Pub Date : 2024-07-04DOI: 10.1109/OJIES.2024.3421669
Abdul Latif;S. M. Suhail Hussain;Ahmed Al-Durra;Atif Iqbal
This article delves into the intricate challenge of frequency stabilization within islanded microgrids (IMGs), particularly exacerbated by the integration of low-inertia renewable power generations. A hierarchical control strategy is proposed, comprising a fuzzy rule-based controller, a two-degree-of-freedom fractional-order PI controller, and a proportional resonant controller. The bolstering of frequency stabilization is achieved by the integration of aggregated electric vehicle storage into the IMG. Adaptive tuning of the fuzzy rule-based load frequency controller's parameters is facilitated by a novel quasi-oppositional prairie dog technique (QOPDT), developed within this study. A comprehensive comparison is conducted between the efficacy of the QOPDT technique and various other optimization methods. Significant improvements in system frequency stability across diverse scenarios are observed with the adoption of the QOPDT-based controller, as evidenced by qualitative assessment. Furthermore, the investigation extends to consider the impact of time-varying delay on the integrated electric vehicle system, broadening the scope of the investigation. Validation of the effectiveness and practicality of the proposed control framework is undertaken utilizing the real-time OPAL-RT 5700 testbed platform.
{"title":"Hierarchical Fuzzy Framework for EV Supported Islanded Microgrid Frequency Stabilization","authors":"Abdul Latif;S. M. Suhail Hussain;Ahmed Al-Durra;Atif Iqbal","doi":"10.1109/OJIES.2024.3421669","DOIUrl":"10.1109/OJIES.2024.3421669","url":null,"abstract":"This article delves into the intricate challenge of frequency stabilization within islanded microgrids (IMGs), particularly exacerbated by the integration of low-inertia renewable power generations. A hierarchical control strategy is proposed, comprising a fuzzy rule-based controller, a two-degree-of-freedom fractional-order PI controller, and a proportional resonant controller. The bolstering of frequency stabilization is achieved by the integration of aggregated electric vehicle storage into the IMG. Adaptive tuning of the fuzzy rule-based load frequency controller's parameters is facilitated by a novel quasi-oppositional prairie dog technique (QOPDT), developed within this study. A comprehensive comparison is conducted between the efficacy of the QOPDT technique and various other optimization methods. Significant improvements in system frequency stability across diverse scenarios are observed with the adoption of the QOPDT-based controller, as evidenced by qualitative assessment. Furthermore, the investigation extends to consider the impact of time-varying delay on the integrated electric vehicle system, broadening the scope of the investigation. Validation of the effectiveness and practicality of the proposed control framework is undertaken utilizing the real-time OPAL-RT 5700 testbed platform.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"704-721"},"PeriodicalIF":5.2,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10585315","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article proposes the application of correlated Gaussian processes (Corr-GPs) for the recovery of missing intervals in power systems signals. Based on only local power system topology, the presented algorithm combines cross-channel information of the considered signals with a universal, nonparametric probabilistic machine learning regression to recover missing data. Starting from the theoretical background, the proposed approach is presented and contextualized in the framework of signal recovery for power systems. Then, by making use of real data collected from the Living Lab Energy Campus—a real-life laboratory established at Forschungszentrum Jülich—we demonstrate the use of the proposed approach for recovering distribution grid signals. We evaluate the performances of Corr-GP compared with those of other state-of-the-art techniques. In addition to outperformance in terms of recovery accuracy, it is explained when and how the accuracy of the reconstructed signal is independent of the missing interval length. Finally, detailed insights about key characteristics of the proposed approach that generate practical benefits for system operators are provided. A self-aware failing indication allowing system operators a direct evaluation of the recovered data and enabling further improvement of the proposed approach is presented, as well as recommendations for field implementation.
