首页 > 最新文献

Chinese Journal of Polymer Science最新文献

英文 中文
Synthesis, Characterization of Polyethylene Ionomers and Their Antibacterial Properties 聚乙烯离子聚合物的合成、表征及其抗菌性能
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-06-26 DOI: 10.1007/s10118-024-3150-4
Jia-Jia Wu, Fei Wang, Peng-Qi Wan, Li Pan, Chun-Sheng Xiao, Zhe Ma, Yue-Sheng Li

Owing to its high production volume and wide range of applications, polyethylene has gained a great deal of attention, but its low surface energy and non-polar nature have limited its application in some important fields. In this study, ethylene/11-iodo-1-undecene copolymers were prepared and used as the intermediates to afford a series of imidazolium-based ionomers bearing methanesulfonate (CH3SO3), trifluoromethanesulfonate (CF3SO3), or bis(trifluoromethane)sulfonimide (Tf2N) counteranions. The tensile test results showed that the stress-at-break (7.8–25.6 MPa) and the elongation-at-break (445%–847%) of the ionomers could be adjusted by changing the counterion species and the ionic group contents. Most importantly, the ionomers exhibited marvelous antibacterial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The ionomers bearing Tf2N exhibited antibacterial activities >99% against both S. aureus and E. coli when ionic content reached 9.1%. The imidazolium-based ionomers prepared in this work demonstrated excellent comprehensive properties, especially high-efficient and broad-spectrum antibacterial ability, exhibiting the potential for the application as the antibacterial materials in packaging, medical, and other fields.

聚乙烯因其产量高、用途广而备受关注,但其低表面能和非极性限制了其在一些重要领域的应用。本研究以乙烯/11-碘-1-十一烯共聚物为中间体,制备了一系列含有甲磺酸盐(CH3SO3-)、三氟甲磺酸盐(CF3SO3-)或双(三氟甲烷)磺酰亚胺(Tf2N-)反离子的咪唑基离聚体。拉伸试验结果表明,离子聚合物的断裂应力(7.8-25.6 兆帕)和断裂伸长率(445%-847%)可通过改变反离子种类和离子基团含量来调节。最重要的是,这些离子聚合物对金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)具有出色的抗菌活性。当离子含量达到 9.1% 时,含 Tf2N- 的离子聚合物对金黄色葡萄球菌和大肠杆菌的抗菌活性均达到 99%。该研究制备的咪唑类离子聚合物具有优异的综合性能,尤其是高效广谱的抗菌能力,有望作为抗菌材料应用于包装、医疗等领域。
{"title":"Synthesis, Characterization of Polyethylene Ionomers and Their Antibacterial Properties","authors":"Jia-Jia Wu,&nbsp;Fei Wang,&nbsp;Peng-Qi Wan,&nbsp;Li Pan,&nbsp;Chun-Sheng Xiao,&nbsp;Zhe Ma,&nbsp;Yue-Sheng Li","doi":"10.1007/s10118-024-3150-4","DOIUrl":"10.1007/s10118-024-3150-4","url":null,"abstract":"<div><p>Owing to its high production volume and wide range of applications, polyethylene has gained a great deal of attention, but its low surface energy and non-polar nature have limited its application in some important fields. In this study, ethylene/11-iodo-1-undecene copolymers were prepared and used as the intermediates to afford a series of imidazolium-based ionomers bearing methanesulfonate (CH<sub>3</sub>SO<sub>3</sub><sup>−</sup>), trifluoromethanesulfonate (CF<sub>3</sub>SO<sub>3</sub><sup>−</sup>), or bis(trifluoromethane)sulfonimide (Tf<sub>2</sub>N<sup>−</sup>) counteranions. The tensile test results showed that the stress-at-break (7.8–25.6 MPa) and the elongation-at-break (445%–847%) of the ionomers could be adjusted by changing the counterion species and the ionic group contents. Most importantly, the ionomers exhibited marvelous antibacterial activities against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) and <i>Escherichia coli</i> (<i>E. coli</i>). The ionomers bearing Tf<sub>2</sub>N<sup>−</sup> exhibited antibacterial activities &gt;99% against both <i>S. aureus</i> and <i>E. coli</i> when ionic content reached 9.1%. The imidazolium-based ionomers prepared in this work demonstrated excellent comprehensive properties, especially high-efficient and broad-spectrum antibacterial ability, exhibiting the potential for the application as the antibacterial materials in packaging, medical, and other fields.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1077 - 1084"},"PeriodicalIF":4.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H2O2-Responsive Injectable Polymer Dots Hydrogel for Long-term Photodynamic Therapy of Tumors 用于肿瘤长期光动力疗法的 H2O2 反应性注射聚合物点水凝胶
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-06-26 DOI: 10.1007/s10118-024-3155-z
Jian Wang, Ke Liang, Jian Li, Yun-Xiu Zhang, Xiao-Kuang Xue, Tie-Jin Chen, Yong-Liang Hao, Jia-Sheng Wu, Jie-Chao Ge

Photodynamic therapy (PDT) has been emerged as a promising modality for cancer treatment. However, the development of drug delivery system enabling continuous release of photosensitizers (PSs) for long-term PDT treatment still remains challenges. Herein, a H2O2-responsive injectable hydrogel, covalently crosslinked by N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1,N1,N3,N3-tetramethylpropane-1,3-diaminium (TSPBA) with PVA containing polythiophene quaternary ammonium salt (PT2) polymer dots (PDots) as a photosensitizer was fabricated. Under the stimulation of H2O2, the obtained injectable hydrogel gradually degrades and releases PDots. In vitro experiments suggested that the released PDots could realize efficient tumor cells inhibition through its robust singlet oxygen generation capability upon 577 nm laser irradiation. In vivo studies demonstrated a sustained retention of PDots for at least 7 days following single-dose administration, facilitating efficient tumor inhibition with light treatments for 3 times without apparent biotoxicity. This work presents an innovative polymer dots-based composite local drug delivery system for long-term PDT in cancer treatment.

