Pub Date : 2023-05-14DOI: 10.1080/21664250.2023.2211793
D. Rathnayaka, Y. Tajima
ABSTRACT While a submerged breakwater has become one of the preferred options of shore protection structures because of its lower impact on the coastal landscape and environment, it causes complicated hydrodynamic characteristics and sometimes fails to meet the expected coastal protection functions. Accurate prediction of wave and current around the structure is therefore essential for appropriate design of a submerged breakwater. This study focused on the influence of the permeability of the submerged breakwater and newly conducted laboratory experiments using permeable and impermeable breakwaters. The model, Simulate WAves till SHore (SWASH), was then applied to these laboratory experiments and the difference of measured and computed wave and current field around the structure was investigated. It was found that the model qualitatively well represented the horizontal distribution of wave heights and phase-averaged current velocities although it overestimated the shoreward volume flux over the impermeable breakwater, but not over the permeable breakwater. Comparison of these contrasting results between permeable and impermeable breakwaters revealed that the phase-averaged bottom shear stress was underestimated on the crest of the impermeable breakwater. This feature highlighted the importance of the bottom friction forces accounting for the wave current coexisting field for better predictions of wave-induced current field around the submerged breakwaters.
{"title":"Influence of the permeability of submerged breakwaters on surrounding wave and current fields","authors":"D. Rathnayaka, Y. Tajima","doi":"10.1080/21664250.2023.2211793","DOIUrl":"https://doi.org/10.1080/21664250.2023.2211793","url":null,"abstract":"ABSTRACT While a submerged breakwater has become one of the preferred options of shore protection structures because of its lower impact on the coastal landscape and environment, it causes complicated hydrodynamic characteristics and sometimes fails to meet the expected coastal protection functions. Accurate prediction of wave and current around the structure is therefore essential for appropriate design of a submerged breakwater. This study focused on the influence of the permeability of the submerged breakwater and newly conducted laboratory experiments using permeable and impermeable breakwaters. The model, Simulate WAves till SHore (SWASH), was then applied to these laboratory experiments and the difference of measured and computed wave and current field around the structure was investigated. It was found that the model qualitatively well represented the horizontal distribution of wave heights and phase-averaged current velocities although it overestimated the shoreward volume flux over the impermeable breakwater, but not over the permeable breakwater. Comparison of these contrasting results between permeable and impermeable breakwaters revealed that the phase-averaged bottom shear stress was underestimated on the crest of the impermeable breakwater. This feature highlighted the importance of the bottom friction forces accounting for the wave current coexisting field for better predictions of wave-induced current field around the submerged breakwaters.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44474630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1080/21664250.2023.2202958
T. Tazaki, E. Harada, H. Gotoh
ABSTRACT Sediment transport in the swash zone directly affects beach changes such as shoreline recession; thus, detailed understandings of sediment transport mechanisms are necessary to accurately estimate the short-time scales sediment transport rate. However, these detailed mechanisms under runup waves have not been elucidated because of the complex solid-gas-liquid multiphase turbulence flow. In this study, we attempt to numerically investigate the sediment grain-scale mechanism to overcome the shortcomings of experimental measurements and the free surface treatment in many numerical simulations. The gravel transport process on a sloped beach under regular waves was simulated using a 2D coupled model of the discrete element method (DEM) and a modified moving particle semi-implicit (MPS) method; a sub-model was built into the DEM-MPS model to improve fluid volume conservation. After validating the simulated performance by comparing it to a previous experiment, the gravel motions were investigated for turbulence and inner beach structure. The Shields number, estimated using the drag force distribution, revealed that significant turbulence contributed to onshore gravel transport near the rundown limit. The inter-gravel contact structure inside the beach explained the decrease in offshore sediment transport during backwash as increased resistance to gravel motions resulting from beach compaction.
