Pub Date : 2025-12-04DOI: 10.1016/j.disc.2025.114920
Kaiyang Lan , Feng Liu , Di Wu , Yidong Zhou
An odd hole in a graph is an induced subgraph which is a cycle of odd length at least five. An odd parachute is a graph obtained from an odd hole H by adding a new edge uv such that x is adjacent to u but not to v for each . A graph G is perfectly divisible if for each induced subgraph H of G, can be partitioned into A and B such that is perfect and . A vertex of a graph is trisimplicial if its neighborhood is the union of three cliques. In this paper, we prove that if G is a (fork, odd parachute)-free graph, then G is either perfectly divisible or has a trisimplicial vertex, from which we deduce that every nonperfectly divisible claw-free graph contains a trisimplicial vertex. As an application, we show that if G is a (fork, odd parachute)-free graph. This generalizes some results of Karthick et al. (2022) [11], and Wu and Xu (2024) [20].
图中的奇孔是一个诱导子图,它是一个奇长度至少为5的循环。奇伞是通过添加一条新边uv从奇洞H得到的图,使得对于每个x∈v (H), x与u相邻,但不与v相邻。如果对于G的每个诱导子图H, V(H)可以划分为A和B,使得H[A]是完全的,ω(H[B])<ω(H),则图G是完全可分的。如果一个图的顶点的邻域是三个团的并集,那么它就是三单纯的。本文证明了如果G是(叉,奇降落伞)自由图,则G要么完全可分,要么有一个三分顶点,由此推导出每一个不可完全可分的无爪图都包含一个三分顶点。作为一个应用,我们证明了χ(G)≤(ω(G)+12),如果G是一个(叉,奇降落伞)自由图。这概括了Karthick et al.(2022)[11]和Wu and Xu(2024)[20]的一些结果。
{"title":"Trisimplicial vertices in (fork, odd parachute)-free graphs","authors":"Kaiyang Lan , Feng Liu , Di Wu , Yidong Zhou","doi":"10.1016/j.disc.2025.114920","DOIUrl":"10.1016/j.disc.2025.114920","url":null,"abstract":"<div><div>An <em>odd hole</em> in a graph is an induced subgraph which is a cycle of odd length at least five. An <em>odd parachute</em> is a graph obtained from an odd hole <em>H</em> by adding a new edge <em>uv</em> such that <em>x</em> is adjacent to <em>u</em> but not to <em>v</em> for each <span><math><mi>x</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>. A graph <em>G</em> is perfectly divisible if for each induced subgraph <em>H</em> of <em>G</em>, <span><math><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> can be partitioned into <em>A</em> and <em>B</em> such that <span><math><mi>H</mi><mo>[</mo><mi>A</mi><mo>]</mo></math></span> is perfect and <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>[</mo><mi>B</mi><mo>]</mo><mo>)</mo><mo><</mo><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>. A vertex of a graph is <em>trisimplicial</em> if its neighborhood is the union of three cliques. In this paper, we prove that if <em>G</em> is a (fork, odd parachute)-free graph, then <em>G</em> is either perfectly divisible or has a trisimplicial vertex, from which we deduce that every nonperfectly divisible claw-free graph contains a trisimplicial vertex. As an application, we show that <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span> if <em>G</em> is a (fork, odd parachute)-free graph. This generalizes some results of Karthick et al. (2022) <span><span>[11]</span></span>, and Wu and Xu (2024) <span><span>[20]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114920"},"PeriodicalIF":0.7,"publicationDate":"2025-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145693663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-03DOI: 10.1016/j.disc.2025.114910
Sándor Z. Kiss , Csaba Sándor
For a set of natural numbers A, let be the number of representations of a natural number n as the sum of two terms from A. Many years ago, Nathanson studied the conditions for the sets A and B of natural numbers that are needed to guarantee that for every positive integer n. In the last decades, similar questions have been studied by many scholars. In this paper, we extend Nathanson's result to representation functions associated to linear forms and we study related problems.