光动力疗法(PDT)已成为一种前景广阔的癌症治疗方法。然而,开发可持续释放光敏剂(PSs)用于长期光动力疗法的给药系统仍是一项挑战。本文以 N1-(4-硼苄基)-N3-(4-硼苯基)-N1,N1,N3,N3-四甲基丙烷-1,3-二铵(TSPBA)与含有聚噻吩季铵盐(PT2)聚合物点(PDots)的 PVA 为光敏剂共价交联,制备了一种 H2O2 响应型可注射水凝胶。在 H2O2 的刺激下,所得到的可注射水凝胶会逐渐降解并释放出 PDots。体外实验表明,在 577 纳米激光照射下,释放出的 PDots 可通过其强大的单线态氧生成能力实现对肿瘤细胞的高效抑制。体内研究表明,单剂量给药后,PDots 可持续保留至少 7 天,从而可在无明显生物毒性的情况下,通过 3 次光照有效抑制肿瘤。这项研究提出了一种创新的基于聚合物点的复合局部给药系统,可用于癌症的长期光导治疗。
{"title":"H2O2-Responsive Injectable Polymer Dots Hydrogel for Long-term Photodynamic Therapy of Tumors","authors":"Jian Wang,&nbsp;Ke Liang,&nbsp;Jian Li,&nbsp;Yun-Xiu Zhang,&nbsp;Xiao-Kuang Xue,&nbsp;Tie-Jin Chen,&nbsp;Yong-Liang Hao,&nbsp;Jia-Sheng Wu,&nbsp;Jie-Chao Ge","doi":"10.1007/s10118-024-3155-z","DOIUrl":"10.1007/s10118-024-3155-z","url":null,"abstract":"<div><p>Photodynamic therapy (PDT) has been emerged as a promising modality for cancer treatment. However, the development of drug delivery system enabling continuous release of photosensitizers (PSs) for long-term PDT treatment still remains challenges. Herein, a H<sub>2</sub>O<sub>2</sub>-responsive injectable hydrogel, covalently crosslinked by N<sup>1</sup>-(4-boronobenzyl)-N<sup>3</sup>-(4-boronophenyl)-N<sup>1</sup>,N<sup>1</sup>,N<sup>3</sup>,N<sup>3</sup>-tetramethylpropane-1,3-diaminium (TSPBA) with PVA containing polythiophene quaternary ammonium salt (PT2) polymer dots (PDots) as a photosensitizer was fabricated. Under the stimulation of H<sub>2</sub>O<sub>2</sub>, the obtained injectable hydrogel gradually degrades and releases PDots. <i>In vitro</i> experiments suggested that the released PDots could realize efficient tumor cells inhibition through its robust singlet oxygen generation capability upon 577 nm laser irradiation. <i>In vivo</i> studies demonstrated a sustained retention of PDots for at least 7 days following single-dose administration, facilitating efficient tumor inhibition with light treatments for 3 times without apparent biotoxicity. This work presents an innovative polymer dots-based composite local drug delivery system for long-term PDT in cancer treatment.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1690 - 1698"},"PeriodicalIF":4.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The New Methods for Characterization of Molecular Weight of Supramolecular Polymers 表征超分子聚合物分子量的新方法
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-06-26 DOI: 10.1007/s10118-024-3153-1
Hui Liu, Rui Hu, Zi-Qing Hu, Xiao-Fan Ji

Supramolecular polymers, as a type of dynamic polymers, are subordinate to the interdisciplinary field of polymer chemistry and supramolecular chemistry, whose development has greatly promoted the prosperity of new materials. Notably, molecular weight is one of the most important parameters of supramolecular polymers, which affects the physical/chemical properties and processing applications of materials. Developing new methods for characterizing the molecular weight of supramolecular polymers is crucial for advancing the development of supramolecular polymers. In this review, we elaborate and summarize three strategies for characterizing the molecular weight of supramolecular polymers that recently reported by our research group according to the characteristics of supramolecular polymers, including (1) the molecular weight distinction corresponding to variable fluorescence colors, (2) matching different molecular weights with different fluorescence lifetime, (3) transforming supramolecular polymers into mechanically interlocked polymers or covalent polymers. Besides, we also discuss the limitations of current methods for characterizing supramolecular polymers. We hope that this review can promote the development of supramolecular polymers and significantly inspire to exploit new methods to characterizing molecular weight of supramolecular polymers.

