Pub Date : 2024-09-10DOI: 10.1016/j.disc.2024.114257
Aryan Bora , Yunseo Choi , Lucas Tang
In a sum graph, the vertices are labeled with distinct positive integers, and two vertices are adjacent if the sum of their labels is equal to the label of another vertex. In 1990, Harary showed that not all graphs G can be labeled as a sum graph but the union of G and at least some isolated vertices can be. The spum of a graph G is defined as the minimum difference between the largest and smallest labels of a sum graph that consists of the union of G and exactly isolated vertices. More recently, Li introduced the sum-diameter of a graph G, which modifies the definition of spum by removing the requirement that the number of isolated vertices must be . In this paper, we settle conjectures by Singla, Tiwari, and Tripathi and a conjecture by Li by evaluating the spum and the sum-diameter of paths.
在和图中,顶点用不同的正整数标注,如果两个顶点的标签之和等于另一个顶点的标签,那么这两个顶点就是相邻的。1990 年,哈拉里证明了并非所有图 G 都可以标记为和图,但 G 和至少某些 σ(G) 孤立顶点的结合可以标记为和图。图 G 的 spum 定义为由 G 和正好 σ(G) 个孤立顶点的结合组成的和图的最大标签和最小标签之间的最小差值。最近,Li 引入了图 G 的总和直径,它修改了 spum 的定义,取消了孤立顶点数必须为 σ(G)的要求。在本文中,我们通过评估 spum 和路径的总直径,解决了 Singla、Tiwari 和 Tripathi 的猜想和 Li 的猜想。
{"title":"On the spum and sum-diameter of paths","authors":"Aryan Bora , Yunseo Choi , Lucas Tang","doi":"10.1016/j.disc.2024.114257","DOIUrl":"10.1016/j.disc.2024.114257","url":null,"abstract":"<div><p>In a sum graph, the vertices are labeled with distinct positive integers, and two vertices are adjacent if the sum of their labels is equal to the label of another vertex. In 1990, Harary showed that not all graphs <em>G</em> can be labeled as a sum graph but the union of <em>G</em> and at least some <span><math><mi>σ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> isolated vertices can be. The spum of a graph <em>G</em> is defined as the minimum difference between the largest and smallest labels of a sum graph that consists of the union of <em>G</em> and exactly <span><math><mi>σ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> isolated vertices. More recently, Li introduced the sum-diameter of a graph <em>G</em>, which modifies the definition of spum by removing the requirement that the number of isolated vertices must be <span><math><mi>σ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we settle conjectures by Singla, Tiwari, and Tripathi and a conjecture by Li by evaluating the spum and the sum-diameter of paths.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114257"},"PeriodicalIF":0.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.disc.2024.114230
Mawo Ito
Lattice paths called ℓ-Schröder paths are introduced. They are paths on the upper half-plane consisting of types of steps: for , and . Those paths generalize Schröder paths and some variants, such as m-Schröder paths by Yang and Jiang and Motzkin-Schröder paths by Kim and Stanton. We show that ℓ-Schröder paths arise naturally from a combinatorial interpretation of the moments of generalized Laurent bi-orthogonal polynomials introduced by Wang, Chang, and Yue. We also show that some generating functions of non-intersecting ℓ-Schröder paths can be factorized in closed forms.
