The operation of signal-free intersections, where Connected Automated Vehicles (CAVs) cross simultaneously for all Origin-Destination (OD) movements, has the potential to greatly increase throughput and reduce fuel consumption. Since the intersection crossing areas naturally include no lanes, an extended crossing area, appropriately delineated, can be considered as a lane-free infrastructure so as to enable further efficiency benefits. This paper presents two Model Predictive Control (MPC) schemes to manage CAVs in signal-free and lane-free intersections. In fact, the control inputs of all vehicles are optimized over a time-horizon by online solving of a joint Optimal Control Problem (OCP) that minimizes a cost function including proper terms to ensure smooth and collision-free vehicle motion, while also considering fuel consumption and desired-speed tracking, when possible. Additionally, appropriate constraints are designed to respect the intersection boundaries and ensure smooth vehicle movements towards their respective destinations. A fast Feasible Direction Algorithm (FDA) is employed for the numerical solution of the introduced OCP. Multiple simulations are carried out to assess the efficiency and practicality of the proposed methods. A comparison with signalized intersection operation is provided.