{"title":"Grain-scale investigation of swash zone sediment transport on a gravel beach using DEM-MPS coupled scheme","authors":"T. Tazaki, E. Harada, H. Gotoh","doi":"10.1080/21664250.2023.2202958","DOIUrl":"https://doi.org/10.1080/21664250.2023.2202958","url":null,"abstract":"ABSTRACT Sediment transport in the swash zone directly affects beach changes such as shoreline recession; thus, detailed understandings of sediment transport mechanisms are necessary to accurately estimate the short-time scales sediment transport rate. However, these detailed mechanisms under runup waves have not been elucidated because of the complex solid-gas-liquid multiphase turbulence flow. In this study, we attempt to numerically investigate the sediment grain-scale mechanism to overcome the shortcomings of experimental measurements and the free surface treatment in many numerical simulations. The gravel transport process on a sloped beach under regular waves was simulated using a 2D coupled model of the discrete element method (DEM) and a modified moving particle semi-implicit (MPS) method; a sub-model was built into the DEM-MPS model to improve fluid volume conservation. After validating the simulated performance by comparing it to a previous experiment, the gravel motions were investigated for turbulence and inner beach structure. The Shields number, estimated using the drag force distribution, revealed that significant turbulence contributed to onshore gravel transport near the rundown limit. The inter-gravel contact structure inside the beach explained the decrease in offshore sediment transport during backwash as increased resistance to gravel motions resulting from beach compaction.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60334816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-29DOI: 10.1080/21664250.2023.2195030
Acacia Markov, J. Stolle, Ross Henteleff, I. Nistor, D. Pham Van Bang, E. Murphy, A. Cornett
ABSTRACT Physical modeling studies have endeavored to quantify the influence of plant biophysical parameters and hydrodynamics on wave-vegetation interactions and coastal protection. The accuracy with which such studies have characterized stem motion is limited by the predominant use of plant surrogates, and the few saltmarsh species considered in live vegetation studies. To address this, prototype-scale experiments were conducted in the outdoor Large Wave Canal of the Institut National de la Recherche Scientifique, Québec, in collaboration with the University of Ottawa and the National Research Council Canada, allowing novel characterization of live vegetation deformation under wave action. Two saltmarsh species were investigated (Spartina alterniflora, Spartina patens) under various irregular wave conditions (0.03 m< H s <0.28 m, T s 2.5, 10 s). Stem deformation was characterized using submerged cameras and bending angle tracking, coupled with wave height and velocity measurements. Significant differences in stem flexibility were observed between species, with S. alterniflora exhibiting more rigid stems (EI alterniflora =0.051 Nm2) than S. patens (EI patens =0.0015 Nm2; t-test; p<0.05). The two species consequexhibited different bending angles under similar hydrodynamic conditions, expected to influence their relative coastal protection capacity. These findings provide critical insight into the design of marsh construction or restoration for coastal protection.
摘要物理建模研究试图量化植物生物物理参数和流体动力学对波浪-植被相互作用和海岸保护的影响。这类研究描述树干运动的准确性受到植物替代物的主要使用以及活植被研究中考虑的少数盐沼物种的限制。为了解决这一问题,与渥太华大学和加拿大国家研究委员会合作,在魁北克国家科学研究所的室外大浪渠中进行了原型规模的实验,从而能够对波浪作用下的活植被变形进行新的表征。在各种不规则波浪条件下(0.03 m
{"title":"Deformation of Spartina patens and Spartina alterniflora stems under irregular wave action","authors":"Acacia Markov, J. Stolle, Ross Henteleff, I. Nistor, D. Pham Van Bang, E. Murphy, A. Cornett","doi":"10.1080/21664250.2023.2195030","DOIUrl":"https://doi.org/10.1080/21664250.2023.2195030","url":null,"abstract":"ABSTRACT Physical modeling studies have endeavored to quantify the influence of plant biophysical parameters and hydrodynamics on wave-vegetation interactions and coastal protection. The accuracy with which such studies have characterized stem motion is limited by the predominant use of plant surrogates, and the few saltmarsh species considered in live vegetation studies. To address this, prototype-scale experiments were conducted in the outdoor Large Wave Canal of the Institut National de la Recherche Scientifique, Québec, in collaboration with the University of Ottawa and the National Research Council Canada, allowing novel characterization of live vegetation deformation under wave action. Two saltmarsh species were investigated (Spartina alterniflora, Spartina patens) under various irregular wave conditions (0.03 m< H s <0.28 m, T s 2.5, 10 s). Stem deformation was characterized using submerged cameras and bending angle tracking, coupled with wave height and velocity measurements. Significant differences in stem flexibility were observed between species, with S. alterniflora exhibiting more rigid stems (EI alterniflora =0.051 Nm2) than S. patens (EI patens =0.0015 Nm2; t-test; p<0.05). The two species consequexhibited different bending angles under similar hydrodynamic conditions, expected to influence their relative coastal protection capacity. These findings provide critical insight into the design of marsh construction or restoration for coastal protection.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43325557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-21DOI: 10.1080/21664250.2023.2190002
