首页 > 最新文献

Chinese Journal of Polymer Science最新文献

英文 中文
Amine-Actuated Catalyst Switch for One-Pot Synthesis of Ether-Ester Type Block Copolymers 用于醚酯型嵌段共聚物一锅合成的胺促动催化剂开关
IF 4.3 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-08-30 DOI: 10.1007/s10118-024-3193-6
Hong Qiu, Peng-Fei Zhang, Jun-Peng Zhao

Organocatalysis has shown special potency for simplifying the construction of complex polymer structures. We are reporting here a one-pot synthetic pathway using amine as a selectivity-switching agent in the two-component catalytic system consisting of triethylborane (Et3B) and a phosphazene base. We first modelled the interactions of a variety of amines with Et3B by density functional theory calculations. The results indicate that the aliphatic diamines comprising both primary and tertiary amino groups, capable of forming stable intramolecular hydrogen bonds, undergo the strongest complexation with Et3B. Accordingly, experimental results demonstrate that the addition of such amines promptly actuates the in situ selectivity switch from Lewis pair-catalyzed ring-opening polymerization (ROP) of epoxide (propylene oxide, n-butylglycidyl ether, or glycidyl phenyl ether) to organobase-catalyzed ROP of δ-valerolactone, allowing one-pot continuous synthesis of ether-ester type block copolymers. We thus exploited the noncovalent interaction between amine and Et3B to refine the catalyst switch strategy by exempting it from loading of extra catalyst.

有机催化在简化复杂聚合物结构的构建方面显示出特殊的功效。我们在此报告一种在由三乙基硼烷(Et3B)和膦氮基组成的双组分催化体系中使用胺作为选择性切换剂的单锅合成途径。我们首先通过密度泛函理论计算模拟了各种胺与 Et3B 的相互作用。结果表明,包含伯氨基和叔氨基的脂肪族二胺能够形成稳定的分子内氢键,与 Et3B 的络合作用最强。因此,实验结果表明,加入此类胺后,可迅速实现从路易斯对催化的环氧化物(环氧丙烷、正丁基缩水甘油醚或缩水甘油苯基醚)开环聚合(ROP)到有机碱催化的δ-戊内酯开环聚合(ROP)的原位选择性切换,从而实现醚酯型嵌段共聚物的单锅连续合成。因此,我们利用胺与 Et3B 之间的非共价作用,改进了催化剂切换策略,使其无需额外添加催化剂。
{"title":"Amine-Actuated Catalyst Switch for One-Pot Synthesis of Ether-Ester Type Block Copolymers","authors":"Hong Qiu, Peng-Fei Zhang, Jun-Peng Zhao","doi":"10.1007/s10118-024-3193-6","DOIUrl":"https://doi.org/10.1007/s10118-024-3193-6","url":null,"abstract":"<p>Organocatalysis has shown special potency for simplifying the construction of complex polymer structures. We are reporting here a one-pot synthetic pathway using amine as a selectivity-switching agent in the two-component catalytic system consisting of triethylborane (Et<sub>3</sub>B) and a phosphazene base. We first modelled the interactions of a variety of amines with Et<sub>3</sub>B by density functional theory calculations. The results indicate that the aliphatic diamines comprising both primary and tertiary amino groups, capable of forming stable intramolecular hydrogen bonds, undergo the strongest complexation with Et<sub>3</sub>B. Accordingly, experimental results demonstrate that the addition of such amines promptly actuates the <i>in situ</i> selectivity switch from Lewis pair-catalyzed ring-opening polymerization (ROP) of epoxide (propylene oxide, <i>n</i>-butylglycidyl ether, or glycidyl phenyl ether) to organobase-catalyzed ROP of <i>δ</i>-valerolactone, allowing one-pot continuous synthesis of ether-ester type block copolymers. We thus exploited the noncovalent interaction between amine and Et<sub>3</sub>B to refine the catalyst switch strategy by exempting it from loading of extra catalyst.</p>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Room-temperature Self-healing and Recyclable PDMS Elastomers with Superior Mechanical Properties for Triboelectric Nanogenerators 室温自愈合和可回收 PDMS 弹性体具有优异的机械性能,可用于三电纳米发电机
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-08-28 DOI: 10.1007/s10118-024-3178-5
Shu-Juan Wang, Lu Wang, Hong-Zhe Su, Zhi-Cheng Wu, Qiao-Gen Zhang, Wei Fan, Xin-Li Jing

Polydimethylsiloxane (PDMS) is an electron-withdrawing material that is widely used in triboelectric nanogenerators (TENGs). However, PDMS has poor mechanical properties after curing and is easily damaged when subjected to long-term workloads. Thus, the long-term stable operation of TENGs under mechanical deformation cannot be guaranteed. In this work, multiple hydrogen bonds and aromatic disulfide bonds were introduced into PDMS elastomers. These elastomers exhibited high toughness (a tensile strength of 1.91 MPa and an elongation at break of 340%), good recyclability, and room-temperature self-healing properties (healing efficiency of 96.4% in 24 h). Recyclable sandwich-like triboelectric nanogenerators with excellent electrical output performance (13.5 V) and room-temperature self-healing performance (24 h, 98% recovery of self-generating performance) were prepared by utilizing the hydrogen bonding between the PDMS elastomer and MXene. The work reported herein offers theoretical guidance and a compelling strategy for developing high-performance TENG negative friction layers.