{"title":"Identical representation functions of linear forms. I","authors":"Sándor Z. Kiss , Csaba Sándor","doi":"10.1016/j.disc.2025.114910","DOIUrl":"10.1016/j.disc.2025.114910","url":null,"abstract":"<div><div>For a set of natural numbers <em>A</em>, let <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> be the number of representations of a natural number <em>n</em> as the sum of two terms from <em>A</em>. Many years ago, Nathanson studied the conditions for the sets <em>A</em> and <em>B</em> of natural numbers that are needed to guarantee that <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for every positive integer <em>n</em>. In the last decades, similar questions have been studied by many scholars. In this paper, we extend Nathanson's result to representation functions associated to linear forms and we study related problems.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114910"},"PeriodicalIF":0.7,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145693665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-03DOI: 10.1016/j.disc.2025.114918
Jiangtao Peng , Shijie Yuan , Yuanlin Li
Let G be a cyclic group of order n. Every finite sequence S of elements from G can be written in the form , where with and . The index of S is defined to be the minimum of over all possible generator . We call S index-1-free, if S contains no subsequence of index 1. Gao conjectured that if S is an index-1-free sequence, then S has at least distinct subsequence sums, where the subsequences are of index less than 1. In this paper, we confirm the conjecture for certain cases, and also provide counterexamples to the conjecture.
设G是一个n阶的循环群,由G上的元素组成的有限序列S可以写成S=(x1g)⋅…⋅(x∑G),其中G∈G, < G > =G,且x1,…,x∑∈[1,n]。S的指标被定义为(x1+…+x l)/n在所有可能的生成子g∈g上的最小值。如果S不包含索引1的子序列,我们称S为索引1 free。Gao推测,如果S是一个索引不为1的序列,则S至少有|S|个不同的子序列和,其中子序列的索引小于1。本文在某些情况下证实了这一猜想,并给出了反例。
{"title":"On subsequence sums of index-1-free sequences over cyclic groups","authors":"Jiangtao Peng , Shijie Yuan , Yuanlin Li","doi":"10.1016/j.disc.2025.114918","DOIUrl":"10.1016/j.disc.2025.114918","url":null,"abstract":"<div><div>Let <em>G</em> be a cyclic group of order <em>n</em>. Every finite sequence <em>S</em> of elements from <em>G</em> can be written in the form <span><math><mi>S</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>g</mi><mo>)</mo><mo>⋅</mo><mo>…</mo><mo>⋅</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mi>g</mi><mo>)</mo></math></span>, where <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span> with <span><math><mo>〈</mo><mi>g</mi><mo>〉</mo><mo>=</mo><mi>G</mi></math></span> and <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>]</mo></math></span>. The index of <em>S</em> is defined to be the minimum of <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo><mo>/</mo><mi>n</mi></math></span> over all possible generator <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span>. We call <em>S</em> index-1-free, if <em>S</em> contains no subsequence of index 1. Gao conjectured that if <em>S</em> is an index-1-free sequence, then <em>S</em> has at least <span><math><mo>|</mo><mi>S</mi><mo>|</mo></math></span> distinct subsequence sums, where the subsequences are of index less than 1. In this paper, we confirm the conjecture for certain cases, and also provide counterexamples to the conjecture.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114918"},"PeriodicalIF":0.7,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145693660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-02DOI: 10.1016/j.disc.2025.114905
Uttam K. Gupta , Michael A. Henning , Paras Vinubhai Maniya , Dinabandhu Pradhan
A dominating set of a graph G is a set such that every vertex in has a neighbor in S, where two vertices are neighbors if they are adjacent. A secure dominating set of G is a dominating set S of G with the additional property that for every vertex , there exists a neighbor u of v in S such that is a dominating set of G. The secure domination number of G, denoted by , is the minimum cardinality of a secure dominating set of G. We prove that if G is a -free graph, then , where denotes the independence number of G. We further show that if G is a connected -free graph for some , then . We also show that if G is a -free graph, then .
