首页 > 最新文献

Aerospace Science and Technology最新文献

英文 中文
Investigation on the Mechanism and Method of Wide Adaptability Turbine Aerodynamic Regulation 大适应性涡轮气动调节机理与方法研究
IF 5.6 1区 工程技术 Q1 ENGINEERING, AEROSPACE Pub Date : 2026-02-16 DOI: 10.1016/j.ast.2026.111947
Lehan Lu, Hang Yuan, Xiao Qu, Meng Wu, Yongzhen Wang, Yanfeng Zhang
Variable-cycle engines (VCEs) require precise, wide-range turbine flow control while avoiding the complexity, weight, and durability issues of conventional geometric regulation. This study investigates suction-side slot injection as an aerodynamic regulation approach on the VKI-LS89 transonic nozzle guide vane profile. Steady 2D blade-to-blade RANS simulations are performed in a cascade configuration with spanwise periodic boundaries, and the baseline flow is validated against the MUR45 experimental condition. A parametric study is conducted to quantify how slot width, slot position, slot angle, and relative jet mass flow rate (<mml:math altimg="si19.svg"><mml:msub><mml:mover><mml:mi>m</mml:mi><mml:mi>˙</mml:mi></mml:mover><mml:mrow><mml:mi>i</mml:mi><mml:mi>n</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:math>) affect turbine flow capacity, total pressure loss, and internal flow features. Among the parameters tested, slot position exhibits the highest sensitivity, with the strongest regulation obtained when the slot is located at <mml:math altimg="si20.svg"><mml:mrow><mml:mi>x</mml:mi><mml:mo linebreak="goodbreak">/</mml:mo><mml:mi>C</mml:mi><mml:mo>≈</mml:mo><mml:mspace width="0.33em"></mml:mspace><mml:mn>25</mml:mn><mml:mo>%</mml:mo><mml:mo>−</mml:mo><mml:mn>35</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math> (slightly upstream of the aerodynamic throat). Slot angle and jet mass flow show systematic trade-offs: counter-flow orientations and higher injection rates enhance blockage but increase mixing and wake loss. For a representative case with a perpendicular slot (<mml:math altimg="si21.svg"><mml:mrow><mml:msub><mml:mi>θ</mml:mi><mml:mrow><mml:mi>A</mml:mi><mml:mi>F</mml:mi><mml:mi>C</mml:mi></mml:mrow></mml:msub><mml:mspace width="0.33em"></mml:mspace><mml:mo linebreak="goodbreak">=</mml:mo><mml:mspace width="0.33em"></mml:mspace><mml:msup><mml:mn>0</mml:mn><mml:mo>∘</mml:mo></mml:msup></mml:mrow></mml:math>) and <mml:math altimg="si19.svg"><mml:msub><mml:mover><mml:mi>m</mml:mi><mml:mi>˙</mml:mi></mml:mover><mml:mrow><mml:mi>i</mml:mi><mml:mi>n</mml:mi><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:math> = 5%, the inlet mass flow is reduced by 10.41%. Mechanistically, slot position governs where blockage forms, slot angle controls the jet-mainflow interaction mode, and jet flow rate sets the intensity of momentum/energy exchange; together they regulate flow stability and loss growth. Balancing regulation effectiveness and loss penalty, for the present validated steady 2D blade-to-blade simulations on the VKI-LS89 profile and within the examined parameter space, a practical compromise is achieved with Δn/o ≈ 15%-26% (15.4%-25.8% in the tested cases), <mml:math altimg="si22.svg"><mml:mrow><mml:mi>x</mml:mi><mml:mo linebreak="goodbreak">/</mml:mo><mml:mi>C</mml:mi></mml:mrow></mml:math>≈ 0.25-0.35, θ ≈ 0°, and <mml:math altimg="si19.svg"><mml:msub><mml:mover><mml:mi>m</mml:mi><mml:mi>˙</mml:mi></mml:mover><mml:mrow><mml:mi>i</mml:mi><m