Elad Dakar, J. M. Fernández Jaramillo, I. Gertman, R. Mayerle, R. Goldman
ABSTRACT We present a system for predicting the hourly significant wave height at a specific wave measurement station in the middle of Israel’s Mediterranean coast (Hadera). Our system uses an artificial neural network (ANN) composed of two sub-networks. We evaluate the importance of different inputs to the system. The input includes wind forecast data from the SKIRON atmospheric modeling system, wave forecast for the station’s location given by the SWAN wave model, and observed wave data. Our system pre-processes the wind data using a spatial filtering scheme and then enters it into the first sub-network in the form of a multidimensional tensor. We take special care to interconnect the tensor elements through a dimensional permutation that leads the ANN to sum elements along all the tensor’s dimensions. Our system groups the output of the first sub-network with the rest of the input and feeds it to the second sub-network that gives the prediction. Our ANN system outperforms the SWAN wave model in estimating wave heights over 1.5 meters. We obtain the best performance when either all input components are used or just wind and observations. Reimplementation of the system at Ashkelon yields smaller improvements due to insufficient training data.
{"title":"An artificial neural network based system for wave height prediction","authors":"Elad Dakar, J. M. Fernández Jaramillo, I. Gertman, R. Mayerle, R. Goldman","doi":"10.1080/21664250.2023.2190002","DOIUrl":"https://doi.org/10.1080/21664250.2023.2190002","url":null,"abstract":"ABSTRACT We present a system for predicting the hourly significant wave height at a specific wave measurement station in the middle of Israel’s Mediterranean coast (Hadera). Our system uses an artificial neural network (ANN) composed of two sub-networks. We evaluate the importance of different inputs to the system. The input includes wind forecast data from the SKIRON atmospheric modeling system, wave forecast for the station’s location given by the SWAN wave model, and observed wave data. Our system pre-processes the wind data using a spatial filtering scheme and then enters it into the first sub-network in the form of a multidimensional tensor. We take special care to interconnect the tensor elements through a dimensional permutation that leads the ANN to sum elements along all the tensor’s dimensions. Our system groups the output of the first sub-network with the rest of the input and feeds it to the second sub-network that gives the prediction. Our ANN system outperforms the SWAN wave model in estimating wave heights over 1.5 meters. We obtain the best performance when either all input components are used or just wind and observations. Reimplementation of the system at Ashkelon yields smaller improvements due to insufficient training data.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60334765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-10DOI: 10.1080/21664250.2023.2187740
Zhenfeng Zhai, Jie Li, Dan Liu, Jianming Miao
ABSTRACT The potential flow theory is used to develop a new analytical method to solve the diffraction problem of short-crested incident waves with uniform current acting on a concentric multiple-cylinder system. The influence of uniform current on the hydrodynamic performance of the concentric structure is discussed. The incident angle and speed of the currents have a significant influence on the short-crested wave force and run-up on the concentric structure, i.e. the wave force and wave run-up increase significantly when wave and uniform current directions are the same, while decreasing when in the opposite direction of the wave and uniform current. Additionally, the effects of parameters such as the current incidence angle, current speed, porous-effect parameters, number of perforated walls, and short-crestedness of regular waves on the hydrodynamic performance of the concentric structures are valuated by numerical experiments. It is observed that as the number of permeable walls increases, wave load on the impermeable internal cylinder gradually decreases and the wave surface around is more even. This study is expected to provide theoretical guidance for the design of nearshore architecture.