{"title":"Secure domination in P5-free graphs","authors":"Uttam K. Gupta , Michael A. Henning , Paras Vinubhai Maniya , Dinabandhu Pradhan","doi":"10.1016/j.disc.2025.114905","DOIUrl":"10.1016/j.disc.2025.114905","url":null,"abstract":"<div><div>A dominating set of a graph <em>G</em> is a set <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> such that every vertex in <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>∖</mo><mi>S</mi></math></span> has a neighbor in <em>S</em>, where two vertices are neighbors if they are adjacent. A secure dominating set of <em>G</em> is a dominating set <em>S</em> of <em>G</em> with the additional property that for every vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>∖</mo><mi>S</mi></math></span>, there exists a neighbor <em>u</em> of <em>v</em> in <em>S</em> such that <span><math><mo>(</mo><mi>S</mi><mo>∖</mo><mo>{</mo><mi>u</mi><mo>}</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mi>v</mi><mo>}</mo></math></span> is a dominating set of <em>G</em>. The secure domination number of <em>G</em>, denoted by <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum cardinality of a secure dominating set of <em>G</em>. We prove that if <em>G</em> is a <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graph, then <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes the independence number of <em>G</em>. We further show that if <em>G</em> is a connected <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mi>H</mi><mo>)</mo></math></span>-free graph for some <span><math><mi>H</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∪</mo><mn>2</mn><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mrow><mi>paw</mi></mrow><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>}</mo></math></span>, then <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>max</mi><mo></mo><mo>{</mo><mn>3</mn><mo>,</mo><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>}</mo></math></span>. We also show that if <em>G</em> is a <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-free graph, then <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114905"},"PeriodicalIF":0.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145693664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-02DOI: 10.1016/j.disc.2025.114908
Fang-Gang Xue , Xue-Qin Cao
<div><div>Let <span><math><mi>Z</mi></math></span> be the set of integers and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> (resp. <span><math><mi>N</mi></math></span>) the set of non-negative (resp. positive) integers. For a nonempty set of integers <em>A</em> and integers <em>n</em>, <span><math><mi>h</mi><mo>≥</mo><mn>2</mn></math></span>, denote <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>h</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> by the number of representations of <em>n</em> of the form <span><math><mi>n</mi><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>A</mi></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>h</mi></math></span>, and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> by the number of <span><math><mo>(</mo><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></math></span> such that <span><math><mi>n</mi><mo>=</mo><mi>a</mi><mo>−</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. Following Lev's work, we prove that there is a partition <span><math><mi>Z</mi><mo>=</mo><msubsup><mrow><mo>⋃</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of the set of all integers such that, for each <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, we have <span><math><msub><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for all integers <em>n</em> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for all positive integers <em>n</em>. As a main result, we also prove that, for any integers <span><math><mi>h</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, there exists a set <em>T</em> of integers with the density <span><math><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>m</mi></mrow></mfrac></mat
{"title":"On representation functions related to the partition","authors":"Fang-Gang Xue , Xue-Qin Cao","doi":"10.1016/j.disc.2025.114908","DOIUrl":"10.1016/j.disc.2025.114908","url":null,"abstract":"<div><div>Let <span><math><mi>Z</mi></math></span> be the set of integers and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> (resp. <span><math><mi>N</mi></math></span>) the set of non-negative (resp. positive) integers. For a nonempty set of integers <em>A</em> and integers <em>n</em>, <span><math><mi>h</mi><mo>≥</mo><mn>2</mn></math></span>, denote <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>h</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> by the number of representations of <em>n</em> of the form <span><math><mi>n</mi><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>A</mi></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>h</mi></math></span>, and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> by the number of <span><math><mo>(</mo><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></math></span> with <span><math><mi>a</mi><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><mi>A</mi></math></span> such that <span><math><mi>n</mi><mo>=</mo><mi>a</mi><mo>−</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. Following Lev's work, we prove that there is a partition <span><math><mi>Z</mi><mo>=</mo><msubsup><mrow><mo>⋃</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> of the set of all integers such that, for each <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, we have <span><math><msub><mrow><mi>r</mi></mrow><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for all integers <em>n</em> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for all positive integers <em>n</em>. As a main result, we also prove that, for any integers <span><math><mi>h</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span>, there exists a set <em>T</em> of integers with the density <span><math><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>m</mi></mrow></mfrac></mat","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114908"},"PeriodicalIF":0.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145693661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-02DOI: 10.1016/j.disc.2025.114911
Opeyemi Oyewumi , Adriana Roux , Stephan Wagner
A binary tree (more precisely, an unrooted binary tree) is a tree in which all internal vertices (i.e., non-leaves) are exactly of degree 3. We give an upper bound and a lower bound for the number of maximal independent sets in binary trees together with a characterization of the extremal binary trees. The binary trees with second largest number of maximal independent sets are also characterized.