变循环发动机(VCEs)需要精确、大范围的涡轮流量控制,同时避免传统几何调节的复杂性、重量和耐用性问题。本文研究了VKI-LS89型跨音速喷管导叶型面吸力侧狭缝喷射的气动调节方法。在具有展向周期边界的叶栅结构中进行了稳定的二维叶片对叶片RANS模拟,并在MUR45实验条件下验证了基线流。通过参数化研究,量化了狭缝宽度、狭缝位置、狭缝角度和相对射流质量流量(m˙inj)对涡轮流动能力、总压损失和内部流动特性的影响。在所测试的参数中,槽位的灵敏度最高,当槽位位于x/C≈25% ~ 35%(略高于气动喉道)时,调节效果最强。狭缝角度和射流质量表现出系统性的权衡:逆流方向和更高的喷射速度会增强堵塞,但会增加混合和尾迹损失。以垂直槽口(θAFC=0°)、m˙inj = 5%的代表性情况为例,进口质量流量减少10.41%。从机理上讲,槽位位置决定堵塞的形成位置,槽角控制射流与主流的相互作用方式,射流流速决定动量/能量交换的强度;它们共同调节流动稳定性和损失增长。为了平衡调节效果和损失损失,在VKI-LS89剖面上进行了目前验证的稳态二维叶片对叶片模拟,并在检查的参数空间内,实现了Δn/o≈15%-26%(测试案例中为15.4%-25.8%),x/C≈0.25-0.35,θ≈0°和m˙inj≈10%-12%的实际折衷。这些数字建议是针对具体案例的,旨在作为进一步研究的指导;它们不应被解释为全局最优,需要在工程部署之前通过三维、时间精确的模拟和实验测试进行验证。
{"title":"Investigation on the Mechanism and Method of Wide Adaptability Turbine Aerodynamic Regulation","authors":"Lehan Lu, Hang Yuan, Xiao Qu, Meng Wu, Yongzhen Wang, Yanfeng Zhang","doi":"10.1016/j.ast.2026.111947","DOIUrl":"https://doi.org/10.1016/j.ast.2026.111947","url":null,"abstract":"Variable-cycle engines (VCEs) require precise, wide-range turbine flow control while avoiding the complexity, weight, and durability issues of conventional geometric regulation. This study investigates suction-side slot injection as an aerodynamic regulation approach on the VKI-LS89 transonic nozzle guide vane profile. Steady 2D blade-to-blade RANS simulations are performed in a cascade configuration with spanwise periodic boundaries, and the baseline flow is validated against the MUR45 experimental condition. A parametric study is conducted to quantify how slot width, slot position, slot angle, and relative jet mass flow rate (&lt;mml:math altimg=\"si19.svg\"&gt;&lt;mml:msub&gt;&lt;mml:mover&gt;&lt;mml:mi&gt;m&lt;/mml:mi&gt;&lt;mml:mi&gt;˙&lt;/mml:mi&gt;&lt;/mml:mover&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;i&lt;/mml:mi&gt;&lt;mml:mi&gt;n&lt;/mml:mi&gt;&lt;mml:mi&gt;j&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt;) affect turbine flow capacity, total pressure loss, and internal flow features. Among the parameters tested, slot position exhibits the highest sensitivity, with the strongest regulation obtained when the slot is located at &lt;mml:math altimg=\"si20.svg\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;x&lt;/mml:mi&gt;&lt;mml:mo linebreak=\"goodbreak\"&gt;/&lt;/mml:mo&gt;&lt;mml:mi&gt;C&lt;/mml:mi&gt;&lt;mml:mo&gt;≈&lt;/mml:mo&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mn&gt;25&lt;/mml:mn&gt;&lt;mml:mo&gt;%&lt;/mml:mo&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:mn&gt;35&lt;/mml:mn&gt;&lt;mml:mo&gt;%&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt; (slightly upstream of the aerodynamic throat). Slot angle and jet mass flow show systematic trade-offs: counter-flow orientations and higher injection rates enhance blockage but increase mixing and wake loss. For a representative case with a perpendicular slot (&lt;mml:math altimg=\"si21.svg\"&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;θ&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;A&lt;/mml:mi&gt;&lt;mml:mi&gt;F&lt;/mml:mi&gt;&lt;mml:mi&gt;C&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mo linebreak=\"goodbreak\"&gt;=&lt;/mml:mo&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:msup&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;mml:mo&gt;∘&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;) and &lt;mml:math