聚二甲基硅氧烷(PDMS)是一种电子吸收材料,被广泛用于三电纳米发电机(TENG)。然而,PDMS 固化后的机械性能较差,长期工作时容易损坏。因此,无法保证 TENG 在机械变形条件下长期稳定运行。在这项工作中,在 PDMS 弹性体中引入了多个氢键和芳香族二硫键。这些弹性体具有高韧性(拉伸强度为 1.91 兆帕,断裂伸长率为 340%)、良好的可回收性和室温自愈合特性(24 小时内愈合效率为 96.4%)。利用 PDMS 弹性体和 MXene 之间的氢键,制备出了可回收的三明治状三电纳米发电机,它具有优异的电输出性能(13.5 V)和室温自愈性能(24 小时内,自发电性能恢复 98%)。本文所报告的工作为开发高性能 TENG 负摩擦层提供了理论指导和令人信服的策略。
{"title":"Room-temperature Self-healing and Recyclable PDMS Elastomers with Superior Mechanical Properties for Triboelectric Nanogenerators","authors":"Shu-Juan Wang,&nbsp;Lu Wang,&nbsp;Hong-Zhe Su,&nbsp;Zhi-Cheng Wu,&nbsp;Qiao-Gen Zhang,&nbsp;Wei Fan,&nbsp;Xin-Li Jing","doi":"10.1007/s10118-024-3178-5","DOIUrl":"10.1007/s10118-024-3178-5","url":null,"abstract":"<div><p>Polydimethylsiloxane (PDMS) is an electron-withdrawing material that is widely used in triboelectric nanogenerators (TENGs). However, PDMS has poor mechanical properties after curing and is easily damaged when subjected to long-term workloads. Thus, the long-term stable operation of TENGs under mechanical deformation cannot be guaranteed. In this work, multiple hydrogen bonds and aromatic disulfide bonds were introduced into PDMS elastomers. These elastomers exhibited high toughness (a tensile strength of 1.91 MPa and an elongation at break of 340%), good recyclability, and room-temperature self-healing properties (healing efficiency of 96.4% in 24 h). Recyclable sandwich-like triboelectric nanogenerators with excellent electrical output performance (13.5 V) and room-temperature self-healing performance (24 h, 98% recovery of self-generating performance) were prepared by utilizing the hydrogen bonding between the PDMS elastomer and MXene. The work reported herein offers theoretical guidance and a compelling strategy for developing high-performance TENG negative friction layers.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tough Polymeric Hydrogels Based on Amino Acid Derivative Mediated Dynamic Metal Coordination Bonds 基于氨基酸衍生物介导的动态金属配位键的韧性聚合物水凝胶
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-08-28 DOI: 10.1007/s10118-024-3177-6
Meng Li, Meng-Yuan Zhang, Wu-Xuan Lei, Zhu-Ting Lv, Qing-Hua Shang, Zheng Zhao, Jiang-Tao Li, Yi-Long Cheng

The development of physically crosslinked hydrogels with excellent mechanical and sensing properties is of importance for expanding the practical applications of intelligent soft hydrogel materials. Herein, after copolymerization of hydroxyl-containing amino acid derivative N-acryloyl serine (ASer) with acrylamide (AM), we introduce Zr4+ through an immersion strategy to construct metal ion-toughened non-covalent crosslinked hydrogels (with tensile strength of up to 5.73 MPa). It is found that the synergistic coordination of hydroxyl and carboxyl groups with Zr4+ substantially increases the crosslinking density of the hydrogels, thereby imparting markedly superior mechanical properties compared to hydroxyl-free Zr4+-crosslinked hydrogels, such as N-acryloyl alanine (AAla) copolymerized with AM hydrogels (with tensile strength of 2.98 MPa). Through the adjustment of the composition of the copolymer and the density of coordination bonds, the mechanical properties of the hydrogels can be modulated over a wide range. Additionally, due to the introduction of metal ions and the dynamic nature of coordination bonds, the hydrogels also exhibit excellent sensing performance and good self-recovery properties, paving the way for the development of flexible electronic substrates with outstanding comprehensive performances.