超分子聚合物作为一种动态聚合物,隶属于高分子化学和超分子化学交叉学科领域,其发展极大地促进了新材料的繁荣。其中,分子量是超分子聚合物最重要的参数之一,它影响着材料的物理/化学性质和加工应用。开发表征超分子聚合物分子量的新方法对于推动超分子聚合物的发展至关重要。在这篇综述中,我们根据超分子聚合物的特点,阐述并总结了本课题组最近报道的表征超分子聚合物分子量的三种策略,包括:(1)不同荧光颜色对应的分子量区分;(2)不同分子量与不同荧光寿命的匹配;(3)将超分子聚合物转化为机械互锁聚合物或共价聚合物。此外,我们还讨论了目前表征超分子聚合物方法的局限性。我们希望这篇综述能促进超分子聚合物的发展,并对探索表征超分子聚合物分子量的新方法有重大启发。
{"title":"The New Methods for Characterization of Molecular Weight of Supramolecular Polymers","authors":"Hui Liu,&nbsp;Rui Hu,&nbsp;Zi-Qing Hu,&nbsp;Xiao-Fan Ji","doi":"10.1007/s10118-024-3153-1","DOIUrl":"10.1007/s10118-024-3153-1","url":null,"abstract":"<div><p>Supramolecular polymers, as a type of dynamic polymers, are subordinate to the interdisciplinary field of polymer chemistry and supramolecular chemistry, whose development has greatly promoted the prosperity of new materials. Notably, molecular weight is one of the most important parameters of supramolecular polymers, which affects the physical/chemical properties and processing applications of materials. Developing new methods for characterizing the molecular weight of supramolecular polymers is crucial for advancing the development of supramolecular polymers. In this review, we elaborate and summarize three strategies for characterizing the molecular weight of supramolecular polymers that recently reported by our research group according to the characteristics of supramolecular polymers, including (1) the molecular weight distinction corresponding to variable fluorescence colors, (2) matching different molecular weights with different fluorescence lifetime, (3) transforming supramolecular polymers into mechanically interlocked polymers or covalent polymers. Besides, we also discuss the limitations of current methods for characterizing supramolecular polymers. We hope that this review can promote the development of supramolecular polymers and significantly inspire to exploit new methods to characterizing molecular weight of supramolecular polymers.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1403 - 1413"},"PeriodicalIF":4.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Heat-setting Temperature on the Microporous Structure and Properties of PP/HDPE Bilayer Microporous Membranes 热固温度对 PP/HDPE 双层微孔膜的微孔结构和性能的影响
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-06-26 DOI: 10.1007/s10118-024-3157-x
Jie Xie, Yong-Shi Wu, Jia-Yi Xie, Rui-Jie Xu, Cai-Hong Lei, Sai-Nan Song, Guang-Quan Li, An-Ping Huang

Due to the mechanical stability of PP layer, the PP/HDPE double-layer microporous membrane could be prepared at a higher heat-setting temperature than that of PE monolayer membrane. In this work, the effects of heat-setting temperature on the pore structure and properties of PP/HDPE double-layer membrane were studied. With the increase of heat-setting temperature from 120 °C to 130 °C, the length of connecting bridge crystal and crystallinity in the PE layer increase due to the melting of thin lamellae and the stability of connecting bridge structure during heat-setting. The corresponding air permeability, porosity, wettability of liquid electrolyte and mechanical property of the heat-set microporous membrane increase, exhibiting better electrochemical performance. However, when the heat-setting temperature is further increased to 140 °C, higher than the melting point of PE resin, some pores are closed since the lamellae and connecting bridges melt and shrink during heat-setting, resulting in a decrease of air permeability and porosity. In contrast, there is negligible change in the PP layer within the above heat-setting temperature region. This study successfully builds the relationship between the stable pore structure and property of microporous membrane during heat-setting, which is helpful to guide the production of high-performance PP/PE/PP lithium batteries separator.

由于 PP 层的机械稳定性,PP/HDPE 双层微孔膜可以在比 PE 单层膜更高的热固温度下制备。本文研究了热固温度对 PP/HDPE 双层膜孔结构和性能的影响。随着热固温度从 120 °C 升至 130 °C,PE 层中的连接桥晶体长度和结晶度增加,这是由于薄层片熔化以及热固过程中连接桥结构的稳定性所致。相应地,热固微孔膜的透气性、孔隙率、液体电解质的润湿性和机械性能都会增加,从而表现出更好的电化学性能。然而,当热固温度进一步升高到 140 ℃(高于聚乙烯树脂的熔点)时,由于片层和连接桥在热固过程中熔化和收缩,部分孔隙被封闭,导致透气性和孔隙率下降。相反,在上述热固温度区域内,聚丙烯层的变化可以忽略不计。该研究成功地建立了微孔膜在热固过程中稳定的孔结构与性能之间的关系,有助于指导高性能 PP/PE/PP 锂电池隔膜的生产。
{"title":"Influence of Heat-setting Temperature on the Microporous Structure and Properties of PP/HDPE Bilayer Microporous Membranes","authors":"Jie Xie,&nbsp;Yong-Shi Wu,&nbsp;Jia-Yi Xie,&nbsp;Rui-Jie Xu,&nbsp;Cai-Hong Lei,&nbsp;Sai-Nan Song,&nbsp;Guang-Quan Li,&nbsp;An-Ping Huang","doi":"10.1007/s10118-024-3157-x","DOIUrl":"10.1007/s10118-024-3157-x","url":null,"abstract":"<div><p>Due to the mechanical stability of PP layer, the PP/HDPE double-layer microporous membrane could be prepared at a higher heat-setting temperature than that of PE monolayer membrane. In this work, the effects of heat-setting temperature on the pore structure and properties of PP/HDPE double-layer membrane were studied. With the increase of heat-setting temperature from 120 °C to 130 °C, the length of connecting bridge crystal and crystallinity in the PE layer increase due to the melting of thin lamellae and the stability of connecting bridge structure during heat-setting. The corresponding air permeability, porosity, wettability of liquid electrolyte and mechanical property of the heat-set microporous membrane increase, exhibiting better electrochemical performance. However, when the heat-setting temperature is further increased to 140 °C, higher than the melting point of PE resin, some pores are closed since the lamellae and connecting bridges melt and shrink during heat-setting, resulting in a decrease of air permeability and porosity. In contrast, there is negligible change in the PP layer within the above heat-setting temperature region. This study successfully builds the relationship between the stable pore structure and property of microporous membrane during heat-setting, which is helpful to guide the production of high-performance PP/PE/PP lithium batteries separator.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1243 - 1252"},"PeriodicalIF":4.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear-thinning Catechol-modified Chitosan Hydrogel Loaded with Silver Nanoparticles for Endoscopic Submucosal Dissection 剪切稀化儿茶酚改性壳聚糖水凝胶载银纳米粒子用于内窥镜粘膜下剥离术
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-06-26 DOI: 10.1007/s10118-024-3146-0
Wen-Jun Feng, Yan-He Wu, Xiao-Yang Liu, Zheng-Ke Wang