{"title":"Short-crested wave-current forces around a concentric multiple-cylinder structure","authors":"Zhenfeng Zhai, Jie Li, Dan Liu, Jianming Miao","doi":"10.1080/21664250.2023.2187740","DOIUrl":"https://doi.org/10.1080/21664250.2023.2187740","url":null,"abstract":"ABSTRACT The potential flow theory is used to develop a new analytical method to solve the diffraction problem of short-crested incident waves with uniform current acting on a concentric multiple-cylinder system. The influence of uniform current on the hydrodynamic performance of the concentric structure is discussed. The incident angle and speed of the currents have a significant influence on the short-crested wave force and run-up on the concentric structure, i.e. the wave force and wave run-up increase significantly when wave and uniform current directions are the same, while decreasing when in the opposite direction of the wave and uniform current. Additionally, the effects of parameters such as the current incidence angle, current speed, porous-effect parameters, number of perforated walls, and short-crestedness of regular waves on the hydrodynamic performance of the concentric structures are valuated by numerical experiments. It is observed that as the number of permeable walls increases, wave load on the impermeable internal cylinder gradually decreases and the wave surface around is more even. This study is expected to provide theoretical guidance for the design of nearshore architecture.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41738057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-25DOI: 10.1080/21664250.2023.2179791
P. Zheng, Ming Li, Jianting Du, Cai-xian Wang, J. Wolf, Xue'en Chen
ABSTRACT To conserve momentum flux across the air-sea interface, a new wind stress-wave-ocean coupled coastal model system is developed. Via simulating a specific idealized tropical cyclone (TC), this model is firstly applied to study the impacts of three wave effects, including the commonly studied wave-breaking induced acceleration, wave-enhanced bottom friction and the seldom studied wave modified surface stress (WMWS), and the conservation of momentum flux across air-sea interface (MFB) on the predictions of storm surge and inundation. It is then further applied to investigate the role of above four effects in modeling the peak surge and inundation by generalizing the TC forcing with various physical parameters, including the TC intensity, size, translation speed, and bottom slope. The model results reveal that WMWS can contribute considerably to the total surge height and inundation distance in a relatively high-intensity TC and its contribution depends weakly on the varying bottom slopes, TC sizes or translation speeds. By contrast, the MFB can only considerably reduce the maximum storm surge with a small bottom slope, while its reduction on inundation distance is more significant. The present study thus highlights the importance and necessity of incorporating the commonly ignored effects of WMWS and MFB in coastal modeling.
{"title":"Development of a fully coupled wind stress-wave-ocean coastal model system","authors":"P. Zheng, Ming Li, Jianting Du, Cai-xian Wang, J. Wolf, Xue'en Chen","doi":"10.1080/21664250.2023.2179791","DOIUrl":"https://doi.org/10.1080/21664250.2023.2179791","url":null,"abstract":"ABSTRACT To conserve momentum flux across the air-sea interface, a new wind stress-wave-ocean coupled coastal model system is developed. Via simulating a specific idealized tropical cyclone (TC), this model is firstly applied to study the impacts of three wave effects, including the commonly studied wave-breaking induced acceleration, wave-enhanced bottom friction and the seldom studied wave modified surface stress (WMWS), and the conservation of momentum flux across air-sea interface (MFB) on the predictions of storm surge and inundation. It is then further applied to investigate the role of above four effects in modeling the peak surge and inundation by generalizing the TC forcing with various physical parameters, including the TC intensity, size, translation speed, and bottom slope. The model results reveal that WMWS can contribute considerably to the total surge height and inundation distance in a relatively high-intensity TC and its contribution depends weakly on the varying bottom slopes, TC sizes or translation speeds. By contrast, the MFB can only considerably reduce the maximum storm surge with a small bottom slope, while its reduction on inundation distance is more significant. The present study thus highlights the importance and necessity of incorporating the commonly ignored effects of WMWS and MFB in coastal modeling.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42326176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.1080/21664250.2023.2170688
E. Jafarzadeh, A. Bohluly, A. Kabiri-Samani, S. Mansourzadeh
ABSTRACT Submerged circular breakwaters are laid to a point at the bottom, simplifying their installation compared to the rigid rectangular ones. In the present study, numerical simulations were performed to evaluate the circular and rectangular submerged breakwaters transmission coefficient, changing different hydraulic/geometric effective parameters. A sensitivity analysis was performed to evaluate the effectiveness of various parameters on the transmission coefficient for different wave heights, water depths, and bed slopes. Numerical simulations were performed using a two-phase free surface flow model. Interface tracking was also performed using the modified fine grid volume tracking-volume of fluid (FGVT-VOF) method. Experimental measurements were employed to verify the numerical results, suggesting that the numerical model accurately predicts the transmission coefficient; thereby, the numerical results are useful for designing submerged breakwaters. An equation was finally derived to determine the transmission coefficient of the circular submerged breakwaters.