开发具有优异机械和传感性能的物理交联水凝胶对于拓展智能软水凝胶材料的实际应用具有重要意义。在此,我们将含羟基的氨基酸衍生物 N-丙烯酰丝氨酸(ASer)与丙烯酰胺(AM)共聚后,通过浸泡策略引入 Zr4+,构建了金属离子增韧的非共价交联水凝胶(抗拉强度高达 5.73 兆帕)。研究发现,羟基和羧基与 Zr4+ 的协同配位大大增加了水凝胶的交联密度,因此与不含羟基的 Zr4+ 交联水凝胶(如 N-丙烯酰丙氨酸(AAla)与 AM 共聚的水凝胶,拉伸强度为 2.98 兆帕)相比,具有明显优越的机械性能。通过调整共聚物的成分和配位键的密度,可以在很大范围内调节水凝胶的机械性能。此外,由于金属离子的引入和配位键的动态性质,水凝胶还表现出优异的传感性能和良好的自恢复特性,为开发综合性能优异的柔性电子基底铺平了道路。
{"title":"Tough Polymeric Hydrogels Based on Amino Acid Derivative Mediated Dynamic Metal Coordination Bonds","authors":"Meng Li,&nbsp;Meng-Yuan Zhang,&nbsp;Wu-Xuan Lei,&nbsp;Zhu-Ting Lv,&nbsp;Qing-Hua Shang,&nbsp;Zheng Zhao,&nbsp;Jiang-Tao Li,&nbsp;Yi-Long Cheng","doi":"10.1007/s10118-024-3177-6","DOIUrl":"10.1007/s10118-024-3177-6","url":null,"abstract":"<div><p>The development of physically crosslinked hydrogels with excellent mechanical and sensing properties is of importance for expanding the practical applications of intelligent soft hydrogel materials. Herein, after copolymerization of hydroxyl-containing amino acid derivative N-acryloyl serine (ASer) with acrylamide (AM), we introduce Zr<sup>4+</sup> through an immersion strategy to construct metal ion-toughened non-covalent crosslinked hydrogels (with tensile strength of up to 5.73 MPa). It is found that the synergistic coordination of hydroxyl and carboxyl groups with Zr<sup>4+</sup> substantially increases the crosslinking density of the hydrogels, thereby imparting markedly superior mechanical properties compared to hydroxyl-free Zr<sup>4+</sup>-crosslinked hydrogels, such as N-acryloyl alanine (AAla) copolymerized with AM hydrogels (with tensile strength of 2.98 MPa). Through the adjustment of the composition of the copolymer and the density of coordination bonds, the mechanical properties of the hydrogels can be modulated over a wide range. Additionally, due to the introduction of metal ions and the dynamic nature of coordination bonds, the hydrogels also exhibit excellent sensing performance and good self-recovery properties, paving the way for the development of flexible electronic substrates with outstanding comprehensive performances.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase Patterning of Poly(oxime-ester) for Information Encryption by Photo-induced Isomerization 通过光诱导异构化对聚(肟酯)进行相图案化以实现信息加密
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-08-28 DOI: 10.1007/s10118-024-3183-8
Yu-Fan Yang, Yun Bai, Yi-Bao Li, Chang-Fei He

Crystal polymers or liquid crystal elastomers undergo a phase transition that results in a change in the corresponding optical properties, which has the potential to be applied in areas such as information encryption and anti-counterfeiting. The utilization of these materials for patterning purposes requires different phase transition temperatures. However, once prepared, altering the phase transition temperature of them presents significant challenges. Herein, a poly(oxime-ester) (POE) network is developed to achieve high-resolution and multilevel patterning by photo-induced isomerization. The as-prepared POE exhibits the ability to transition from an opaque state to a transparent state under temperature stimuli, with the transition temperature and kinetics dependent on UV light exposure time. Thus, complex patterns and information can be encrypted through different selective regional exposure time and decrypted under specific temperature or cooling time. Furthermore, we illustrate an example of temporal communication, where cooling time or temperature serves as the encoded information. This research expands the application scope of advanced encryption materials, showcasing the potential of POE in dynamic information encryption and decryption processes.

晶体聚合物或液晶弹性体会发生相变,导致相应的光学特性发生变化,从而有可能应用于信息加密和防伪等领域。利用这些材料制作图案需要不同的相变温度。然而,一旦制备完成,改变其相变温度就会面临巨大挑战。本文开发了一种聚(肟酯)(POE)网络,通过光诱导异构化实现高分辨率和多级图案化。制备的 POE 在温度刺激下能够从不透明状态转变为透明状态,转变温度和动力学取决于紫外线照射时间。因此,复杂的图案和信息可以通过不同的选择性区域照射时间进行加密,并在特定的温度或冷却时间下解密。此外,我们还举例说明了以冷却时间或温度作为编码信息的时间通信。这项研究拓展了先进加密材料的应用范围,展示了 POE 在动态信息加密和解密过程中的潜力。
{"title":"Phase Patterning of Poly(oxime-ester) for Information Encryption by Photo-induced Isomerization","authors":"Yu-Fan Yang,&nbsp;Yun Bai,&nbsp;Yi-Bao Li,&nbsp;Chang-Fei He","doi":"10.1007/s10118-024-3183-8","DOIUrl":"10.1007/s10118-024-3183-8","url":null,"abstract":"<div><p>Crystal polymers or liquid crystal elastomers undergo a phase transition that results in a change in the corresponding optical properties, which has the potential to be applied in areas such as information encryption and anti-counterfeiting. The utilization of these materials for patterning purposes requires different phase transition temperatures. However, once prepared, altering the phase transition temperature of them presents significant challenges. Herein, a poly(oxime-ester) (POE) network is developed to achieve high-resolution and multilevel patterning by photo-induced isomerization. The as-prepared POE exhibits the ability to transition from an opaque state to a transparent state under temperature stimuli, with the transition temperature and kinetics dependent on UV light exposure time. Thus, complex patterns and information can be encrypted through different selective regional exposure time and decrypted under specific temperature or cooling time. Furthermore, we illustrate an example of temporal communication, where cooling time or temperature serves as the encoded information. This research expands the application scope of advanced encryption materials, showcasing the potential of POE in dynamic information encryption and decryption processes.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Simple-Prepared and Multi-Reusable Adhesive Based on Epoxy Vitrimer 一种基于环氧树脂 Vitrimer 的制备简单、可多次重复使用的粘合剂
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-08-28 DOI: 10.1007/s10118-024-3206-5
Yu-Ting Wang, Huan Liang, Yen Wei, Jian-Long Wang, Xiang-Ming He, Yang Yang