{"title":"Binary trees with extremal number of maximal independent sets","authors":"Opeyemi Oyewumi , Adriana Roux , Stephan Wagner","doi":"10.1016/j.disc.2025.114911","DOIUrl":"10.1016/j.disc.2025.114911","url":null,"abstract":"<div><div>A binary tree (more precisely, an unrooted binary tree) is a tree in which all internal vertices (i.e., non-leaves) are exactly of degree 3. We give an upper bound and a lower bound for the number of maximal independent sets in binary trees together with a characterization of the extremal binary trees. The binary trees with second largest number of maximal independent sets are also characterized.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114911"},"PeriodicalIF":0.7,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145693659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01DOI: 10.1016/j.disc.2025.114909
James Punch
Let be endowed with the Euclidean metric. The covering radius of a lattice is the least distance r such that, given any point of , the distance from that point to Λ is not more than r. Lattices can occur via the unit group of the ring of integers in an algebraic number field , by applying a logarithmic embedding . In this paper, we examine those lattices which arise from the cyclotomic number field , for a given positive integer such that . We then provide improvements to a result of de Araujo in [3], and conclude with an upper bound on the covering radius for this lattice in terms of n and the number of its distinct prime factors. In particular, we improve [3, Lemma 2], and show that, asymptotically, it can be improved no further.
{"title":"An improved upper bound on the covering radius of the logarithmic lattice of Q(ζn)","authors":"James Punch","doi":"10.1016/j.disc.2025.114909","DOIUrl":"10.1016/j.disc.2025.114909","url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> be endowed with the Euclidean metric. The covering radius of a lattice <span><math><mi>Λ</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span> is the least distance <em>r</em> such that, given any point of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, the distance from that point to Λ is not more than <em>r</em>. Lattices can occur via the unit group of the ring of integers in an algebraic number field <span><math><mi>K</mi></math></span>, by applying a logarithmic embedding <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>. In this paper, we examine those lattices which arise from the cyclotomic number field <span><math><mi>Q</mi><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span>, for a given positive integer <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span> such that <span><math><mi>n</mi><mo>≢</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. We then provide improvements to a result of de Araujo in <span><span>[3]</span></span>, and conclude with an upper bound on the covering radius for this lattice in terms of <em>n</em> and the number of its distinct prime factors. In particular, we improve <span><span>[3, Lemma 2]</span></span>, and show that, asymptotically, it can be improved no further.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114909"},"PeriodicalIF":0.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145693662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01DOI: 10.1016/j.disc.2025.114906
Ayoub Mounir, Abdelfattah Haily, Mohammed El Badry
In this paper, we consider the finite non-chain ring with . We provide a new class of codes, known as -skew generalized quasi-cyclic (GQC) codes over R, where θ is an automorphism of R and δ is a θ-derivation of R. This work generalizes -skew quasi-cyclic (QC) codes. We give the structure of 1-generator -skew GQC codes over R, and we provide a sufficient condition for 1-generator -skew GQC code over R to be free. A lower bound of the minimum distance of free 1-generator -skew GQC codes is also given. Moreover, we present some numerical examples in which we derive new -linear codes through the application of the Gray map. Furthermore, we characterize the Euclidean dual codes of -skew GQC codes.
