Pub Date : 2023-11-06DOI: 10.1109/OJIES.2023.3325101
Nabil Karania;Mohamad Alaaeddin AlalI;Stefano Di Gennaro;Jean-Pierre Barbot
This article presents a free-harmonic ac/dc/ac converter structure using a novel modulation approach for asymmetrical cascade H-bridge multilevel inverter and, conventional rectifiers combined with a shunt active filter, for grid integration. The novel approach SMT-SHE combines two modulation techniques: the staircase modulation technique (SMT); and the selective harmonics elimination (SHE). SMT-SHE approach achieves a sinusoidal-like output stepping voltage with variable output voltage amplitude and free of wideband or/and specific harmonics to fulfill the sensitive loads’ specifications; by determining the appropriate SHE switching angles. The precalculated switching angles are optimized to minimize the number of H-bridge modules and lower the dc capacitor rating. Furthermore, a restriction on the switching angles is proposed to prevent the appearance of undesired harmonics (zeros, even) and, consequently, overcome the limitation of the SHE algorithm applicability. Finally, a real case study in the textile factory is conducted, using real measurements provided by power quality analyzer measuring devices, to validate the proposed ac/dc/ac converter supplying a sensitive load of 50 kVA, given by an asynchronous motor drive.
{"title":"Developed AC/DC/AC Converter Structure Based on Shunt Active Filter and Advanced Modulation Approach for Asymmetrical Cascade H-Bridge Multilevel Inverters","authors":"Nabil Karania;Mohamad Alaaeddin AlalI;Stefano Di Gennaro;Jean-Pierre Barbot","doi":"10.1109/OJIES.2023.3325101","DOIUrl":"10.1109/OJIES.2023.3325101","url":null,"abstract":"This article presents a free-harmonic ac/dc/ac converter structure using a novel modulation approach for asymmetrical cascade H-bridge multilevel inverter and, conventional rectifiers combined with a shunt active filter, for grid integration. The novel approach SMT-SHE combines two modulation techniques: the staircase modulation technique (SMT); and the selective harmonics elimination (SHE). SMT-SHE approach achieves a sinusoidal-like output stepping voltage with variable output voltage amplitude and free of wideband or/and specific harmonics to fulfill the sensitive loads’ specifications; by determining the appropriate SHE switching angles. The precalculated switching angles are optimized to minimize the number of H-bridge modules and lower the dc capacitor rating. Furthermore, a restriction on the switching angles is proposed to prevent the appearance of undesired harmonics (zeros, even) and, consequently, overcome the limitation of the SHE algorithm applicability. Finally, a real case study in the textile factory is conducted, using real measurements provided by power quality analyzer measuring devices, to validate the proposed ac/dc/ac converter supplying a sensitive load of 50 kVA, given by an asynchronous motor drive.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"4 ","pages":"583-602"},"PeriodicalIF":8.5,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10308861","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135501178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LoRaWAN is widely used in information monitoring under star topology. However, for linear topology applications, the LoRaWAN protocol requires the introduction of a large number of gateways, which will lead to information asymmetry, energy waste, and low network utilization. An energy-saving LoRa linear network system with adaptive transmission parameter is proposed. LoRa multihop technology is used for communication between nodes in the system, and narrowband Internet of Things module is used to the communicate with cloud platform. The adaptive transmission parameter mechanism is adopted in the system, which improves the adaptability of the linear network to changes in link channel conditions and reduces unnecessary energy consumption. At the same time, the flexibility and robustness of self-organizing networks are enhanced. In addition, optimized duty cycle strategies are employed to further reduce the operating power consumption. After LoRaSim simulation experiments, the results show that in the changing radio channel environment, the adaptive transmission parameter mechanism could achieve a dynamic balance between data extraction rate and energy consumption. After field tests, the results show that the system not only operates stably, but also could reduce the operating energy consumption of the LoRa linear network. The system proposed in this article is suitable for linear topological structure scenes such as river hydrological monitoring, oil pipeline monitoring, and long-distance railway monitoring.