Adhesives play an important role in modern society’s production and daily life. Developing robust and sustainable adhesives remains a great challenge. Here we report a sustainable epoxy-vitrimer adhesive with high adhesive strength (about 10 MPa) and reusability (82% strength after 3 times). This adhesive can be fabricated from commercially available products through a straightforward hot-pressing method without the need of solvents. The adhesive process is also simple, requiring only 30 min at 180 °C. In addition, the vitrimer adhesive has the advantages of both erasability for reuse and excellent water resistance. This work provides a facile strategy to fabricate high-strength adhesive that ensures reusability, recyclability, low cost of raw materials, and simple processing technology. Simultaneously, it expands the range of potential applications for epoxy vitrimers.

粘合剂在现代社会的生产和日常生活中发挥着重要作用。开发坚固耐用的可持续粘合剂仍然是一项巨大的挑战。在此,我们报告了一种具有高粘合强度(约 10 兆帕)和可重复使用性(3 次后强度达到 82%)的可持续环氧-维特里姆粘合剂。这种粘合剂可通过直接的热压方法从市售产品中制成,无需使用溶剂。粘合过程也很简单,在 180 °C 下只需 30 分钟。此外,这种玻璃纤维粘合剂还具有可擦除重复使用和出色的防水性等优点。这项工作提供了一种制造高强度粘合剂的简便策略,确保了可重复使用性、可回收性、低原材料成本和简单的加工技术。同时,它还扩大了环氧玻璃纤维的潜在应用范围。
{"title":"A Simple-Prepared and Multi-Reusable Adhesive Based on Epoxy Vitrimer","authors":"Yu-Ting Wang,&nbsp;Huan Liang,&nbsp;Yen Wei,&nbsp;Jian-Long Wang,&nbsp;Xiang-Ming He,&nbsp;Yang Yang","doi":"10.1007/s10118-024-3206-5","DOIUrl":"10.1007/s10118-024-3206-5","url":null,"abstract":"<div><p>Adhesives play an important role in modern society’s production and daily life. Developing robust and sustainable adhesives remains a great challenge. Here we report a sustainable epoxy-vitrimer adhesive with high adhesive strength (about 10 MPa) and reusability (82% strength after 3 times). This adhesive can be fabricated from commercially available products through a straightforward hot-pressing method without the need of solvents. The adhesive process is also simple, requiring only 30 min at 180 °C. In addition, the vitrimer adhesive has the advantages of both erasability for reuse and excellent water resistance. This work provides a facile strategy to fabricate high-strength adhesive that ensures reusability, recyclability, low cost of raw materials, and simple processing technology. Simultaneously, it expands the range of potential applications for epoxy vitrimers.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creep-Resistant Covalent Adaptable Networks with Excellent Self-Healing and Reprocessing Performance via Phase-Locked Dynamic Covalent Benzopyrazole-Urea Bonds 通过锁相动态共价苯并吡唑-脲键形成具有优异自愈合和再加工性能的抗蠕变共价适应性网络
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-08-27 DOI: 10.1007/s10118-024-3195-4
Miao Xie, Xiao-Rong Wang, Zhan-Hua Wang, He-Sheng Xia

Covalent adaptive networks (CANs) are capable of undergoing segment rearrangement after being heated, which endows the materials with excellent self-healing and reprocessing performance, providing an efficient solution to the environment pollution caused by the plastic wastes. The main challenge remains in developing CANs with both excellent reprocessing performance and creep-resistance property. In this study, a series of CANs containing dynamic covalent benzopyrazole-urea bonds were developed based on the addition reaction between benzopyrazole and isocyanate groups. DFT calculation confirmed that relatively low dissociation energy is obtained through undergoing a five-member ring transition state, confirming excellent dynamic property of the benzopyrazole-urea bonds. As verified by the FTIR results, this nice dynamic property can be well maintained after incorporating the benzopyrazole-urea bonds into polymer networks. Excellent self-healing and reprocessing performance is observed by the 3-ABP/PDMS elastomers owing to the dynamic benzopyrazole-urea bonds. Phase separation induced by the aggregation of the hard segments locked the benzopyrazole-urea bonds, which also makes the elastomers display excellent creep-resistance performance. This hard phase locking strategy provides an efficient approach to design CANs materials with both excellent reprocessing and creep-resistance performance.