Shear-thinning hydrogels have emerged for endoscopic submucosal dissection, while wound intervention after surgery has rarely been mentioned. Herein, a catechol-modified chitosan hydrogel with shear-thinning property was developed for simultaneously facilitating endoscopic submucosal dissection and postoperative wound healing. Benefiting from the shear-thinning and self-healing characteristics, the asprepared hydrogel showed easily endoscopic injectability. It also performed very well as submucosal cushion, which could remain above 70% after injection for 120 min in ex vivo porcine large intestine model. In fact, the cushion height of normal saline dramatically decreased to 46% of the initial height at 30 min. Ag nanoparticles encapsulated into the network endowed the hydrogel with almost reached 100% antibacterial effect against E. coli and S. aureus. The hemolysis ratio of the hydrogel was calculated to be as low as 0.8%. Combined with good hemocompatibility and cytocompatibility, the as-prepared hydrogel displayed much higher in vivo wound closure and healing efficacy than normal saline. These results demonstrated the superiority of the shear-thinning chitosan hydrogel in facilitating clinical endoscopic submucosal dissection surgery.

剪切稀化水凝胶已用于内镜粘膜下剥离术,但术后伤口干预却鲜有提及。本文开发了一种具有剪切稀化特性的邻苯二酚改性壳聚糖水凝胶,可同时促进内镜粘膜下剥离和术后伤口愈合。得益于剪切稀化和自愈合特性,所制备的水凝胶易于内窥镜注射。作为粘膜下垫,它的表现也非常出色,在猪大肠体外模型中注射 120 分钟后,粘膜下垫仍能保持在 70% 以上。事实上,正常生理盐水的缓冲高度在 30 分钟后急剧下降至初始高度的 46%。封装在网络中的银纳米粒子使水凝胶对大肠杆菌和金黄色葡萄球菌的抗菌效果几乎达到 100%。据计算,水凝胶的溶血率低至 0.8%。结合良好的血液相容性和细胞相容性,所制备的水凝胶在体内的伤口闭合和愈合效果远远高于生理盐水。这些结果证明了剪切稀化壳聚糖水凝胶在促进临床内镜粘膜下剥离手术方面的优越性。
{"title":"Shear-thinning Catechol-modified Chitosan Hydrogel Loaded with Silver Nanoparticles for Endoscopic Submucosal Dissection","authors":"Wen-Jun Feng,&nbsp;Yan-He Wu,&nbsp;Xiao-Yang Liu,&nbsp;Zheng-Ke Wang","doi":"10.1007/s10118-024-3146-0","DOIUrl":"10.1007/s10118-024-3146-0","url":null,"abstract":"<div><p>Shear-thinning hydrogels have emerged for endoscopic submucosal dissection, while wound intervention after surgery has rarely been mentioned. Herein, a catechol-modified chitosan hydrogel with shear-thinning property was developed for simultaneously facilitating endoscopic submucosal dissection and postoperative wound healing. Benefiting from the shear-thinning and self-healing characteristics, the asprepared hydrogel showed easily endoscopic injectability. It also performed very well as submucosal cushion, which could remain above 70% after injection for 120 min in <i>ex vivo</i> porcine large intestine model. In fact, the cushion height of normal saline dramatically decreased to 46% of the initial height at 30 min. Ag nanoparticles encapsulated into the network endowed the hydrogel with almost reached 100% antibacterial effect against <i>E. coli</i> and <i>S. aureus</i>. The hemolysis ratio of the hydrogel was calculated to be as low as 0.8%. Combined with good hemocompatibility and cytocompatibility, the as-prepared hydrogel displayed much higher <i>in vivo</i> wound closure and healing efficacy than normal saline. These results demonstrated the superiority of the shear-thinning chitosan hydrogel in facilitating clinical endoscopic submucosal dissection surgery.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1147 - 1155"},"PeriodicalIF":4.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141523332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unleashing the Power of Bio-based Thermotropic Liquid Crystal Modifiers: Toughening and Reinforcing Petroleum-based Epoxy Resin without Compromising Other Properties 释放生物基热致变性液晶改性剂的能量:在不影响其他性能的前提下增韧和增强石油基环氧树脂
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-06-26 DOI: 10.1007/s10118-024-3149-x
Qing-Yun Lu, Hong-Wei Gu, Jia-Hui Li, Qian-Qian Fan, Bei-Tao Liu, Yan Kou, Xi-Gao Jian, Zhi-Huan Weng

Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus, mechanical strength, and other properties is still a big challenge in view of the sustainability. In this study, a bio-based liquid crystal epoxy resin (THMT-EP) with an s-triazine ring structure was utilized to modify a petroleum-based bisphenol A epoxy resin (E51) with 4,4′-diaminodiphenylsulfone (DDS) as a curing agent, and the blended systems were evaluated for their thermal stability, mechanical properties, and flame retardancy. The results showed that the impact strength of the blended system initially increased and then decreased with the increase in THMT-EP content, and it reached the a maximum value of 26.5 kJ/m2 when the THMT-EP content was 5%, which was 31.2% higher than that of E51/DDS. Notably, the flexural strength, modulus, and glass transition temperature of the blended system were all simultaneously improved with the addition of THMT-EP. At the same time, the addition of THMT-EP enhanced the flame retardancy of the system by increasing the char yield at 700 °C and decreasing the peak heat release rate and total heat release rate. This work paves the way for a more sustainable improvement in the comprehensive performance of epoxy resin.

从可持续发展的角度来看,用生物基改性剂增韧石油基环氧树脂混合物而不影响其模量、机械强度和其他性能仍然是一个巨大的挑战。本研究利用具有 s-三嗪环结构的生物基液晶环氧树脂(THMT-EP)来改性以 4,4′-二氨基二苯砜(DDS)为固化剂的石油基双酚 A 环氧树脂(E51),并对混合体系的热稳定性、机械性能和阻燃性进行了评估。结果表明,随着 THMT-EP 含量的增加,共混体系的冲击强度先升高后降低,当 THMT-EP 含量为 5%时,冲击强度达到最大值 26.5 kJ/m2,比 E51/DDS 高 31.2%。值得注意的是,添加 THMT-EP 后,混合体系的抗折强度、模量和玻璃化转变温度都同时得到了提高。同时,THMT-EP 的添加还提高了体系的阻燃性,增加了 700 °C 时的产炭量,降低了峰值放热率和总放热率。这项工作为更持久地改善环氧树脂的综合性能铺平了道路。
{"title":"Unleashing the Power of Bio-based Thermotropic Liquid Crystal Modifiers: Toughening and Reinforcing Petroleum-based Epoxy Resin without Compromising Other Properties","authors":"Qing-Yun Lu,&nbsp;Hong-Wei Gu,&nbsp;Jia-Hui Li,&nbsp;Qian-Qian Fan,&nbsp;Bei-Tao Liu,&nbsp;Yan Kou,&nbsp;Xi-Gao Jian,&nbsp;Zhi-Huan Weng","doi":"10.1007/s10118-024-3149-x","DOIUrl":"10.1007/s10118-024-3149-x","url":null,"abstract":"<div><p>Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus, mechanical strength, and other properties is still a big challenge in view of the sustainability. In this study, a bio-based liquid crystal epoxy resin (THMT-EP) with an <i>s</i>-triazine ring structure was utilized to modify a petroleum-based bisphenol A epoxy resin (E51) with 4,4′-diaminodiphenylsulfone (DDS) as a curing agent, and the blended systems were evaluated for their thermal stability, mechanical properties, and flame retardancy. The results showed that the impact strength of the blended system initially increased and then decreased with the increase in THMT-EP content, and it reached the a maximum value of 26.5 kJ/m<sup>2</sup> when the THMT-EP content was 5%, which was 31.2% higher than that of E51/DDS. Notably, the flexural strength, modulus, and glass transition temperature of the blended system were all simultaneously improved with the addition of THMT-EP. At the same time, the addition of THMT-EP enhanced the flame retardancy of the system by increasing the char yield at 700 °C and decreasing the peak heat release rate and total heat release rate. This work paves the way for a more sustainable improvement in the comprehensive performance of epoxy resin.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1093 - 1102"},"PeriodicalIF":4.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of PVA/GO/h-BN Janus Film with High Thermal Conductivity and Excellent Flexibility via a Density Deposition Self-assembly Method 通过密度沉积自组装法制备具有高导热性和优异柔韧性的 PVA/GO/h-BN Janus 薄膜
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-06-07 DOI: 10.1007/s10118-024-3154-0
Fang-Hua Luo, Zhi-Tao Dong, Guo-Hua Chen, Chen Ma, Huai-Yuan Wang

Janus films with asymmetric physical/chemical properties have attracted considerable attention due to their promising applications in personal thermal management, electronic skins, sensors, actuators, etc. However, traditional methods for fabricating Janus films conventionally need the assistance of an interface or auxiliary equipment, which are usually complex and time-consuming. Herein, flexible poly(vinyl alcohol) (PVA)/graphene oxide (GO)/h-BN (recorded as PVA/GO/h-BN) Janus films with thermally, optically, and electrically anisotropic properties are fabricated by a simple density deposition self-assembly method, which just utilizes the density difference between GO and h-BN during water evaporation. Experimental results show that the two sides of the acquired Janus films have obvious asymmetric characteristics. In the original state of the PVA/GO/h-BN Janus films, the thermal conductivity of the GO side (10.06 W·m−1·K−1) is generally lower than that of the h-BN side (10.48 W·m−1·K−1). But after GO is reduced, the thermal conductivity of the rGO side reaches 12.17 W·m−1·K−1, surpassing that of the h-BN side. In addition, the relative reflectance of the h-BN side of Janus film is also significantly higher than that of the rGO side, and the surface resistance difference between the two sides is about 4 orders of magnitude. The prepared PVA/GO/h-BN Janus films show great application potential in human thermal management, light conversion switches, and electronic skins. This study provides a simple and versatile strategy for fabricating Janus films with multifunctional (such as thermal, optical, and electrical) anisotropies.