本文提出应用相关高斯过程(Corr-GPs)恢复电力系统信号中的缺失区间。该算法仅基于本地电力系统拓扑结构,将所考虑信号的跨信道信息与通用的非参数概率机器学习回归相结合,以恢复缺失数据。从理论背景出发,在电力系统信号恢复的框架内介绍了所提出的方法。然后,通过使用从 Living Lab Energy Campus(建立在 Forschungszentrum Jülich(尤利希研究中心)的真实实验室)收集的真实数据,我们演示了如何使用所提出的方法恢复配电网信号。我们评估了 Corr-GP 与其他最先进技术相比的性能。除了在恢复精度方面表现出色外,我们还解释了重建信号的精度何时以及如何与缺失间隔长度无关。最后,详细介绍了为系统运营商带来实际利益的拟议方法的关键特性。此外,还介绍了允许系统操作员直接评估恢复数据和进一步改进拟议方法的自我感知故障指示,以及现场实施建议。
{"title":"Signal Recovery in Power Systems by Correlated Gaussian Processes","authors":"Marcel Zimmer;Daniele Carta;Thiemo Pesch;Andrea Benigni","doi":"10.1109/OJIES.2024.3423405","DOIUrl":"10.1109/OJIES.2024.3423405","url":null,"abstract":"This article proposes the application of correlated Gaussian processes (Corr-GPs) for the recovery of missing intervals in power systems signals. Based on only local power system topology, the presented algorithm combines cross-channel information of the considered signals with a universal, nonparametric probabilistic machine learning regression to recover missing data. Starting from the theoretical background, the proposed approach is presented and contextualized in the framework of signal recovery for power systems. Then, by making use of real data collected from the Living Lab Energy Campus—a real-life laboratory established at Forschungszentrum Jülich—we demonstrate the use of the proposed approach for recovering distribution grid signals. We evaluate the performances of Corr-GP compared with those of other state-of-the-art techniques. In addition to outperformance in terms of recovery accuracy, it is explained when and how the accuracy of the reconstructed signal is independent of the missing interval length. Finally, detailed insights about key characteristics of the proposed approach that generate practical benefits for system operators are provided. A self-aware failing indication allowing system operators a direct evaluation of the recovered data and enabling further improvement of the proposed approach is presented, as well as recommendations for field implementation.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"692-703"},"PeriodicalIF":5.2,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10585294","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the context of food science and engineering, the in vitro chewing effect on food bolus formation is a critical area of research that explores the mechanical and textural properties of ingested materials. This article presents a pioneering approach to assess the in vitro chewing impact on food bolus formation using the gray level co-occurrence matrix (GLCM) image analysis technique. As technological advancements lead to the development of mastication robots, the need for evaluating in vitro chewed food bolus has grown. To address this challenge, a case study is conducted. The study's objectives encompass utilizing GLCM to determine the in vitro chewing cycle phase, analyzing texture features, and investigating chewing trajectory differences for beef and plant-based burger patties. Applying GLCM as a methodology, the research quantitatively analyzes textural features of food bolus formations under controlled in vitro chewing conditions. The outcomes reveal distinct differences between beef and plant-based samples through GLCM parameters. Significantly, the study identifies a consistent trend across various scenarios, indicating an increase in energy and homogeneity and a decrease in dissimilarity with an increasing number of in vitro chewing cycles. This investigation offers valuable insights into the dynamic relationship between chewing cycles and textural features in the oral processing of beef and plant-based burger patties.