altimg=\"si19.svg\"&gt;&lt;mml:msub&gt;&lt;mml:mover&gt;&lt;mml:mi&gt;m&lt;/mml:mi&gt;&lt;mml:mi&gt;˙&lt;/mml:mi&gt;&lt;/mml:mover&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;i&lt;/mml:mi&gt;&lt;mml:mi&gt;n&lt;/mml:mi&gt;&lt;mml:mi&gt;j&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt; = 5%, the inlet mass flow is reduced by 10.41%. Mechanistically, slot position governs where blockage forms, slot angle controls the jet-mainflow interaction mode, and jet flow rate sets the intensity of momentum/energy exchange; together they regulate flow stability and loss growth. Balancing regulation effectiveness and loss penalty, for the present validated steady 2D blade-to-blade simulations on the VKI-LS89 profile and within the examined parameter space, a practical compromise is achieved with Δn/o ≈ 15%-26% (15.4%-25.8% in the tested cases), &lt;mml:math altimg=\"si22.svg\"&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;x&lt;/mml:mi&gt;&lt;mml:mo linebreak=\"goodbreak\"&gt;/&lt;/mml:mo&gt;&lt;mml:mi&gt;C&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;≈ 0.25-0.35, θ ≈ 0°, and &lt;mml:math altimg=\"si19.svg\"&gt;&lt;mml:msub&gt;&lt;mml:mover&gt;&lt;mml:mi&gt;m&lt;/mml:mi&gt;&lt;mml:mi&gt;˙&lt;/mml:mi&gt;&lt;/mml:mover&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;i&lt;/mml:mi&gt;&lt;m","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"105 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146209927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient explicit simulation for dynamics of spinning circular solar sails considering the orbit-attitude-vibration coupling effect 考虑轨道-姿态-振动耦合效应的太阳圆帆旋转动力学高效显式仿真
IF 5.6 1区 工程技术 Q1 ENGINEERING, AEROSPACE Pub Date : 2026-02-16 DOI: 10.1016/j.ast.2026.111945
Zhibo Jia, Wei Fan, Ping Zhou, Hui Ren
The spinning circular solar sail is highly attractive in space-exploring missions due to its low areal density and compact fold strategy. Its accurate modeling and real-time simulations can help effectively predict the dynamic behavior, thus assisting its on-orbit operation and control. This work achieves efficient explicit simulations for the dynamics of spinning circular solar sails considering the orbit-attitude-vibration coupling effect. To achieve this, a dynamical circular solar sail model optimized for explicit integrators is established, where the Föppl-von Kármán (FvK) plate theory, without considering high-frequency in-plane vibrations, is adopted to describe the nonlinear deformations. Particularly, both the out-of-plane deflection and in-plane stresses for geometric stiffness are modeled, and their nonlinear coupling is taken into account. To address the time-varying coupling effect among the orbit, attitude, and vibration, a non-inertial floating frame is introduced to separate their degrees of freedom, thus that the multiscale challenge can be overcome. Furthermore, the local incremental rotation vector is then employed to get rid of singularities existing in large spatial rotations. Based on this, the explicit Lie group integrator is developed to efficiently solve the coupling dynamics of the solar sail. Numerical experiments are performed to verify the accuracy of the dynamic model and validate the high efficiency of the explicit simulations. This present work contributes to the explicit real-time simulation of spinning circular solar sails considering orbit-attitude-vibration coupling effects.