{"title":"An Energy-Saving LoRa Linear Network System With Adaptive Transmission Parameter","authors":"Hao Wang;Shanshan Lv;Yang Han;Xihai Zhang;Yu Zhang;Wenbin Dong;Jianxin Liao;Hongwei Luan","doi":"10.1109/OJIES.2023.3329021","DOIUrl":"https://doi.org/10.1109/OJIES.2023.3329021","url":null,"abstract":"LoRaWAN is widely used in information monitoring under star topology. However, for linear topology applications, the LoRaWAN protocol requires the introduction of a large number of gateways, which will lead to information asymmetry, energy waste, and low network utilization. An energy-saving LoRa linear network system with adaptive transmission parameter is proposed. LoRa multihop technology is used for communication between nodes in the system, and narrowband Internet of Things module is used to the communicate with cloud platform. The adaptive transmission parameter mechanism is adopted in the system, which improves the adaptability of the linear network to changes in link channel conditions and reduces unnecessary energy consumption. At the same time, the flexibility and robustness of self-organizing networks are enhanced. In addition, optimized duty cycle strategies are employed to further reduce the operating power consumption. After LoRaSim simulation experiments, the results show that in the changing radio channel environment, the adaptive transmission parameter mechanism could achieve a dynamic balance between data extraction rate and energy consumption. After field tests, the results show that the system not only operates stably, but also could reduce the operating energy consumption of the LoRa linear network. The system proposed in this article is suitable for linear topological structure scenes such as river hydrological monitoring, oil pipeline monitoring, and long-distance railway monitoring.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"4 ","pages":"476-485"},"PeriodicalIF":8.5,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10302374","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109157752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work presents a general framework for developing a multiparameter 1-D chaotic system for uniform and robust chaotic operation across the parameter space. This is important for diverse practical applications where parameter disturbance may cause degradation or even complete disappearance of chaotic properties. The wide uninterrupted chaotic range and improved chaotic properties are demonstrated with the aid of stability analysis, bifurcation diagram, Lyapunov exponent (LE), Kolmogorov entropy, Shannon entropy, and correlation coefficient. We also demonstrate the proposed system's amenability to cascading for further performance improvement. We introduce an efficient field-programmable gate array-based implementation and validate its chaotic properties using comparison between simulation and experimental results. Cascaded normalized linearly-combined chaotic system (NLCS) exhibits average LE, chaotic ratio, and chaotic parameter space of 1.364, 100%, and $1.1times 10^{12}$, respectively, for 10-bit parameter values. We provide a thorough comparison of our system with prior works both in terms of performance and hardware cost. We also introduce a simple extension scheme to build 2-D robust, hyperchaotic NLCS maps. We present a novel reconfigurable multiparameter pseudorandom number generator and validate its randomness using two standard statistical tests, namely, National Institute of Standards and Technology SP 800-22 and FIPS PUB 140-2. Finally, we outline six potential applications where NLCS will be useful.
{"title":"Normalized Linearly-Combined Chaotic System: Design, Analysis, Implementation, and Application","authors":"Md Sakib Hasan;Anurag Dhungel;Partha Sarathi Paul;Maisha Sadia;Md Razuan Hossain","doi":"10.1109/OJIES.2023.3328497","DOIUrl":"https://doi.org/10.1109/OJIES.2023.3328497","url":null,"abstract":"This work presents a general framework for developing a multiparameter 1-D chaotic system for uniform and robust chaotic operation across the parameter space. This is important for diverse practical applications where parameter disturbance may cause degradation or even complete disappearance of chaotic properties. The wide uninterrupted chaotic range and improved chaotic properties are demonstrated with the aid of stability analysis, bifurcation diagram, Lyapunov exponent (LE), Kolmogorov entropy, Shannon entropy, and correlation coefficient. We also demonstrate the proposed system's amenability to cascading for further performance improvement. We introduce an efficient field-programmable gate array-based implementation and validate its chaotic properties using comparison between simulation and experimental results. Cascaded normalized linearly-combined chaotic system (NLCS) exhibits average LE, chaotic ratio, and chaotic parameter space of 1.364, 100%, and $1.1times 10^{12}$, respectively, for 10-bit parameter values. We provide a thorough comparison of our system with prior works both in terms of performance and hardware cost. We also introduce a simple extension scheme to build 2-D robust, hyperchaotic NLCS maps. We present a novel reconfigurable multiparameter pseudorandom number generator and validate its randomness using two standard statistical tests, namely, National Institute of Standards and Technology SP 800-22 and FIPS PUB 140-2. Finally, we outline six potential applications where NLCS will be useful.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"4 ","pages":"486-505"},"PeriodicalIF":8.5,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10301682","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109157753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.1109/OJIES.2023.3326380
Daniel A. Philipps;Dimosthenis Peftitsis
Active gate drivers (AGDs) enhance the controllability and monitoring of switching devices, especially for fast switching silicon carbide (SiC) power metal–oxide–semiconductor field-effect transistors ( mosfet