{"title":"A Novel Approach to Evaluate Robotic in Vitro Chewing Effect on Food Bolus Formation Using the GLCM Image Analysis Technique","authors":"Isurie Akarawita;Bangxiang Chen;Jaspreet Singh Dhupia;Martin Stommel;Weiliang Xu","doi":"10.1109/OJIES.2024.3421649","DOIUrl":"10.1109/OJIES.2024.3421649","url":null,"abstract":"In the context of food science and engineering, the in vitro chewing effect on food bolus formation is a critical area of research that explores the mechanical and textural properties of ingested materials. This article presents a pioneering approach to assess the in vitro chewing impact on food bolus formation using the gray level co-occurrence matrix (GLCM) image analysis technique. As technological advancements lead to the development of mastication robots, the need for evaluating in vitro chewed food bolus has grown. To address this challenge, a case study is conducted. The study's objectives encompass utilizing GLCM to determine the in vitro chewing cycle phase, analyzing texture features, and investigating chewing trajectory differences for beef and plant-based burger patties. Applying GLCM as a methodology, the research quantitatively analyzes textural features of food bolus formations under controlled in vitro chewing conditions. The outcomes reveal distinct differences between beef and plant-based samples through GLCM parameters. Significantly, the study identifies a consistent trend across various scenarios, indicating an increase in energy and homogeneity and a decrease in dissimilarity with an increasing number of in vitro chewing cycles. This investigation offers valuable insights into the dynamic relationship between chewing cycles and textural features in the oral processing of beef and plant-based burger patties.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"682-691"},"PeriodicalIF":5.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10582430","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Voltage clamping circuits are critical components in most direct-current circuit breakers (dcCBs) to achieve ultrafast dc fault interruptions and an extended lifetime. A key performance index of voltage clamping circuits is the overvoltage ratio, which calculates the peak switching overvoltage over the nominal voltage during fault interruption processes. A lower overvoltage ratio is beneficial to minimize the dcCB insulation voltage and reduce the total breaker cost, meanwhile alleviating the overvoltage interference to the dc bus and, thus, enhancing the stability of the dc power system. This article evaluates the overvoltage ratio of various clamping circuits reported in dcCB literature. The basic working principles, switching overvoltage magnitude, advantages, and limitations of different voltage clamping circuits are evaluated by circuit simulations. A capacitor-metal–oxide varistor (C-MOV) circuit is selected for experimental validation considering its specifically low overvoltage ratio. The C-MOV prototype is verified with high-power tests at 1 kV dc bus. The measured overvoltage ratio of the C-MOV prototype matches parametric analyses. The effects of stray inductance and fault rise rate on the overvoltage ratio are also experimentally validated. Finally, the C-MOV circuit is compared with other voltage clamping circuits in the literature to demonstrate its benefits and limitations in dcCB applications.
{"title":"Review and Analysis of Voltage Clamping Circuits With Low Overvoltage Ratios for DC Circuit Breakers","authors":"Shuyan Zhao;Chunmeng Xu;Lakshmi Ravi;Zhou Dong;Pietro Cairoli","doi":"10.1109/OJIES.2024.3420219","DOIUrl":"10.1109/OJIES.2024.3420219","url":null,"abstract":"Voltage clamping circuits are critical components in most direct-current circuit breakers (dcCBs) to achieve ultrafast dc fault interruptions and an extended lifetime. A key performance index of voltage clamping circuits is the overvoltage ratio, which calculates the peak switching overvoltage over the nominal voltage during fault interruption processes. A lower overvoltage ratio is beneficial to minimize the dcCB insulation voltage and reduce the total breaker cost, meanwhile alleviating the overvoltage interference to the dc bus and, thus, enhancing the stability of the dc power system. This article evaluates the overvoltage ratio of various clamping circuits reported in dcCB literature. The basic working principles, switching overvoltage magnitude, advantages, and limitations of different voltage clamping circuits are evaluated by circuit simulations. A capacitor-metal–oxide varistor (C-MOV) circuit is selected for experimental validation considering its specifically low overvoltage ratio. The C-MOV prototype is verified with high-power tests at 1 kV dc bus. The measured overvoltage ratio of the C-MOV prototype matches parametric analyses. The effects of stray inductance and fault rise rate on the overvoltage ratio are also experimentally validated. Finally, the C-MOV circuit is compared with other voltage clamping circuits in the literature to demonstrate its benefits and limitations in dcCB applications.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"651-662"},"PeriodicalIF":5.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10577240","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1109/OJIES.2024.3419422
FERNANDO A. CHICAIZA;EMANUEL SLAWIñSKI;VICENTE MUT
Mobile manipulators find versatile applications across various fields, leveraging the combination of autonomous functionalities and bilateral teleoperation schemes to enhance the effectiveness of these robotic mechanisms. Regarding teleoperation, command generation involves a leader robot with a few degrees of freedom in a bounded workspace, accompanied by a redundant follower robot operating in an unbounded workspace. This article introduces the concept of Cartesian/articular control for delayed bilateral teleoperation of a mobile manipulator, where the follower robot aims to execute the rate/nonlinear-position commands issued by a human handling the leader robot through a proposed hybrid mapping. We implement a P+d controller applied in Cartesian space for the leader while a controller based on inverse kinematics in joint space is employed for the follower, taking advantage of its redundancy. We then propose a Lyapunov–Krasovskii candidate function to analyze theoretically and numerically the time derivative of the functional on the system trajectories. As a result, we derive the conditions that the proposed hybrid mapping and controller parameters must satisfy to ensure bounded errors. Finally, we statistically evaluated objective metrics from multiple pick-and-place task executions considering time delays to quantify the performance achieved.