旋转圆形太阳帆因其面密度低、折叠紧凑而在空间探索任务中具有很高的吸引力。其精确的建模和实时仿真可以有效地预测其动力学行为,从而辅助其在轨运行和控制。本文对考虑轨道-姿态-振动耦合效应的太阳圆帆旋转动力学进行了有效的显式模拟。为了实现这一目标,建立了一个针对显式积分器优化的动力圆形太阳帆模型,其中采用Föppl-von Kármán (FvK)板理论,不考虑高频面内振动,来描述非线性变形。特别是,平面外偏转和几何刚度建模,平面应力及其非线性耦合是考虑。为了解决轨道、姿态和振动三者之间的时变耦合效应,引入非惯性浮动框架分离它们的自由度,从而克服了多尺度挑战。然后,利用局部增量旋转矢量消除大空间旋转中存在的奇异性。在此基础上,开发了显式李群积分器,有效地求解了太阳帆的耦合动力学。通过数值实验验证了动态模型的准确性和显式模拟的高效性。本工作有助于考虑轨道-姿态-振动耦合效应的旋转圆形太阳帆的显式实时模拟。
{"title":"Efficient explicit simulation for dynamics of spinning circular solar sails considering the orbit-attitude-vibration coupling effect","authors":"Zhibo Jia, Wei Fan, Ping Zhou, Hui Ren","doi":"10.1016/j.ast.2026.111945","DOIUrl":"https://doi.org/10.1016/j.ast.2026.111945","url":null,"abstract":"The spinning circular solar sail is highly attractive in space-exploring missions due to its low areal density and compact fold strategy. Its accurate modeling and real-time simulations can help effectively predict the dynamic behavior, thus assisting its on-orbit operation and control. This work achieves efficient explicit simulations for the dynamics of spinning circular solar sails considering the orbit-attitude-vibration coupling effect. To achieve this, a dynamical circular solar sail model optimized for explicit integrators is established, where the Föppl-von Kármán (FvK) plate theory, without considering high-frequency in-plane vibrations, is adopted to describe the nonlinear deformations. Particularly, both the out-of-plane deflection and in-plane stresses for geometric stiffness are modeled, and their nonlinear coupling is taken into account. To address the time-varying coupling effect among the orbit, attitude, and vibration, a non-inertial floating frame is introduced to separate their degrees of freedom, thus that the multiscale challenge can be overcome. Furthermore, the local incremental rotation vector is then employed to get rid of singularities existing in large spatial rotations. Based on this, the explicit Lie group integrator is developed to efficiently solve the coupling dynamics of the solar sail. Numerical experiments are performed to verify the accuracy of the dynamic model and validate the high efficiency of the explicit simulations. This present work contributes to the explicit real-time simulation of spinning circular solar sails considering orbit-attitude-vibration coupling effects.","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"22 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146209736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “A numerical investigation of aerodynamic and aeroacoustic performance of aerial screw propeller for small UAVs and VTOL” [AESCTE, Volume 172, May 2026, 111732] “小型无人机和垂直起降的航空螺旋桨气动和气动声学性能的数值研究”的更正[AESCTE,卷172,2026年5月,111732]
IF 5.6 1区 工程技术 Q1 ENGINEERING, AEROSPACE Pub Date : 2026-02-12 DOI: 10.1016/j.ast.2026.111805
M. Mohsin Ali, , Amir Khan, M. Zain, Raja Amer Azim, Tariq Talha, Imran Akhtar
{"title":"Corrigendum to “A numerical investigation of aerodynamic and aeroacoustic performance of aerial screw propeller for small UAVs and VTOL” [AESCTE, Volume 172, May 2026, 111732]","authors":"M. Mohsin Ali, , Amir Khan, M. Zain, Raja Amer Azim, Tariq Talha, Imran Akhtar","doi":"10.1016/j.ast.2026.111805","DOIUrl":"https://doi.org/10.1016/j.ast.2026.111805","url":null,"abstract":"","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"10 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Dynamic Mesh Method for Multi-Scenario Turbomachinery Simulations: Development, Validation, and Application 一种用于多场景涡轮机械仿真的新型动态网格方法:开发、验证和应用
IF 5.6 1区 工程技术 Q1 ENGINEERING, AEROSPACE Pub Date : 2026-02-11 DOI: 10.1016/j.ast.2026.111914
Kailong Xia, Hefang Deng, Mingmin Zhu, Songan Zhang, Huayin Chen, Jinfang Teng