{"title":"Generalized Schröder paths arising from a combinatorial interpretation of generalized Laurent bi-orthogonal polynomials","authors":"Mawo Ito","doi":"10.1016/j.disc.2024.114230","DOIUrl":"10.1016/j.disc.2024.114230","url":null,"abstract":"<div><p>Lattice paths called <em>ℓ</em>-Schröder paths are introduced. They are paths on the upper half-plane consisting of <span><math><mi>ℓ</mi><mo>+</mo><mn>2</mn></math></span> types of steps: <span><math><mo>(</mo><mi>i</mi><mo>,</mo><mi>ℓ</mi><mo>−</mo><mi>i</mi><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>ℓ</mi></math></span>, and <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. Those paths generalize Schröder paths and some variants, such as <em>m</em>-Schröder paths by Yang and Jiang and Motzkin-Schröder paths by Kim and Stanton. We show that <em>ℓ</em>-Schröder paths arise naturally from a combinatorial interpretation of the moments of generalized Laurent bi-orthogonal polynomials introduced by Wang, Chang, and Yue. We also show that some generating functions of non-intersecting <em>ℓ</em>-Schröder paths can be factorized in closed forms.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114230"},"PeriodicalIF":0.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003613/pdfft?md5=3d23fab95f47d9c48cf5e308a2091300&pid=1-s2.0-S0012365X24003613-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.disc.2024.114235
Zilong Yan , Yuejian Peng
<div><p>The Lagrangian density of an <em>r</em>-uniform graph <em>F</em> is <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>sup</mi><mo></mo><mo>{</mo><mi>r</mi><mo>!</mo><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mi>G</mi><mspace></mspace><mi>i</mi><mi>s</mi><mspace></mspace><mi>F</mi><mtext>-</mtext><mi>f</mi><mi>r</mi><mi>e</mi><mi>e</mi><mo>}</mo></math></span>, where <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the Lagrangian of an <em>r</em>-uniform graph <em>G</em>. Hypergraph Lagrangian has been a helpful tool in extremal combinatorics. Let <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote the <em>r</em>-uniform matching with size <em>t</em>. The well-known Erdős Matching conjecture proposed that the Turán number of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is <span><math><mi>max</mi><mo></mo><mo>{</mo><mi>e</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>,</mo><mi>e</mi><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo><mo>}</mo></math></span>, where <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is the complete <em>r</em>-graph on <span><math><mi>r</mi><mi>t</mi><mo>−</mo><mn>1</mn></math></span> vertices and <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>r</em>-graph with vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> and with edge set <span><math><mi>E</mi><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo><mo>=</mo><mo>{</mo><mi>e</mi><mo>∈</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>r</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>:</mo><mo>|</mo><mi>e</mi><mo>∩</mo><mo>[</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>]</mo><mo>|</mo><mo>≥</mo><mn>1</mn><mo>}</mo></math></span>. Regarding Lagrangian density of hypergraph matchings, Jiang, Peng and Wu <span><span>[22]</span></span> (Wu <span><span>[34]</span></span> as well) conjectured that the property similar to Erdős Matching Conjecture holds, precisely, they conjectured that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>m</mi><mi>a</mi><mi>x</mi><mo>{</mo><mi>r</mi><mo>!</mo><mi>λ</mi><mo>(
{"title":"Lagrangian densities of 4-uniform matchings and degree stability of extremal hypergraphs","authors":"Zilong Yan , Yuejian Peng","doi":"10.1016/j.disc.2024.114235","DOIUrl":"10.1016/j.disc.2024.114235","url":null,"abstract":"<div><p>The Lagrangian density of an <em>r</em>-uniform graph <em>F</em> is <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><mi>sup</mi><mo></mo><mo>{</mo><mi>r</mi><mo>!</mo><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mi>G</mi><mspace></mspace><mi>i</mi><mi>s</mi><mspace></mspace><mi>F</mi><mtext>-</mtext><mi>f</mi><mi>r</mi><mi>e</mi><mi>e</mi><mo>}</mo></math></span>, where <span><math><mi>λ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the Lagrangian of an <em>r</em>-uniform graph <em>G</em>. Hypergraph Lagrangian has been a helpful tool in extremal combinatorics. Let <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> denote the <em>r</em>-uniform matching with size <em>t</em>. The well-known Erdős Matching conjecture proposed that the Turán number of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is <span><math><mi>max</mi><mo></mo><mo>{</mo><mi>e</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>,</mo><mi>e</mi><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo><mo>}</mo></math></span>, where <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mi>r</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup></math></span> is the