{"title":"A study on the performance of circular and rectangular submerged breakwaters using nun-uniform FGVT method","authors":"E. Jafarzadeh, A. Bohluly, A. Kabiri-Samani, S. Mansourzadeh","doi":"10.1080/21664250.2023.2170688","DOIUrl":"https://doi.org/10.1080/21664250.2023.2170688","url":null,"abstract":"ABSTRACT Submerged circular breakwaters are laid to a point at the bottom, simplifying their installation compared to the rigid rectangular ones. In the present study, numerical simulations were performed to evaluate the circular and rectangular submerged breakwaters transmission coefficient, changing different hydraulic/geometric effective parameters. A sensitivity analysis was performed to evaluate the effectiveness of various parameters on the transmission coefficient for different wave heights, water depths, and bed slopes. Numerical simulations were performed using a two-phase free surface flow model. Interface tracking was also performed using the modified fine grid volume tracking-volume of fluid (FGVT-VOF) method. Experimental measurements were employed to verify the numerical results, suggesting that the numerical model accurately predicts the transmission coefficient; thereby, the numerical results are useful for designing submerged breakwaters. An equation was finally derived to determine the transmission coefficient of the circular submerged breakwaters.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46979573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-08DOI: 10.1080/21664250.2023.2172992
Yesenia Morgado, O. S. Areu-Rangel, Rodolfo Silva, T. Miyashita, N. Mori, T. Tomiczek
ABSTRACT The increase in the magnitude of natural disasters has led to the development of risk assessment methodologies to indicate risk levels in qualitative terms. Among these, the Source-Pathway-Receptor-Consequence (SPRC) methodology assesses the risk from the source of the hazard to the possible consequences. In the present work, an economic evaluation was carried out on the substantial damages directly associated with the floods generated by a 10 m high tsunami off the coast of Zihuatanejo, Mexico. This event was identified as the worst-case scenario of tsunamis associated with a 8.4 Mw earthquake. The method followed was the SPRC, with an economic evaluation, applied to street level in Zihuatanejo. The economic costs were obtained from the results of this work using a criterion to characterize the percentage of damage to various types of housing and goods associated with different levels of flooding. This work is intended as a basis for the better planning of urban development, considering possible economic damage from tsunamis. It also provides a more objective perspective for distributing funds for mitigating natural disasters, allowing aid to be directed to the areas and types of housing with greatest risk from the flooding.
{"title":"Using the SPRC methodology to assess tsunami risk in Zihuatanejo, Mexico","authors":"Yesenia Morgado, O. S. Areu-Rangel, Rodolfo Silva, T. Miyashita, N. Mori, T. Tomiczek","doi":"10.1080/21664250.2023.2172992","DOIUrl":"https://doi.org/10.1080/21664250.2023.2172992","url":null,"abstract":"ABSTRACT The increase in the magnitude of natural disasters has led to the development of risk assessment methodologies to indicate risk levels in qualitative terms. Among these, the Source-Pathway-Receptor-Consequence (SPRC) methodology assesses the risk from the source of the hazard to the possible consequences. In the present work, an economic evaluation was carried out on the substantial damages directly associated with the floods generated by a 10 m high tsunami off the coast of Zihuatanejo, Mexico. This event was identified as the worst-case scenario of tsunamis associated with a 8.4 Mw earthquake. The method followed was the SPRC, with an economic evaluation, applied to street level in Zihuatanejo. The economic costs were obtained from the results of this work using a criterion to characterize the percentage of damage to various types of housing and goods associated with different levels of flooding. This work is intended as a basis for the better planning of urban development, considering possible economic damage from tsunamis. It also provides a more objective perspective for distributing funds for mitigating natural disasters, allowing aid to be directed to the areas and types of housing with greatest risk from the flooding.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42809864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-31DOI: 10.1080/21664250.2023.2167502
Ooki Kurihara, Hidenori Takahashi
ABSTRACT Composite-type breakwaters are reinforced by piling rubble stones and constructing counterweight fillings (known as reinforcing embankments) behind caissons. Important performance requirements for breakwaters include minimal damage and high strength, even when the external forces exceed the design forces. In this study, the failure process and final state of breakwaters with reinforcing embankments are investigated via centrifuge model tests, and the cross-sectional configuration of the reinforcing embankment for improving the tenacity of breakwaters is determined. The results show that, in the overturning mode, when the number of rubble stones decreases, the reinforcing embankment deforms in accordance with the inclination of the caisson; subsequently, the caisson overturns and mounts onto the embankment. When balance is not maintained at that position, the caisson slides down the slope surface, resulting in catastrophic failure. A series of centrifuge model tests qualitatively show that placing more rubble stones adjacent to the caisson is less likely to result in such catastrophic failure. Furthermore, the stability of the breakwaters is evaluated via circular slip analyses, which demonstrate the importance of increasing the volume of the reinforcing embankment adjacent to the caisson in terms of the stability.