{"title":"A Novel Dynamic Mesh Method for Multi-Scenario Turbomachinery Simulations: Development, Validation, and Application","authors":"Kailong Xia, Hefang Deng, Mingmin Zhu, Songan Zhang, Huayin Chen, Jinfang Teng","doi":"10.1016/j.ast.2026.111914","DOIUrl":"https://doi.org/10.1016/j.ast.2026.111914","url":null,"abstract":"","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"286 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation on the atomization process in a hydrogen-oxygen gas-liquid coaxial injector 氢-氧-液共轴喷射器雾化过程的数值研究
IF 5.6 1区 工程技术 Q1 ENGINEERING, AEROSPACE Pub Date : 2026-02-11 DOI: 10.1016/j.ast.2026.111912
Lyu Leqi, Jin Xin, Zhang Huiqiang
{"title":"Numerical investigation on the atomization process in a hydrogen-oxygen gas-liquid coaxial injector","authors":"Lyu Leqi, Jin Xin, Zhang Huiqiang","doi":"10.1016/j.ast.2026.111912","DOIUrl":"https://doi.org/10.1016/j.ast.2026.111912","url":null,"abstract":"","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"32 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CDM–Bayesian Framework for Multiscale Fatigue Life Prediction of Aircraft Mechanisms with Rigid–Flexible Coupling 基于CDM-Bayesian框架的刚柔耦合飞机机构多尺度疲劳寿命预测
IF 5.6 1区 工程技术 Q1 ENGINEERING, AEROSPACE Pub Date : 2026-02-11 DOI: 10.1016/j.ast.2026.111913
Yao-jia Han, Yi-pin Sun, Cheng-wei Fei
{"title":"CDM–Bayesian Framework for Multiscale Fatigue Life Prediction of Aircraft Mechanisms with Rigid–Flexible Coupling","authors":"Yao-jia Han, Yi-pin Sun, Cheng-wei Fei","doi":"10.1016/j.ast.2026.111913","DOIUrl":"https://doi.org/10.1016/j.ast.2026.111913","url":null,"abstract":"","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"13 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametric Experimental Study of Combustion Characteristics in Hydrocarbon/Aluminum Gel-Fueled Scramjet 烃类/铝凝胶燃料超燃冲压发动机燃烧特性参数化实验研究
IF 5.6 1区 工程技术 Q1 ENGINEERING, AEROSPACE Pub Date : 2026-02-11 DOI: 10.1016/j.ast.2026.111893
Mengxiong Li, Suyi Dou, Yizhou Wang, Qingchun Yang, Qingfei Fu, Kang Xue, Hongxin Wang, Xu Xu, Oskar Haidn
{"title":"Parametric Experimental Study of Combustion Characteristics in Hydrocarbon/Aluminum Gel-Fueled Scramjet","authors":"Mengxiong Li, Suyi Dou, Yizhou Wang, Qingchun Yang, Qingfei Fu, Kang Xue, Hongxin Wang, Xu Xu, Oskar Haidn","doi":"10.1016/j.ast.2026.111893","DOIUrl":"https://doi.org/10.1016/j.ast.2026.111893","url":null,"abstract":"","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"30 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of acoustic resonance in aero-engine compressors based on fluid–structure–acoustic multi-physics measurements 基于流固声多物理场测量的航空发动机压气机声共振实验研究
IF 5.6 1区 工程技术 Q1 ENGINEERING, AEROSPACE Pub Date : 2026-02-11 DOI: 10.1016/j.ast.2026.111915
Fei Wang, Baijie Qiao, Ming Zhong, Yanan Wang, Yuanshi Liu, Xuefeng Chen
{"title":"Experimental investigation of acoustic resonance in aero-engine compressors based on fluid–structure–acoustic multi-physics measurements","authors":"Fei Wang, Baijie Qiao, Ming Zhong, Yanan Wang, Yuanshi Liu, Xuefeng Chen","doi":"10.1016/j.ast.2026.111915","DOIUrl":"https://doi.org/10.1016/j.ast.2026.111915","url":null,"abstract":"","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"32 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and characteristics of dredging thermal protection structure under high temperature gradient 高温梯度下挖沙船热防护结构的设计与特点
IF 5.8 1区 工程技术 Q1 ENGINEERING, AEROSPACE Pub Date : 2026-02-10 DOI: 10.1016/j.ast.2026.111886
Qianyang Sun , Wenxuan Liu , Jun Wu , Dahai Zhang , Fangzhou Lu , Peifei Xu , Qingguo Fei
The gas rudder is a thrust vectoring device and withstand the direct impingement of high-temperature gases emitted by the engine. Significant temperature gradients exist between the regions exposed to the gases and other areas, resulting in considerable thermal stress within the gas rudder structure. To address the issue of temperature gradients and thermal stress in the rudder, this paper introduces a design method that features a dredging thermal protection structure (DTPS) with embedded high thermal conductivity materials. Numerical simulations were conducted to evaluate the effect of parameters of the DTPS, including the thickness and thermal conductivity of the dredging layer and thickness of the insulation layer, on temperature gradients and thermal stress. The results confirm that DTPS effectively reduces the temperature gradients in the gas rudder structure. The maximum tensile stress in the fiber direction of the composite panel of the flow deflector using DTPS was reduced by 57.8%.