complete <em>r</em>-graph on <span><math><mi>r</mi><mi>t</mi><mo>−</mo><mn>1</mn></math></span> vertices and <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the <em>r</em>-graph with vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> and with edge set <span><math><mi>E</mi><mo>(</mo><msubsup><mrow><mi>S</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo><mo>=</mo><mo>{</mo><mi>e</mi><mo>∈</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><mi>r</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>:</mo><mo>|</mo><mi>e</mi><mo>∩</mo><mo>[</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>]</mo><mo>|</mo><mo>≥</mo><mn>1</mn><mo>}</mo></math></span>. Regarding Lagrangian density of hypergraph matchings, Jiang, Peng and Wu <span><span>[22]</span></span> (Wu <span><span>[34]</span></span> as well) conjectured that the property similar to Erdős Matching Conjecture holds, precisely, they conjectured that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>λ</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mi>m</mi><mi>a</mi><mi>x</mi><mo>{</mo><mi>r</mi><mo>!</mo><mi>λ</mi><mo>(","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114235"},"PeriodicalIF":0.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003662/pdfft?md5=9242f6e0ae9a52d7a2d53e03f6ceabb7&pid=1-s2.0-S0012365X24003662-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.disc.2024.114236
Xiaomiao Wang , Yu Fang , Tao Feng
Two words u and v have a t-overlap if the length t prefix of u is equal to the length t suffix of v, or vice versa. A code is t-overlap-free if no two words u and v in (including ) have a t-overlap. A code of length n is said to be -overlap-free if it is t-overlap-free for all t such that . A -overlap-free code of length n is called non-overlapping, which has applications in DNA-based data storage systems and frame synchronization. In this paper, we initialize the study for codes of length n which are simultaneously -overlap-free and -overlap-free, and establish lower and upper bounds for the size of balanced and error-correcting -overlap-free codes.
如果 u 的前缀长度 t 等于 v 的后缀长度 t,或反之亦然,则两个词 u 和 v 有 t 重叠。如果 C 中没有两个词 u 和 v(包括 u=v)有 t 重叠,则代码 C 无 t 重叠。如果长度为 n 的代码对所有 t 都是无 t 重叠的,且 1⩽t1⩽t⩽t2⩽n-1。长度为 n 的(1,n-1)无重叠编码称为无重叠编码,它可应用于基于 DNA 的数据存储系统和帧同步。本文初步研究了长度为 n、同时具有 (1,k)-overlap-free 和 (n-k,n-1)-overlap-free 的编码,并建立了平衡编码和纠错 (1,k)-overlap-free 编码大小的下限和上限。
{"title":"q-ary (1,k)-overlap-free codes with given restrictions","authors":"Xiaomiao Wang , Yu Fang , Tao Feng","doi":"10.1016/j.disc.2024.114236","DOIUrl":"10.1016/j.disc.2024.114236","url":null,"abstract":"<div><p>Two words <em>u</em> and <em>v</em> have a <em>t</em>-overlap if the length <em>t</em> prefix of <em>u</em> is equal to the length <em>t</em> suffix of <em>v</em>, or vice versa. A code <span><math><mi>C</mi></math></span> is <em>t</em>-overlap-free if no two words <em>u</em> and <em>v</em> in <span><math><mi>C</mi></math></span> (including <span><math><mi>u</mi><mo>=</mo><mi>v</mi></math></span>) have a <em>t</em>-overlap. A code of length <em>n</em> is said to be <span><math><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-overlap-free if it is <em>t</em>-overlap-free for all <em>t</em> such that <span><math><mn>1</mn><mo>⩽</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⩽</mo><mi>t</mi><mo>⩽</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩽</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. A <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-overlap-free code of length <em>n</em> is called non-overlapping, which has applications in DNA-based data storage systems and frame synchronization. In this paper, we initialize the study for codes of length <em>n</em> which are simultaneously <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>)</mo></math></span>-overlap-free and <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-overlap-free, and establish lower and upper bounds for the size of balanced and error-correcting <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>)</mo></math></span>-overlap-free codes.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114236"},"PeriodicalIF":0.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003674/pdfft?md5=832dbe1e406e021c0d775dae451bb738&pid=1-s2.0-S0012365X24003674-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.disc.2024.114255
Byung-Hak Hwang
Skewing operators play a central role in the symmetric function theory because of the importance of the product structure of the symmetric function space. The theory of noncommutative symmetric functions is a useful tool for studying expansions of a given symmetric function in terms of various bases. In this paper, we establish a further development of the theory for studying skewing operators. Using this machinery, we are able to easily reproduce the Littlewood–Richardson rule and provide recurrence relations for chromatic quasisymmetric functions, which generalize Harada–Precup's recurrence.