共价自适应网络(CANs)在加热后能够发生分段重排,从而使材料具有优异的自愈和再加工性能,为解决塑料废弃物造成的环境污染问题提供了有效的解决方案。目前的主要挑战仍然是开发既具有优异的再加工性能又具有抗蠕变性能的 CAN。本研究基于苯并吡唑和异氰酸酯基团之间的加成反应,开发了一系列含有动态共价苯并吡唑-脲键的 CAN。DFT 计算证实,通过经历五元环过渡态,可获得相对较低的解离能,从而证实了苯并吡唑-脲键的优异动态特性。傅立叶变换红外光谱(FTIR)结果证实,在将苯并吡唑-脲键融入聚合物网络后,这种良好的动态特性仍能得到很好的保持。由于苯并吡唑-脲键的动态特性,3-ABP/PDMS 弹性体具有优异的自愈合和再加工性能。由硬段聚集引起的相分离锁住了苯并吡唑-脲键,这也使弹性体显示出优异的抗蠕变性能。这种硬锁相策略为设计具有出色的再加工性能和抗蠕变性能的 CANs 材料提供了一种有效的方法。
{"title":"Creep-Resistant Covalent Adaptable Networks with Excellent Self-Healing and Reprocessing Performance via Phase-Locked Dynamic Covalent Benzopyrazole-Urea Bonds","authors":"Miao Xie,&nbsp;Xiao-Rong Wang,&nbsp;Zhan-Hua Wang,&nbsp;He-Sheng Xia","doi":"10.1007/s10118-024-3195-4","DOIUrl":"10.1007/s10118-024-3195-4","url":null,"abstract":"<div><p>Covalent adaptive networks (CANs) are capable of undergoing segment rearrangement after being heated, which endows the materials with excellent self-healing and reprocessing performance, providing an efficient solution to the environment pollution caused by the plastic wastes. The main challenge remains in developing CANs with both excellent reprocessing performance and creep-resistance property. In this study, a series of CANs containing dynamic covalent benzopyrazole-urea bonds were developed based on the addition reaction between benzopyrazole and isocyanate groups. DFT calculation confirmed that relatively low dissociation energy is obtained through undergoing a five-member ring transition state, confirming excellent dynamic property of the benzopyrazole-urea bonds. As verified by the FTIR results, this nice dynamic property can be well maintained after incorporating the benzopyrazole-urea bonds into polymer networks. Excellent self-healing and reprocessing performance is observed by the 3-ABP/PDMS elastomers owing to the dynamic benzopyrazole-urea bonds. Phase separation induced by the aggregation of the hard segments locked the benzopyrazole-urea bonds, which also makes the elastomers display excellent creep-resistance performance. This hard phase locking strategy provides an efficient approach to design CANs materials with both excellent reprocessing and creep-resistance performance.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Crosslinked Phosphorescent Poly(vinyl alcohol)-Terpyridine Films with Enhanced Mechanical Properties and Tunable Shape Memory 具有增强机械性能和可调形状记忆的动态交联磷光聚(乙烯醇)-三联吡啶薄膜
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-08-27 DOI: 10.1007/s10118-024-3189-2
Meng Wei, Wei-Hao Feng, Chen Yu, Zhen-Yi Jiang, Guang-Qiang Yin, Wei Lu, Tao Chen

Achieving versatile room temperature phosphorescence (RTP) materials, especially with tunable mechanical properties and shape memory is attractive and essential but rarely reported. Here, a strategy was reported to realize multi-functional RTP films with multicolor fluorescence, ultralong afterglow, adjustable mechanical properties, and shape memory through the synergistic dynamic interaction of lanthanide (LnIII)-terpyridine coordination, borate ester bonds, and hydrogen bondings in a poly(vinyl alcohol) (PVA) matrix. By varying the amount of borax, the mechanical properties of the films could be finely controlled due to the change of crosslinking degree of dynamic borate ester bonds in PVA. The assembly and disassembly of borate ester bonds upon the trigger of borax and acid were applied as reversible linkage to achieve programmable shape memory behavior. In addition, the films displayed both fascinating multicolor fluorescence and ultralong afterglow characteristics due to the presence of LnIII doping and confinement of terpyridine in PVA. This study provides a new avenue to impart modulable mechanical strength and shape memory to RTP materials.