燃气舵是推力矢量装置,可承受发动机排放的高温气体的直接冲击。暴露于气体的区域和其他区域之间存在显著的温度梯度,导致气体舵结构内部存在相当大的热应力。为了解决船舵内部温度梯度和热应力问题,本文介绍了一种嵌入高导热材料的挖泥船热防护结构(DTPS)的设计方法。通过数值模拟研究了疏浚层厚度、导热系数、保温层厚度等参数对温度梯度和热应力的影响。结果表明,dps有效地减小了气舵结构的温度梯度。采用dps的导流板复合材料纤维方向的最大拉应力降低了57.8%。
{"title":"Design and characteristics of dredging thermal protection structure under high temperature gradient","authors":"Qianyang Sun ,&nbsp;Wenxuan Liu ,&nbsp;Jun Wu ,&nbsp;Dahai Zhang ,&nbsp;Fangzhou Lu ,&nbsp;Peifei Xu ,&nbsp;Qingguo Fei","doi":"10.1016/j.ast.2026.111886","DOIUrl":"10.1016/j.ast.2026.111886","url":null,"abstract":"<div><div>The gas rudder is a thrust vectoring device and withstand the direct impingement of high-temperature gases emitted by the engine. Significant temperature gradients exist between the regions exposed to the gases and other areas, resulting in considerable thermal stress within the gas rudder structure. To address the issue of temperature gradients and thermal stress in the rudder, this paper introduces a design method that features a dredging thermal protection structure (DTPS) with embedded high thermal conductivity materials. Numerical simulations were conducted to evaluate the effect of parameters of the DTPS, including the thickness and thermal conductivity of the dredging layer and thickness of the insulation layer, on temperature gradients and thermal stress. The results confirm that DTPS effectively reduces the temperature gradients in the gas rudder structure. The maximum tensile stress in the fiber direction of the composite panel of the flow deflector using DTPS was reduced by 57.8%.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"174 ","pages":"Article 111886"},"PeriodicalIF":5.8,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Nonlinear Data-Driven Modeling of Inlet Distortion for Nacelle Air-Intake System 机舱进气系统进气畸变非线性数据驱动建模的对比分析
IF 5.6 1区 工程技术 Q1 ENGINEERING, AEROSPACE Pub Date : 2026-02-10 DOI: 10.1016/j.ast.2026.111890
Xiao Yuan, Chenxing Hu, Hao Liu, Fei Yang, Jiaao Gu, Zhichao Chai
Investigating nacelle intake under crosswind in whole-aircraft models is a frontier topic in modern aerospace propulsion research. However, investigations into the nonlinear flow characteristics of the leeward side nacelle intake influenced by fuselage interference remain scarce, and accurate modeling of this nonlinear flow continues to pose a significant challenge. Although data-driven approaches are cheap and efficient solutions, achieving high-fidelity reconstruction and prediction under small sample conditions remains a major obstacle. This paper investigates the causes of differences in the intake characteristics of windward and leeward side nacelles and evaluates the data-driven modeling performance of representative reduced-order models and deep learning methods, proposing a nonlinear hybrid prediction model framework. The model first extracts the dominant features of the unsteady nacelle intake flow through the proper orthogonal decomposition. The temporal evolution of the modal coefficients is subsequently modeled nonlinearly using neural networks. Finally, global error correction and uncertainty quantification are applied to the predicted flow field. The paper validates the approaches via a numerical example of a typical narrow-body commercial aircraft. The results show that the constructed hybrid prediction model exhibits excellent accuracy and stability across different training set proportions. Given that small sample conditions are a common limitation in aerospace engineering, this approach holds great potential for application in unsteady aerodynamic analysis and rapid evaluation of engine nacelles.