{"title":"Noncommutative symmetric functions and skewing operators","authors":"Byung-Hak Hwang","doi":"10.1016/j.disc.2024.114255","DOIUrl":"10.1016/j.disc.2024.114255","url":null,"abstract":"<div><p>Skewing operators play a central role in the symmetric function theory because of the importance of the product structure of the symmetric function space. The theory of noncommutative symmetric functions is a useful tool for studying expansions of a given symmetric function in terms of various bases. In this paper, we establish a further development of the theory for studying skewing operators. Using this machinery, we are able to easily reproduce the Littlewood–Richardson rule and provide recurrence relations for chromatic quasisymmetric functions, which generalize Harada–Precup's recurrence.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114255"},"PeriodicalIF":0.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003868/pdfft?md5=b3b462b75688640dc1e6facb9ced629f&pid=1-s2.0-S0012365X24003868-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1016/j.disc.2024.114234
Jagdeep Singh , Vaidy Sivaraman
A class of graphs is called hereditary if it is closed under taking induced subgraphs. We denote by the class of graphs that are at most one edge away from being in . We note that is hereditary and prove that if a hereditary class has finitely many forbidden induced subgraphs, then so does .
The hereditary class of cographs consists of all graphs G that can be generated from using complementation and disjoint union. Cographs are precisely the graphs that do not have the 4-vertex path as an induced subgraph. For the class of edge-apex cographs our main result bounds the order of such forbidden induced subgraphs by 8 and finds all of them by computer search.
如果一类图 G 在取诱导子图时是封闭的,则该类图 G 称为遗传类图。我们用 Gepex 表示离 G 最多只有一条边的一类图。我们注意到 Gepex 是遗传的,并证明如果一个遗传类 G 有有限多个禁止的诱导子图,那么 Gepex 也是遗传的。Cographs 正是没有 4 顶点路径作为诱导子图的图。对于无边 Cographs 类,我们的主要结果将此类禁止诱导子图的阶数限定为 8,并通过计算机搜索找到所有这些子图。
{"title":"Edge-apexing in hereditary classes of graphs","authors":"Jagdeep Singh , Vaidy Sivaraman","doi":"10.1016/j.disc.2024.114234","DOIUrl":"10.1016/j.disc.2024.114234","url":null,"abstract":"<div><p>A class <span><math><mi>G</mi></math></span> of graphs is called hereditary if it is closed under taking induced subgraphs. We denote by <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>epex</mi></mrow></msup></math></span> the class of graphs that are at most one edge away from being in <span><math><mi>G</mi></math></span>. We note that <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>epex</mi></mrow></msup></math></span> is hereditary and prove that if a hereditary class <span><math><mi>G</mi></math></span> has finitely many forbidden induced subgraphs, then so does <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>epex</mi></mrow></msup></math></span>.</p><p>The hereditary class of cographs consists of all graphs <em>G</em> that can be generated from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> using complementation and disjoint union. Cographs are precisely the graphs that do not have the 4-vertex path as an induced subgraph. For the class of edge-apex cographs our main result bounds the order of such forbidden induced subgraphs by 8 and finds all of them by computer search.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114234"},"PeriodicalIF":0.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003650/pdfft?md5=3a7b1576f400f1b5803871014f7dd340&pid=1-s2.0-S0012365X24003650-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-04DOI: 10.1016/j.disc.2024.114237
Chuanshu Wu, Zijian Deng
Let be graphs, and represent a specific graph product of G and H. Define as the largest t for which G contains a -immersion. Collins, Heenehan, and McDonald posed the question: given and , how large can be? They conjectured when ⁎ denotes the strong product. In this note, we affirm that the conjecture holds for graphs with certain immersions, in particular when H contains as a subgraph. As a consequence we also get an alternative argument for a result of Guyer and McDonald, showing that the line graphs of constant-multiplicity multigraphs satisfy the conjecture originally proposed by Abu-Khzam and Langston.