{"title":"(θ,δ)-Skew generalized quasi-cyclic codes over the ring R=Z4+uZ4","authors":"Ayoub Mounir, Abdelfattah Haily, Mohammed El Badry","doi":"10.1016/j.disc.2025.114906","DOIUrl":"10.1016/j.disc.2025.114906","url":null,"abstract":"<div><div>In this paper, we consider the finite non-chain ring <span><math><mi>R</mi><mo>=</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>+</mo><mi>u</mi><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> with <span><math><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn></math></span>. We provide a new class of codes, known as <span><math><mo>(</mo><mi>θ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-skew generalized quasi-cyclic (GQC) codes over <em>R</em>, where <em>θ</em> is an automorphism of <em>R</em> and <em>δ</em> is a <em>θ</em>-derivation of <em>R</em>. This work generalizes <span><math><mo>(</mo><mi>θ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-skew quasi-cyclic (QC) codes. We give the structure of 1-generator <span><math><mo>(</mo><mi>θ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-skew GQC codes over <em>R</em>, and we provide a sufficient condition for 1-generator <span><math><mo>(</mo><mi>θ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-skew GQC code over <em>R</em> to be free. A lower bound of the minimum distance of free 1-generator <span><math><mo>(</mo><mi>θ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-skew GQC codes is also given. Moreover, we present some numerical examples in which we derive new <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-linear codes through the application of the Gray map. Furthermore, we characterize the Euclidean dual codes of <span><math><mo>(</mo><mi>θ</mi><mo>,</mo><mi>δ</mi><mo>)</mo></math></span>-skew GQC codes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114906"},"PeriodicalIF":0.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145693657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01DOI: 10.1016/j.disc.2025.114907
Dániel Gerbner , Michael E. Picollelli
We say that a hypergraph contains a graph H as a trace if there exists some set such that contains a subhypergraph isomorphic to H. We study the largest number of hyperedges in 3-uniform hypergraphs avoiding some graph F as trace. In particular, we improve a bound given by Luo and Spiro in the case , and obtain exact bounds for large n when F is a book graph.
{"title":"On forbidding graphs as traces of hypergraphs","authors":"Dániel Gerbner , Michael E. Picollelli","doi":"10.1016/j.disc.2025.114907","DOIUrl":"10.1016/j.disc.2025.114907","url":null,"abstract":"<div><div>We say that a hypergraph <span><math><mi>H</mi></math></span> contains a graph <em>H</em> as a trace if there exists some set <span><math><mi>S</mi><mo>⊂</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> such that <span><math><mi>H</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>S</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>h</mi><mo>∩</mo><mi>S</mi><mo>:</mo><mi>h</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>}</mo></math></span> contains a subhypergraph isomorphic to <em>H</em>. We study the largest number of hyperedges in 3-uniform hypergraphs avoiding some graph <em>F</em> as trace. In particular, we improve a bound given by Luo and Spiro in the case <span><math><mi>F</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, and obtain exact bounds for large <em>n</em> when <em>F</em> is a book graph.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114907"},"PeriodicalIF":0.7,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145693658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-28DOI: 10.1016/j.disc.2025.114904
Marthe Bonamy , Oscar Defrain , Piotr Micek , Lhouari Nourine
Enumerating minimal transversals in a hypergraph is a notoriously hard problem. It can be reduced to enumerating minimal dominating sets in a graph, in fact even to enumerating minimal dominating sets in an incomparability graph. We provide an output-polynomial time algorithm for incomparability graphs whose underlying posets have bounded dimension. Through a different proof technique, we also provide an output-polynomial time algorithm for their complements, i.e., for comparability graphs of bounded dimension posets. Our algorithm for incomparability graphs relies on the geometrical representation of incomparability graphs with bounded dimension, as given by Golumbic et al. in 1983. It runs with polynomial delay and only needs polynomial space. Our algorithm for comparability graphs is based on the flipping method introduced by Golovach et al. in 2015. It performs in incremental-polynomial time and possibly requires exponential space.
{"title":"Enumerating minimal dominating sets in the (in)comparability graphs of bounded dimension posets","authors":"Marthe Bonamy , Oscar Defrain , Piotr Micek , Lhouari Nourine","doi":"10.1016/j.disc.2025.114904","DOIUrl":"10.1016/j.disc.2025.114904","url":null,"abstract":"<div><div>Enumerating minimal transversals in a hypergraph is a notoriously hard problem. It can be reduced to enumerating minimal dominating sets in a graph, in fact even to enumerating minimal dominating sets in an incomparability graph. We provide an output-polynomial time algorithm for incomparability graphs whose underlying posets have bounded dimension. Through a different proof technique, we also provide an output-polynomial time algorithm for their complements, i.e., for comparability graphs of bounded dimension posets. Our algorithm for incomparability graphs relies on the geometrical representation of incomparability graphs with bounded dimension, as given by Golumbic et al. in 1983. It runs with polynomial delay and only needs polynomial space. Our algorithm for comparability graphs is based on the flipping method introduced by Golovach et al. in 2015. It performs in incremental-polynomial time and possibly requires exponential space.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114904"},"PeriodicalIF":0.7,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145625003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}