在全机模型中研究侧风作用下的机舱进气是现代航空推进研究的前沿课题。然而,对受机身干扰影响的下风侧短舱进气非线性流动特性的研究仍然很少,并且这种非线性流动的精确建模仍然是一个重大挑战。虽然数据驱动的方法是廉价和高效的解决方案,但在小样本条件下实现高保真重建和预测仍然是一个主要障碍。本文研究了迎风和背风侧短舱进气特性差异的原因,并对具有代表性的降阶模型和深度学习方法的数据驱动建模性能进行了评价,提出了一种非线性混合预测模型框架。该模型首先通过适当的正交分解提取出非定常短舱进气流动的主要特征;随后利用神经网络对模态系数的时间演化进行非线性建模。最后,对预测流场进行了全局误差校正和不确定度量化。通过典型窄体商用飞机的数值算例验证了上述方法的有效性。结果表明,所构建的混合预测模型在不同训练集比例下均具有良好的准确性和稳定性。考虑到小样本条件是航空航天工程中常见的限制,该方法在非定常气动分析和发动机机舱快速评估中具有很大的应用潜力。
{"title":"Comparative Analysis of Nonlinear Data-Driven Modeling of Inlet Distortion for Nacelle Air-Intake System","authors":"Xiao Yuan, Chenxing Hu, Hao Liu, Fei Yang, Jiaao Gu, Zhichao Chai","doi":"10.1016/j.ast.2026.111890","DOIUrl":"https://doi.org/10.1016/j.ast.2026.111890","url":null,"abstract":"Investigating nacelle intake under crosswind in whole-aircraft models is a frontier topic in modern aerospace propulsion research. However, investigations into the nonlinear flow characteristics of the leeward side nacelle intake influenced by fuselage interference remain scarce, and accurate modeling of this nonlinear flow continues to pose a significant challenge. Although data-driven approaches are cheap and efficient solutions, achieving high-fidelity reconstruction and prediction under small sample conditions remains a major obstacle. This paper investigates the causes of differences in the intake characteristics of windward and leeward side nacelles and evaluates the data-driven modeling performance of representative reduced-order models and deep learning methods, proposing a nonlinear hybrid prediction model framework. The model first extracts the dominant features of the unsteady nacelle intake flow through the proper orthogonal decomposition. The temporal evolution of the modal coefficients is subsequently modeled nonlinearly using neural networks. Finally, global error correction and uncertainty quantification are applied to the predicted flow field. The paper validates the approaches via a numerical example of a typical narrow-body commercial aircraft. The results show that the constructed hybrid prediction model exhibits excellent accuracy and stability across different training set proportions. Given that small sample conditions are a common limitation in aerospace engineering, this approach holds great potential for application in unsteady aerodynamic analysis and rapid evaluation of engine nacelles.","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"42 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Aerospace Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1