实现多功能室温磷光(RTP)材料,尤其是具有可调机械性能和形状记忆的材料,是非常有吸引力和必要的,但却鲜有报道。本文报告了一种策略,通过聚乙烯醇(PVA)基质中镧系元素(LnIII)-三吡啶配位、硼酸酯键和氢键的协同动态相互作用,实现了具有多色荧光、超长余辉、可调机械性能和形状记忆的多功能 RTP 薄膜。通过改变硼砂的用量,薄膜的机械性能可因 PVA 中动态硼酸酯键交联度的变化而得到精细控制。在硼砂和酸的触发下,硼酸酯键的组装和拆卸被用作可逆连接来实现可编程的形状记忆行为。此外,由于 LnIII 的掺杂和 PVA 中 terpyridine 的限制,薄膜显示出迷人的多色荧光和超长余辉特性。这项研究为赋予 RTP 材料可调控的机械强度和形状记忆提供了一条新途径。
{"title":"Dynamic Crosslinked Phosphorescent Poly(vinyl alcohol)-Terpyridine Films with Enhanced Mechanical Properties and Tunable Shape Memory","authors":"Meng Wei,&nbsp;Wei-Hao Feng,&nbsp;Chen Yu,&nbsp;Zhen-Yi Jiang,&nbsp;Guang-Qiang Yin,&nbsp;Wei Lu,&nbsp;Tao Chen","doi":"10.1007/s10118-024-3189-2","DOIUrl":"10.1007/s10118-024-3189-2","url":null,"abstract":"<div><p>Achieving versatile room temperature phosphorescence (RTP) materials, especially with tunable mechanical properties and shape memory is attractive and essential but rarely reported. Here, a strategy was reported to realize multi-functional RTP films with multicolor fluorescence, ultralong afterglow, adjustable mechanical properties, and shape memory through the synergistic dynamic interaction of lanthanide (Ln<sup>III</sup>)-terpyridine coordination, borate ester bonds, and hydrogen bondings in a poly(vinyl alcohol) (PVA) matrix. By varying the amount of borax, the mechanical properties of the films could be finely controlled due to the change of crosslinking degree of dynamic borate ester bonds in PVA. The assembly and disassembly of borate ester bonds upon the trigger of borax and acid were applied as reversible linkage to achieve programmable shape memory behavior. In addition, the films displayed both fascinating multicolor fluorescence and ultralong afterglow characteristics due to the presence of Ln<sup>III</sup> doping and confinement of terpyridine in PVA. This study provides a new avenue to impart modulable mechanical strength and shape memory to RTP materials.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Strong, Tough, and Self-Healing Strengthening Thioctic Acid-based Elastomer for Highly Reliable Flexible Strain Sensor 用于高可靠性柔性应变传感器的强韧自愈型硫辛酸基弹性体
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-08-27 DOI: 10.1007/s10118-024-3210-9
Xin-Yu Chen, Yu-Bing Fu, Xue-Ling Yan, Lan Liu

Elastomers with high strength and toughness, excellent self-healing properties, and biocompatibility have broad application prospects in wearable electronics and other fields, but preparing it remains a challenge. In this work, we propose a highly adaptable strategy by introducing the small molecule crosslinking agent of triethanolamine (TEA) to the poly thioctic acid (PTA) chains and preparing the PAxEy elastomers using a simple synthesis step. This strategy stabilizes the PTA chains by constructing multiple non-covalent cross-linked dynamic networks, endowing materials with excellent strength and toughness (tensile strength of 288 kPa, toughness of 278.2 kJ/m3), admirable self-healing properties (self-healing efficiency of 121.6% within 7 h at 70 °C), and good biocompatibility. The PAxEy elastomers can also be combined with MWNTs to become flexible strain sensors, which can be used to monitor human joint movements with high sensitivity, repeatable responses, and stability.