具有非对称物理/化学特性的 Janus 薄膜因其在个人热管理、电子皮肤、传感器、致动器等方面的广阔应用前景而备受关注。然而,传统的 Janus 薄膜制造方法需要接口或辅助设备的协助,通常既复杂又耗时。本文通过一种简单的密度沉积自组装方法,利用水蒸发过程中 GO 和 h-BN 之间的密度差,制备出具有热、光、电各向异性的柔性聚乙烯醇(PVA)/氧化石墨烯(GO)/h-BN(记为 PVA/GO/h-BN)Janus 薄膜。实验结果表明,获得的 Janus 薄膜的两面具有明显的不对称特性。在 PVA/GO/h-BN Janus 薄膜的原始状态下,GO 面的热导率(10.06 W-m-1-K-1)普遍低于 h-BN 面的热导率(10.48 W-m-1-K-1)。但在减少 GO 后,rGO 面的热导率达到了 12.17 W-m-1-K-1,超过了 h-BN 面的热导率。此外,Janus 薄膜 h-BN 侧的相对反射率也明显高于 rGO 侧,两侧的表面电阻相差约 4 个数量级。所制备的 PVA/GO/h-BN Janus 薄膜在人体热管理、光转换开关和电子皮肤等方面显示出巨大的应用潜力。这项研究为制备具有多功能(如热、光和电)各向异性的 Janus 薄膜提供了一种简单而多用途的策略。
{"title":"Preparation of PVA/GO/h-BN Janus Film with High Thermal Conductivity and Excellent Flexibility via a Density Deposition Self-assembly Method","authors":"Fang-Hua Luo,&nbsp;Zhi-Tao Dong,&nbsp;Guo-Hua Chen,&nbsp;Chen Ma,&nbsp;Huai-Yuan Wang","doi":"10.1007/s10118-024-3154-0","DOIUrl":"10.1007/s10118-024-3154-0","url":null,"abstract":"<div><p>Janus films with asymmetric physical/chemical properties have attracted considerable attention due to their promising applications in personal thermal management, electronic skins, sensors, actuators, etc. However, traditional methods for fabricating Janus films conventionally need the assistance of an interface or auxiliary equipment, which are usually complex and time-consuming. Herein, flexible poly(vinyl alcohol) (PVA)/graphene oxide (GO)/h-BN (recorded as PVA/GO/h-BN) Janus films with thermally, optically, and electrically anisotropic properties are fabricated by a simple density deposition self-assembly method, which just utilizes the density difference between GO and h-BN during water evaporation. Experimental results show that the two sides of the acquired Janus films have obvious asymmetric characteristics. In the original state of the PVA/GO/h-BN Janus films, the thermal conductivity of the GO side (10.06 W·m<sup>−1</sup>·K<sup>−1</sup>) is generally lower than that of the h-BN side (10.48 W·m<sup>−1</sup>·K<sup>−1</sup>). But after GO is reduced, the thermal conductivity of the rGO side reaches 12.17 W·m<sup>−1</sup>·K<sup>−1</sup>, surpassing that of the h-BN side. In addition, the relative reflectance of the h-BN side of Janus film is also significantly higher than that of the rGO side, and the surface resistance difference between the two sides is about 4 orders of magnitude. The prepared PVA/GO/h-BN Janus films show great application potential in human thermal management, light conversion switches, and electronic skins. This study provides a simple and versatile strategy for fabricating Janus films with multifunctional (such as thermal, optical, and electrical) anisotropies.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 8","pages":"1217 - 1226"},"PeriodicalIF":4.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141371110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swelling of Spherical Polyelectrolyte Gels 球形聚电解质凝胶的膨胀
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-06-06 DOI: 10.1007/s10118-024-3152-2
Ming-Yu Duan, Jia-Dong Chen, Yi-Ming Liu, Zhao-Feng Peng, Guang Chen

Polyelectrolyte (PE) gels, distinguished by their unique stimuli-responsive swelling behavior, serve as the basis of broad applications, such as artificial muscles and drug delivery. In this work, we present a theoretical model to analyze the electrostatics and its contribution to the swelling behavior of PE gels in salt solutions. By minimizing the free energy of PE gels, we obtain two distinct scaling regimes for the swelling ratio at equilibrium with respect to the salt concentration. We compare our predictions for the swelling ratio with experimental measurements, which show excellent agreement. In addition, we employ a finite element method to assess the applicability range of our theoretical model and assumptions. We anticipate that our model will also provide valuable insights into drug adsorption and release, deformation of red blood cells, 4D printing and soft robotics, where the underlying mechanism of swelling remains enigmatic.