设 G、H 为图,G⁎H 表示 G 和 H 的特定图积。定义 im(G) 为 G 包含 Kt-imersion 的最大 t。柯林斯、希尼汉和麦克唐纳提出了这样一个问题:给定 im(G)=t 和 im(H)=r,im(G⁎H)可以有多大?他们猜想,当⁎表示强积时,im(G⁎H)≥tr。在本注释中,我们肯定了这一猜想在具有特定浸入的图中成立,尤其是当 H 包含 Kr 作为子图时。因此,我们还为 Guyer 和 McDonald 的一个结果提供了另一种论证,证明恒多重性多图的线图满足 Abu-Khzam 和 Langston 最初提出的猜想。
{"title":"A note on clique immersion of strong product graphs","authors":"Chuanshu Wu, Zijian Deng","doi":"10.1016/j.disc.2024.114237","DOIUrl":"10.1016/j.disc.2024.114237","url":null,"abstract":"<div><p>Let <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span> be graphs, and <span><math><mi>G</mi><mo>⁎</mo><mi>H</mi></math></span> represent a specific graph product of <em>G</em> and <em>H</em>. Define <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> as the largest <em>t</em> for which <em>G</em> contains a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>-immersion. Collins, Heenehan, and McDonald posed the question: given <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>t</mi></math></span> and <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>r</mi></math></span>, how large can <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>⁎</mo><mi>H</mi><mo>)</mo></math></span> be? They conjectured <span><math><mi>i</mi><mi>m</mi><mo>(</mo><mi>G</mi><mo>⁎</mo><mi>H</mi><mo>)</mo><mo>≥</mo><mi>t</mi><mi>r</mi></math></span> when ⁎ denotes the strong product. In this note, we affirm that the conjecture holds for graphs with certain immersions, in particular when <em>H</em> contains <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> as a subgraph. As a consequence we also get an alternative argument for a result of Guyer and McDonald, showing that the line graphs of constant-multiplicity multigraphs satisfy the conjecture originally proposed by Abu-Khzam and Langston.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114237"},"PeriodicalIF":0.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003686/pdfft?md5=2175b8b68439085105021d9c5e79d193&pid=1-s2.0-S0012365X24003686-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1016/j.disc.2024.114226
Csilla Bujtás , Akbar Davoodi , Laihao Ding , Ervin Győri , Zsolt Tuza , Donglei Yang
In a graph G, let denote the minimum size of a set of edges and triangles that cover all edges of G, and let be the maximum size of an edge set that contains at most one edge from each triangle. Motivated by a question of Erdős, Gallai, and Tuza, we study the relationship between and and establish a sharp upper bound on . We also prove Nordhaus-Gaddum-type inequalities for the considered invariants.
{"title":"Covering the edges of a graph with triangles","authors":"Csilla Bujtás , Akbar Davoodi , Laihao Ding , Ervin Győri , Zsolt Tuza , Donglei Yang","doi":"10.1016/j.disc.2024.114226","DOIUrl":"10.1016/j.disc.2024.114226","url":null,"abstract":"<div><p>In a graph <em>G</em>, let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>△</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denote the minimum size of a set of edges and triangles that cover all edges of <em>G</em>, and let <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the maximum size of an edge set that contains at most one edge from each triangle. Motivated by a question of Erdős, Gallai, and Tuza, we study the relationship between <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>△</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and establish a sharp upper bound on <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mo>△</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We also prove Nordhaus-Gaddum-type inequalities for the considered invariants.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114226"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003571/pdfft?md5=fe63daa1972dde10572b653b88b81a86&pid=1-s2.0-S0012365X24003571-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1016/j.disc.2024.114228
Atsuhiro Nakamoto , Kenta Ozeki , Daiki Takahashi
Kaneko et al. [12] proved that every 3-connected planar graph G has a 2-connected spanning subgraph K such that , and they also conjectured that the constant of the estimation can be improved to when . To prove the result, they showed the statement for a circuit graph, which is obtained from a 3-connected planar graph by deleting one vertex, and the theorem is best possible for circuit graphs. In this paper, we give a characterization of a circuit graph G each of whose 2-connected spanning subgraph K requires and then we improve the bound for the 3-connected planar case.