弹性体具有高强度、高韧性、优异的自愈性能和生物相容性,在可穿戴电子设备等领域有着广阔的应用前景,但制备弹性体仍是一项挑战。在这项工作中,我们提出了一种适应性很强的策略,即在聚硫辛酸(PTA)链中引入小分子交联剂三乙醇胺(TEA),通过简单的合成步骤制备 PAxEy 弹性体。这种策略通过构建多个非共价交联动态网络来稳定 PTA 链,使材料具有出色的强度和韧性(拉伸强度为 288 kPa,韧性为 278.2 kJ/m3)、令人赞叹的自愈性能(70 °C 下 7 小时内自愈效率为 121.6%)和良好的生物相容性。PAxEy 弹性体还可与 MWNTs 结合成为柔性应变传感器,用于监测人体关节运动,具有高灵敏度、可重复响应和稳定性。
{"title":"A Strong, Tough, and Self-Healing Strengthening Thioctic Acid-based Elastomer for Highly Reliable Flexible Strain Sensor","authors":"Xin-Yu Chen,&nbsp;Yu-Bing Fu,&nbsp;Xue-Ling Yan,&nbsp;Lan Liu","doi":"10.1007/s10118-024-3210-9","DOIUrl":"10.1007/s10118-024-3210-9","url":null,"abstract":"<div><p>Elastomers with high strength and toughness, excellent self-healing properties, and biocompatibility have broad application prospects in wearable electronics and other fields, but preparing it remains a challenge. In this work, we propose a highly adaptable strategy by introducing the small molecule crosslinking agent of triethanolamine (TEA) to the poly thioctic acid (PTA) chains and preparing the PA<sub><i>x</i></sub>E<sub><i>y</i></sub> elastomers using a simple synthesis step. This strategy stabilizes the PTA chains by constructing multiple non-covalent cross-linked dynamic networks, endowing materials with excellent strength and toughness (tensile strength of 288 kPa, toughness of 278.2 kJ/m<sup>3</sup>), admirable self-healing properties (self-healing efficiency of 121.6% within 7 h at 70 °C), and good biocompatibility. The PA<sub><i>x</i></sub>E<sub><i>y</i></sub> elastomers can also be combined with MWNTs to become flexible strain sensors, which can be used to monitor human joint movements with high sensitivity, repeatable responses, and stability.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Sulfur-Rich Polymers from Elemental Sulfur and Epoxides 元素硫和环氧化物的动态富硫聚合物
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-08-27 DOI: 10.1007/s10118-024-3182-9
Ke-Xiang Chen, Chen-Hui Cui, Zhen Li, Ting Xu, Hao-Qing Teng, Zhi-Yuan He, Yin-Zhou Guo, Xiao-Qing Ming, Zhi-Shen Ge, Yan-Feng Zhang, Tie-Jun Wang

Sulfur-containing dynamic polymers had attracted significant attention due to their unique chemical structures with high reversibility. Utilizating sulfur, an inexpensive industrial waste product, to synthesize dynamic polysulfide polymers through reverse vulcanization has been a notable approach. However, this method required high temperatures and resulted in the release of unpleasant oders. In this study, we presented a robust method for the preparation of sulfur-rich polymers with dynamic polysulfide bonds from elemental sulfur and inexpensive epoxide monomers via a one-pot strategy at the mild room temperature. Different types of polysulfide molecules and polymers were synthesized by reacting various epoxide compounds with sulfur, along with the investigation of their structures and dynamic behaviors. It was noteworthy that the obatined polymers prepared from m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl)aniline and elemental sulfur exhibit multiple dynamic behaviors, including polysulfide metathesis and polysulfide-thiol exchange, enabling their rapid stress relaxation, self-healing, reprocessing and degradable properties of the cross-linked polymer. More importantly, the hydroxyl groups at the side chains from epoxide ring opening exhibited potential transesterification. This work provided a facile strategy for designing dynamic sulfur-rich polymers via a mild synthesis route.

含硫动态聚合物因其独特的化学结构和高度的可逆性而备受关注。利用硫(一种廉价的工业废品)通过反向硫化合成动态聚硫聚合物是一种引人注目的方法。然而,这种方法需要高温,并会释放出难闻的气味。在本研究中,我们提出了一种在温和的室温下,利用元素硫和廉价环氧化物单体,通过单锅策略制备具有动态多硫键的富硫聚合物的可靠方法。通过各种环氧化物化合物与硫的反应,合成了不同类型的多硫化物分子和聚合物,并对其结构和动态行为进行了研究。值得注意的是,由间(2,3-环氧丙氧基)-N,N-双(2,3-环氧丙基)苯胺和元素硫制备的顺丁烯二酸聚合物表现出多种动态行为,包括聚硫偏聚和聚硫-硫醇交换,使交联聚合物具有快速应力松弛、自愈、再加工和可降解的特性。更重要的是,环氧化物开环产生的侧链羟基具有潜在的酯交换作用。这项研究为通过温和的合成路线设计动态富硫聚合物提供了一种简便的策略。
{"title":"Dynamic Sulfur-Rich Polymers from Elemental Sulfur and Epoxides","authors":"Ke-Xiang Chen,&nbsp;Chen-Hui Cui,&nbsp;Zhen Li,&nbsp;Ting Xu,&nbsp;Hao-Qing Teng,&nbsp;Zhi-Yuan He,&nbsp;Yin-Zhou Guo,&nbsp;Xiao-Qing Ming,&nbsp;Zhi-Shen Ge,&nbsp;Yan-Feng Zhang,&nbsp;Tie-Jun Wang","doi":"10.1007/s10118-024-3182-9","DOIUrl":"10.1007/s10118-024-3182-9","url":null,"abstract":"<div><p>Sulfur-containing dynamic polymers had attracted significant attention due to their unique chemical structures with high reversibility. Utilizating sulfur, an inexpensive industrial waste product, to synthesize dynamic polysulfide polymers through reverse vulcanization has been a notable approach. However, this method required high temperatures and resulted in the release of unpleasant oders. In this study, we presented a robust method for the preparation of sulfur-rich polymers with dynamic polysulfide bonds from elemental sulfur and inexpensive epoxide monomers <i>via</i> a one-pot strategy at the mild room temperature. Different types of polysulfide molecules and polymers were synthesized by reacting various epoxide compounds with sulfur, along with the investigation of their structures and dynamic behaviors. It was noteworthy that the obatined polymers prepared from <i>m</i>-(2,3-epoxypropoxy)-<i>N,N</i>-bis(2,3-epoxypropyl)aniline and elemental sulfur exhibit multiple dynamic behaviors, including polysulfide metathesis and polysulfide-thiol exchange, enabling their rapid stress relaxation, self-healing, reprocessing and degradable properties of the cross-linked polymer. More importantly, the hydroxyl groups at the side chains from epoxide ring opening exhibited potential transesterification. This work provided a facile strategy for designing dynamic sulfur-rich polymers <i>via</i> a mild synthesis route.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoswitchable Spiropyridine Enabled Photoactuation of Polymeric Hydrogels under Physiological pH Conditions 生理酸碱度条件下聚合物水凝胶的光电开关性螺吡啶赋能
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-08-27 DOI: 10.1007/s10118-024-3211-8
Cong Liao, Meng-Qi Du, Chuang Li