聚电解质(PE)凝胶具有独特的刺激响应膨胀行为,是人工肌肉和药物输送等广泛应用的基础。在这项研究中,我们提出了一个理论模型来分析静电及其对聚乙烯凝胶在盐溶液中溶胀行为的影响。通过最小化聚乙烯凝胶的自由能,我们得到了平衡状态下溶胀率相对于盐浓度的两种不同的缩放状态。我们将对溶胀率的预测与实验测量结果进行了比较,结果显示两者非常吻合。此外,我们还采用了有限元方法来评估我们的理论模型和假设的适用范围。我们预计,我们的模型还将为药物吸附和释放、红细胞变形、4D 打印和软机器人技术等领域提供有价值的见解,因为这些领域的肿胀基本机制仍然是个谜。
{"title":"Swelling of Spherical Polyelectrolyte Gels","authors":"Ming-Yu Duan,&nbsp;Jia-Dong Chen,&nbsp;Yi-Ming Liu,&nbsp;Zhao-Feng Peng,&nbsp;Guang Chen","doi":"10.1007/s10118-024-3152-2","DOIUrl":"10.1007/s10118-024-3152-2","url":null,"abstract":"<div><p>Polyelectrolyte (PE) gels, distinguished by their unique stimuli-responsive swelling behavior, serve as the basis of broad applications, such as artificial muscles and drug delivery. In this work, we present a theoretical model to analyze the electrostatics and its contribution to the swelling behavior of PE gels in salt solutions. By minimizing the free energy of PE gels, we obtain two distinct scaling regimes for the swelling ratio at equilibrium with respect to the salt concentration. We compare our predictions for the swelling ratio with experimental measurements, which show excellent agreement. In addition, we employ a finite element method to assess the applicability range of our theoretical model and assumptions. We anticipate that our model will also provide valuable insights into drug adsorption and release, deformation of red blood cells, 4D printing and soft robotics, where the underlying mechanism of swelling remains enigmatic.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 9","pages":"1386 - 1392"},"PeriodicalIF":4.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141379356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competition of Composition Fluctuation Modes in Weakly Segregated Salt-doped Symmetric Diblock Copolymers 弱分离盐掺杂对称二嵌段共聚物中成分波动模式的竞争
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-06-06 DOI: 10.1007/s10118-024-3145-1
Yuan-Xin Zhou, Xian Kong

Salt-doped block copolymers have widespread applications in batteries, fuel cells, semiconductors, and various industries, where their properties crucially depend on phase separation behavior. Traditionally, investigations into salt-doped diblock copolymers have predominantly focused on microphase separation, overlooking the segregation between ionic and polymeric species. This study employs weak segregation theory to explore the interplay between phase separation dominated by the polymer-modulated mode and the salt-out-modulated mode, corresponding to microscopic and macroscopic phase separations, respectively. By comparing diblock copolymers doped with salts to those doped with neutral solvents, we elucidate the significant role of charged species in modulating phase behavior. The phase separation mode exhibits a transition between the polymer-modulated and salt-out-modulated modes at different wavenumbers. In systems doped with neutral solvents, this transition is stepwise, while in salt-ion-doped systems, it is continuous. With a sufficiently large Flory-Huggins parameter between ions and polymers, the salt-out-modulated mode becomes dominant, promoting macrophase separation. Due to the solvation effect of salt ions, salt-doped systems are more inclined to undergo microphase separation. Furthermore, we explore factors influencing the critical wavenumber of phase separation, including doping level and the Flory-Huggins parameters between two blocks and between ions and polymeric species. Our findings reveal that in a neutral solvent environment, these factors alter only the boundary between micro- and macro-phase separations, leaving the critical wavenumber unchanged in microphase separation cases. However, in a salt-doped environment, the critical wavenumber of microphase separation varies with these parameters. This provides valuable insights into the pivotal role of electrostatics in the phase separation of salt-doped block copolymers.