Kaneko 等人[12]证明了每个 3 连平面图 G 都有一个 2 连跨子图 K,使得|E(K)|≤43(|V(G)|-1),他们还猜想当|V(G)|≥8 时,估计常数可以提高到 43(|V(G)|-2)。为了证明这一结果,他们展示了电路图的声明,电路图是通过删除一个顶点从 3 连接的平面图中得到的,该定理对于电路图是最可行的。在本文中,我们给出了电路图 G 的特征,每个电路图 G 的 2 连跨子图 K 都要求 |E(K)|≥43(|V(G)|-1) ,然后我们改进了 3 连平面图的约束。
{"title":"2-Connected spanning subgraphs of circuit graphs","authors":"Atsuhiro Nakamoto , Kenta Ozeki , Daiki Takahashi","doi":"10.1016/j.disc.2024.114228","DOIUrl":"10.1016/j.disc.2024.114228","url":null,"abstract":"<div><p>Kaneko et al. <span><span>[12]</span></span> proved that every 3-connected planar graph <em>G</em> has a 2-connected spanning subgraph <em>K</em> such that <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>, and they also conjectured that the constant of the estimation can be improved to <span><math><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>2</mn><mo>)</mo></math></span> when <span><math><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mn>8</mn></math></span>. To prove the result, they showed the statement for a circuit graph, which is obtained from a 3-connected planar graph by deleting one vertex, and the theorem is best possible for circuit graphs. In this paper, we give a characterization of a circuit graph <em>G</em> each of whose 2-connected spanning subgraph <em>K</em> requires <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>(</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and then we improve the bound for the 3-connected planar case.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114228"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003595/pdfft?md5=6b926c0cbdadb1ca5769e66c3d298e03&pid=1-s2.0-S0012365X24003595-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1016/j.disc.2024.114232
Dániel Gerbner
Given a graph G with degree sequence and a positive integer r, let . We denote by the largest value of among n-vertex F-free graphs G, and by the largest number of stars in n-vertex F-free graphs. The broom is the graph obtained from an ℓ-vertex path by adding s new leaves connected to a penultimate vertex v of the path.
We determine for , any and sufficiently large n, proving a conjecture of Lan, Liu, Qin and Shi. We also determine for , any and sufficiently large n.
给定一个阶数为 d1,...,dn 的图 G 和一个正整数 r,设 er(G)=∑i=1ndir。我们用 exr(n,F) 表示无 n 个顶点的 F 图 G 中 er(G) 的最大值,用 ex(n,Sr,F) 表示无 n 个顶点的 F 图中星星 Sr 的最大数目。对于 r≥2、任意 ℓ,s 和足够大的 n,我们确定了 exr(n,B(ℓ,s)),证明了 Lan、Liu、Qin 和 Shi 的猜想。对于 r≥2、任意 ℓ,s 和足够大的 n,我们还确定了 ex(n,Sr,B(ℓ,s))。
{"title":"Degree powers and number of stars in graphs with a forbidden broom","authors":"Dániel Gerbner","doi":"10.1016/j.disc.2024.114232","DOIUrl":"10.1016/j.disc.2024.114232","url":null,"abstract":"<div><p>Given a graph <em>G</em> with degree sequence <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and a positive integer <em>r</em>, let <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>r</mi></mrow></msubsup></math></span>. We denote by <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> the largest value of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> among <em>n</em>-vertex <em>F</em>-free graphs <em>G</em>, and by <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></math></span> the largest number of stars <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> in <em>n</em>-vertex <em>F</em>-free graphs. The <em>broom</em> <span><math><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> is the graph obtained from an <em>ℓ</em>-vertex path by adding <em>s</em> new leaves connected to a penultimate vertex <em>v</em> of the path.</p><p>We determine <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, any <span><math><mi>ℓ</mi><mo>,</mo><mi>s</mi></math></span> and sufficiently large <em>n</em>, proving a conjecture of Lan, Liu, Qin and Shi. We also determine <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mi>B</mi><mo>(</mo><mi>ℓ</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>2</mn></math></span>, any <span><math><mi>ℓ</mi><mo>,</mo><mi>s</mi></math></span> and sufficiently large <em>n</em>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114232"},"PeriodicalIF":0.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003637/pdfft?md5=f6743e7fcba7f41401daef264d1fc9cb&pid=1-s2.0-S0012365X24003637-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}