The incorporation of molecular switches into polymer networks has been a powerful approach for the development of functional polymer materials that display macroscopic actuation and function enabled directly by molecular changes. However, such materials sometimes require harsh conditions to perform their functions, and the design of new molecular photoswitches that can function under physiological conditions is highly needed. Here, we report the design and synthesis of a spiropyridine-based photoswitchable hydrogel that exhibits light-driven actuation at physiological pH. Owing to its high pKa, spiropyridine maintains its ring-open protonated form at neutral pH, and the resulting hydrogel remains in a swollen state. Upon irradiation with visible light, the ring closure of spiropyridine leads to a decrease in the charge and a reduction in the volume of the hydrogel. The contracted gel could spontaneously recover to its expanding state in the dark, and this process is highly dynamic and reversible when the light is switched on and off. Furthermore, the hydrogel shows switchable fluorescence in response to visible light. Bending deformation is observed in the hydrogel thin films upon irradiation from one side. Importantly, the independence of this spiropyridine hydrogel from the acidic environment makes it biotolerant and shows excellent biocompatibility. This biocompatible spiropyridine hydrogel might have important biorelated applications in the future.

在聚合物网络中加入分子开关一直是开发功能聚合物材料的有力方法,这些材料可直接通过分子变化实现宏观驱动和功能。然而,这类材料有时需要在苛刻的条件下才能发挥其功能,因此亟需设计能在生理条件下发挥作用的新型分子光开关。在此,我们报告了一种基于螺吡啶的光开关水凝胶的设计与合成,这种水凝胶在生理 pH 值下表现出光驱动致动。由于其 pKa 值较高,螺吡啶在中性 pH 值下保持其环状开放质子化形式,由此产生的水凝胶保持膨胀状态。在可见光照射下,螺吡啶的环闭合会导致水凝胶的电荷减少和体积缩小。收缩的凝胶可在黑暗中自发恢复到膨胀状态,而且这一过程是高度动态的,在光照开关时是可逆的。此外,水凝胶在可见光的作用下还会发出可切换的荧光。从一侧照射水凝胶薄膜时,可观察到弯曲变形。重要的是,这种螺吡啶水凝胶不受酸性环境的影响,因此具有生物耐受性,并显示出良好的生物相容性。这种具有生物相容性的螺吡啶水凝胶未来可能会有重要的生物相关应用。
{"title":"Photoswitchable Spiropyridine Enabled Photoactuation of Polymeric Hydrogels under Physiological pH Conditions","authors":"Cong Liao,&nbsp;Meng-Qi Du,&nbsp;Chuang Li","doi":"10.1007/s10118-024-3211-8","DOIUrl":"10.1007/s10118-024-3211-8","url":null,"abstract":"<div><p>The incorporation of molecular switches into polymer networks has been a powerful approach for the development of functional polymer materials that display macroscopic actuation and function enabled directly by molecular changes. However, such materials sometimes require harsh conditions to perform their functions, and the design of new molecular photoswitches that can function under physiological conditions is highly needed. Here, we report the design and synthesis of a spiropyridine-based photoswitchable hydrogel that exhibits light-driven actuation at physiological pH. Owing to its high p<i>K</i><sub>a</sub>, spiropyridine maintains its ring-open protonated form at neutral pH, and the resulting hydrogel remains in a swollen state. Upon irradiation with visible light, the ring closure of spiropyridine leads to a decrease in the charge and a reduction in the volume of the hydrogel. The contracted gel could spontaneously recover to its expanding state in the dark, and this process is highly dynamic and reversible when the light is switched on and off. Furthermore, the hydrogel shows switchable fluorescence in response to visible light. Bending deformation is observed in the hydrogel thin films upon irradiation from one side. Importantly, the independence of this spiropyridine hydrogel from the acidic environment makes it biotolerant and shows excellent biocompatibility. This biocompatible spiropyridine hydrogel might have important biorelated applications in the future.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Journal of Polymer Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1