掺盐嵌段共聚物广泛应用于电池、燃料电池、半导体和各行各业,其特性主要取决于相分离行为。传统上,对掺盐嵌段共聚物的研究主要集中在微相分离方面,忽略了离子和聚合物之间的偏析。本研究采用弱偏析理论来探讨聚合物调制模式和盐出调制模式主导的相分离之间的相互作用,这两种模式分别对应于微观和宏观相分离。通过比较掺盐和掺中性溶剂的二嵌段共聚物,我们阐明了带电物种在调制相行为中的重要作用。相分离模式表现出聚合物调制模式和盐出调制模式之间在不同波数的过渡。在掺杂了中性溶剂的体系中,这种转变是阶梯式的,而在掺杂了盐离子的体系中,这种转变是连续的。当离子和聚合物之间的 Flory-Huggins 参数足够大时,盐出调制模式将成为主导模式,从而促进大相分离。由于盐离子的溶解效应,掺盐体系更倾向于发生微相分离。此外,我们还探讨了影响相分离临界波数的因素,包括掺杂水平和两个嵌段之间以及离子与聚合物之间的 Flory-Huggins 参数。我们的研究结果表明,在中性溶剂环境中,这些因素只改变了微相分离和大相分离之间的边界,使微相分离情况下的临界波数保持不变。然而,在掺盐环境中,微相分离的临界波数会随着这些参数的变化而变化。这为了解静电在掺盐嵌段共聚物相分离中的关键作用提供了宝贵的见解。
{"title":"Competition of Composition Fluctuation Modes in Weakly Segregated Salt-doped Symmetric Diblock Copolymers","authors":"Yuan-Xin Zhou,&nbsp;Xian Kong","doi":"10.1007/s10118-024-3145-1","DOIUrl":"10.1007/s10118-024-3145-1","url":null,"abstract":"<div><p>Salt-doped block copolymers have widespread applications in batteries, fuel cells, semiconductors, and various industries, where their properties crucially depend on phase separation behavior. Traditionally, investigations into salt-doped diblock copolymers have predominantly focused on microphase separation, overlooking the segregation between ionic and polymeric species. This study employs weak segregation theory to explore the interplay between phase separation dominated by the polymer-modulated mode and the salt-out-modulated mode, corresponding to microscopic and macroscopic phase separations, respectively. By comparing diblock copolymers doped with salts to those doped with neutral solvents, we elucidate the significant role of charged species in modulating phase behavior. The phase separation mode exhibits a transition between the polymer-modulated and salt-out-modulated modes at different wavenumbers. In systems doped with neutral solvents, this transition is stepwise, while in salt-ion-doped systems, it is continuous. With a sufficiently large Flory-Huggins parameter between ions and polymers, the salt-out-modulated mode becomes dominant, promoting macrophase separation. Due to the solvation effect of salt ions, salt-doped systems are more inclined to undergo microphase separation. Furthermore, we explore factors influencing the critical wavenumber of phase separation, including doping level and the Flory-Huggins parameters between two blocks and between ions and polymeric species. Our findings reveal that in a neutral solvent environment, these factors alter only the boundary between micro- and macro-phase separations, leaving the critical wavenumber unchanged in microphase separation cases. However, in a salt-doped environment, the critical wavenumber of microphase separation varies with these parameters. This provides valuable insights into the pivotal role of electrostatics in the phase separation of salt-doped block copolymers.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 9","pages":"1375 - 1385"},"PeriodicalIF":4.1,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141377372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friction between Strongly Compressed Polymer Brushes 强压缩聚合物刷之间的摩擦力
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2024-06-05 DOI: 10.1007/s10118-024-3151-3
Qi Liao

We present the results of molecular dynamics simulations of steady shear between a pair of neutral polymer brushes, as well as a pair of charged polymer brushes in the strongly compressed regime. The results of the molecular dynamic simulations of neutral and polyelectrolyte brushes in implicit solvent including normal forces, shear forces, viscosities and friction coefficients as a function of separation between brushes, are presented in the study. The comparison of the simulation results of neutral and charged brushes shows that the charged brushes is in the quasi-neutral regime, and the dependence of viscosity on the separation distance show the similar power law of neutral brushes. Our simulation results confirm that the implicit solvent simulations of polyelectrolyte brushes that ignore hydrodynamics interaction are in agreement with the scaling predictions qualitatively because of screening of hydrodynamic interaction and long-range electrostatic interactions on the correlation length scale. Both of neutral and charged brushes show the lubrication properties that the friction coefficient decreases with the separation decreases at enough large loads. However, a maximum of friction coefficients is observed for polyelectrolyte brushes, which is in contrast to the neutral brushes with monotonical dependence.

我们介绍了一对中性聚合物刷和一对带电聚合物刷在强压缩状态下稳定剪切的分子动力学模拟结果。研究中介绍了隐式溶剂中的中性刷和聚电解质刷的分子动力学模拟结果,包括法向力、剪切力、粘度和摩擦系数与刷之间分离度的函数关系。对中性电刷和带电电刷的模拟结果进行比较后发现,带电电刷处于准中性状态,而粘度与分离距离的关系则显示出与中性电刷类似的幂律。我们的模拟结果证实,由于流体动力学相互作用和长程静电相互作用在相关长度尺度上的屏蔽作用,忽略流体动力学相互作用的隐式溶剂模拟聚电解质电刷与缩放预测定性一致。中性电刷和带电电刷都显示出润滑特性,即在足够大的载荷下,摩擦系数随着分离度的减小而减小。然而,聚电解质电刷的摩擦系数达到最大值,这与中性电刷的单调依赖性形成鲜明对比。
{"title":"Friction between Strongly Compressed Polymer Brushes","authors":"Qi Liao","doi":"10.1007/s10118-024-3151-3","DOIUrl":"10.1007/s10118-024-3151-3","url":null,"abstract":"<div><p>We present the results of molecular dynamics simulations of steady shear between a pair of neutral polymer brushes, as well as a pair of charged polymer brushes in the strongly compressed regime. The results of the molecular dynamic simulations of neutral and polyelectrolyte brushes in implicit solvent including normal forces, shear forces, viscosities and friction coefficients as a function of separation between brushes, are presented in the study. The comparison of the simulation results of neutral and charged brushes shows that the charged brushes is in the quasi-neutral regime, and the dependence of viscosity on the separation distance show the similar power law of neutral brushes. Our simulation results confirm that the implicit solvent simulations of polyelectrolyte brushes that ignore hydrodynamics interaction are in agreement with the scaling predictions qualitatively because of screening of hydrodynamic interaction and long-range electrostatic interactions on the correlation length scale. Both of neutral and charged brushes show the lubrication properties that the friction coefficient decreases with the separation decreases at enough large loads. However, a maximum of friction coefficients is observed for polyelectrolyte brushes, which is in contrast to the neutral brushes with monotonical dependence.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 9","pages":"1368 - 1374"},"PeriodicalIF":4.1,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141386191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chinese Journal of Polymer Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1