micro scale severe convection weather for Southwest China Vortex.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"106 ","pages":"Article 101457"},"PeriodicalIF":1.7,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377026524000253/pdfft?md5=9e3d1b34a0176002165f9b88a13fed25&pid=1-s2.0-S0377026524000253-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intercomparison of tropical Indian Ocean circulation in ocean reanalysis and evaluation in CMIP6 climate models 海洋再分析中热带印度洋环流的相互比较和 CMIP6 气候模式的评估
IF 1.7 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-03-21 DOI: 10.1016/j.dynatmoce.2024.101456
P. Bhanu Deepika , Soumya Mohan , G. Srinivas

In the present study, we assess the Tropical Indian Ocean (TIO) circulation features from the available ocean reanalysis products and the latest version of Coupled Model Intercomparison Project (CMIP6) climate model simulations. We considered the following reanalysis products; Ocean Reanalysis System 5 (ORAS5), Estimating the Circulation and Climate of the Ocean (ECCO), Global Ocean Data Assimilation System (GODAS), Ensemble Coupled Data Assimilation (ECDA), the Bluelink Reanalysis (BRAN) and Simple Ocean Data Assimilation (SODA) and compared them against in-situ observations and the satellite-derived Ocean Surface Current Analyses Real-time (OSCAR). The reanalysis products underestimate the strength and location of the Wyrtki Jets. The BRAN reanalysis performed well compared to the other products in representing the TIO surface zonal currents, followed by ORAS5. The vertical extension of subsurface zonal currents in the equatorial Indian Ocean and their seasonal maxima are well captured in ORAS5. Thus, our analysis suggests that the ORAS5 is a qualitative product to estimate the TIO circulation. We further evaluated the TIO current patterns simulated by CMIP6 models with in-situ data/ ORAS5. The majority of the models show discrepancies in simulating equatorial and south equatorial current systems with a mean bias of 0.1cms−1 and 0.2cms−1, respectively. NorESM2-MM, NorESM2-LM, CanESM5, CESM2-WACCM-FV2, and E3SM-1-ECA models showed a superior skill in reproducing the TIO circulation compared to the rest of the models. Our analysis highlights the importance of assessing various reanalysis products and coupled climate models in representing the circulation of the TIO and, consequently, their role in depicting regional weather and climate.

在本研究中,我们从现有的海洋再分析产品和最新版本的耦合模式相互比较项目(CMIP6)气候模式模拟中评估了热带印度洋(TIO)环流特征。我们考虑了以下再分析产品:海洋再分析系统 5(ORAS5)、海洋环流和气候估算(ECCO)、全球海洋数据同化系统(GODAS)、集合耦合数据同化(ECDA)、蓝链再分析(BRAN)和简单海洋数据同化(SODA),并将它们与现场观测数据和源自卫星的洋面海流实时分析(OSCAR)进行了比较。再分析产品低估了 Wyrtki 喷射流的强度和位置。与其他产品相比,BRAN 再分析在表现 TIO 表面带流方面表现良好,其次是 ORAS5。ORAS5 很好地捕捉了赤道印度洋次表层带状洋流的垂直延伸及其季节性最大值。因此,我们的分析表明,ORAS5 是估算 TIO 环流的定性产品。我们进一步评估了 CMIP6 模式模拟的 TIO 海流模式和 ORAS5 原位数据。大多数模式在模拟赤道和南赤道海流系统方面存在差异,平均偏差分别为 0.1cms-1 和 0.2cms-1。与其他模式相比,NorESM2-MM、NorESM2-LM、CanESM5、CESM2-WACCM-FV2 和 E3SM-1-ECA 模式在再现 TIO 环流方面表现得更为出色。我们的分析强调了评估各种再分析产品和耦合气候模式在表现 TIO 环流方面的重要性,以及它们在描述区域天气和气候方面的作用。
{"title":"Intercomparison of tropical Indian Ocean circulation in ocean reanalysis and evaluation in CMIP6 climate models","authors":"P. Bhanu Deepika ,&nbsp;Soumya Mohan ,&nbsp;G. Srinivas","doi":"10.1016/j.dynatmoce.2024.101456","DOIUrl":"10.1016/j.dynatmoce.2024.101456","url":null,"abstract":"<div><p>In the present study, we assess the Tropical Indian Ocean (TIO) circulation features from the available ocean reanalysis products and the latest version of Coupled Model Intercomparison Project (CMIP6) climate model simulations. We considered the following reanalysis products; Ocean Reanalysis System 5 (ORAS5), Estimating the Circulation and Climate of the Ocean (ECCO), Global Ocean Data Assimilation System (GODAS), Ensemble Coupled Data Assimilation (ECDA), the Bluelink Reanalysis (BRAN) and Simple Ocean Data Assimilation (SODA) and compared them against in-situ observations and the satellite-derived Ocean Surface Current Analyses Real-time (OSCAR). The reanalysis products underestimate the strength and location of the Wyrtki Jets. The BRAN reanalysis performed well compared to the other products in representing the TIO surface zonal currents, followed by ORAS5. The vertical extension of subsurface zonal currents in the equatorial Indian Ocean and their seasonal maxima are well captured in ORAS5. Thus, our analysis suggests that the ORAS5 is a qualitative product to estimate the TIO circulation. We further evaluated the TIO current patterns simulated by CMIP6 models with in-situ data/ ORAS5. The majority of the models show discrepancies in simulating equatorial and south equatorial current systems with a mean bias of 0.1cms<sup>−1</sup> and 0.2cms<sup>−1,</sup> respectively. NorESM2-MM, NorESM2-LM, CanESM5, CESM2-WACCM-FV2, and E3SM-1-ECA models showed a superior skill in reproducing the TIO circulation compared to the rest of the models. Our analysis highlights the importance of assessing various reanalysis products and coupled climate models in representing the circulation of the TIO and, consequently, their role in depicting regional weather and climate.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"106 ","pages":"Article 101456"},"PeriodicalIF":1.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140272558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Dynamics of Atmospheres and Oceans
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1