{"title":"Backfilling configuration to improve tenacity of composite-type breakwaters","authors":"Ooki Kurihara, Hidenori Takahashi","doi":"10.1080/21664250.2023.2167502","DOIUrl":"https://doi.org/10.1080/21664250.2023.2167502","url":null,"abstract":"ABSTRACT Composite-type breakwaters are reinforced by piling rubble stones and constructing counterweight fillings (known as reinforcing embankments) behind caissons. Important performance requirements for breakwaters include minimal damage and high strength, even when the external forces exceed the design forces. In this study, the failure process and final state of breakwaters with reinforcing embankments are investigated via centrifuge model tests, and the cross-sectional configuration of the reinforcing embankment for improving the tenacity of breakwaters is determined. The results show that, in the overturning mode, when the number of rubble stones decreases, the reinforcing embankment deforms in accordance with the inclination of the caisson; subsequently, the caisson overturns and mounts onto the embankment. When balance is not maintained at that position, the caisson slides down the slope surface, resulting in catastrophic failure. A series of centrifuge model tests qualitatively show that placing more rubble stones adjacent to the caisson is less likely to result in such catastrophic failure. Furthermore, the stability of the breakwaters is evaluated via circular slip analyses, which demonstrate the importance of increasing the volume of the reinforcing embankment adjacent to the caisson in terms of the stability.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48401198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-08DOI: 10.1080/21664250.2022.2163844
Chenhao Zhang, Mingliang Zhang
ABSTRACT Wave energy can be reduced by coastal vegetation, which is an important aspect of coastal protection engineering. The effect of vegetation characteristics on solitary wave propagation and attenuation is numerically investigated in this study. A 3D numerical model is established based on the Reynolds Averaged Navier Stokes (RANS) equations combined with k-ω shear stress transport (SST) turbulence model, and the Volume of Fluid (VOF) method is used to capture the free water surface. This model is first validated by a series of physical experimental results with high accuracy. Subsequently, the model is used to simulate the interaction between solitary waves and submerged vegetation with different densities, submergence ratios, and distribution modes. The results indicate that the density and submergence ratios of submerged vegetation significantly affect the propagation and attenuation of solitary waves under uniform distribution modes. Compared with the condition of the uniform distribution mode, the solitary wave dissipates more energy after passing through the vegetation zone under the non-uniform distribution modes. Large differences in velocity fields are found for uniform/non-uniform distribution modes, which contribute to understanding the wave dissipation influenced by vegetation characteristics.
{"title":"Numerical investigation of solitary wave attenuation and mitigation caused by vegetation using OpenFOAM","authors":"Chenhao Zhang, Mingliang Zhang","doi":"10.1080/21664250.2022.2163844","DOIUrl":"https://doi.org/10.1080/21664250.2022.2163844","url":null,"abstract":"ABSTRACT Wave energy can be reduced by coastal vegetation, which is an important aspect of coastal protection engineering. The effect of vegetation characteristics on solitary wave propagation and attenuation is numerically investigated in this study. A 3D numerical model is established based on the Reynolds Averaged Navier Stokes (RANS) equations combined with k-ω shear stress transport (SST) turbulence model, and the Volume of Fluid (VOF) method is used to capture the free water surface. This model is first validated by a series of physical experimental results with high accuracy. Subsequently, the model is used to simulate the interaction between solitary waves and submerged vegetation with different densities, submergence ratios, and distribution modes. The results indicate that the density and submergence ratios of submerged vegetation significantly affect the propagation and attenuation of solitary waves under uniform distribution modes. Compared with the condition of the uniform distribution mode, the solitary wave dissipates more energy after passing through the vegetation zone under the non-uniform distribution modes. Large differences in velocity fields are found for uniform/non-uniform distribution modes, which contribute to understanding the wave dissipation influenced by vegetation characteristics.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42152509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}