{"title":"Delayed Bilateral Teleoperation of Mobile Manipulators With Hybrid Mapping: Rate/Nonlinear-Position Modes","authors":"FERNANDO A. CHICAIZA;EMANUEL SLAWIñSKI;VICENTE MUT","doi":"10.1109/OJIES.2024.3419422","DOIUrl":"10.1109/OJIES.2024.3419422","url":null,"abstract":"Mobile manipulators find versatile applications across various fields, leveraging the combination of autonomous functionalities and bilateral teleoperation schemes to enhance the effectiveness of these robotic mechanisms. Regarding teleoperation, command generation involves a leader robot with a few degrees of freedom in a bounded workspace, accompanied by a redundant follower robot operating in an unbounded workspace. This article introduces the concept of Cartesian/articular control for delayed bilateral teleoperation of a mobile manipulator, where the follower robot aims to execute the rate/nonlinear-position commands issued by a human handling the leader robot through a proposed hybrid mapping. We implement a P+d controller applied in Cartesian space for the leader while a controller based on inverse kinematics in joint space is employed for the follower, taking advantage of its redundancy. We then propose a Lyapunov–Krasovskii candidate function to analyze theoretically and numerically the time derivative of the functional on the system trajectories. As a result, we derive the conditions that the proposed hybrid mapping and controller parameters must satisfy to ensure bounded errors. Finally, we statistically evaluated objective metrics from multiple pick-and-place task executions considering time delays to quantify the performance achieved.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"663-681"},"PeriodicalIF":5.2,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10572222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The protection of dc systems in mobility applications, such as land transport, aircraft, and shipping, presents significant challenges due to the need for high-power-density equipment in confined spaces. This article focuses on dc systems onboard ships, for which diverse applications require different power levels, architectures, and protection strategies. Existing protection frameworks and regulations are often inadequate or outdated for the field, leading to certification issues and insufficient fault analysis. This research proposes a use-case-based categorization of short-circuit currents for primary systems. A reference scenario is created using a simulation model of a 5-MW system in a superyacht to provide a short-circuit inventory. The study proposes three contributions: a comprehensive fault inventory, a qualitative categorization, and relevant recommendations for power converter design. The research highlights the importance of fault categorization in understanding the impact of various short circuits on shipboard dc systems. The study emphasizes the importance of the evolution of materials and power converters in developing efficient protection technologies for ships. This work addresses some fundamental gaps in shipboard dc systems, providing a foundation for improved protection strategies and regulations, ultimately contributing to the advancement of protection of shipboard dc systems.
{"title":"Pole-to-Pole Short-Circuit Categorization for Protection Strategies in Primary Shipboard DC Systems","authors":"Alejandro Latorre;Thiago Batista Soeiro;Xinqian Fan;Rinze Geertsma;Marjan Popov;Henk Polinder","doi":"10.1109/OJIES.2024.3417939","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3417939","url":null,"abstract":"The protection of dc systems in mobility applications, such as land transport, aircraft, and shipping, presents significant challenges due to the need for high-power-density equipment in confined spaces. This article focuses on dc systems onboard ships, for which diverse applications require different power levels, architectures, and protection strategies. Existing protection frameworks and regulations are often inadequate or outdated for the field, leading to certification issues and insufficient fault analysis. This research proposes a use-case-based categorization of short-circuit currents for primary systems. A reference scenario is created using a simulation model of a 5-MW system in a superyacht to provide a short-circuit inventory. The study proposes three contributions: a comprehensive fault inventory, a qualitative categorization, and relevant recommendations for power converter design. The research highlights the importance of fault categorization in understanding the impact of various short circuits on shipboard dc systems. The study emphasizes the importance of the evolution of materials and power converters in developing efficient protection technologies for ships. This work addresses some fundamental gaps in shipboard dc systems, providing a foundation for improved protection strategies and regulations, ultimately contributing to the advancement of protection of shipboard dc systems.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"596-615"},"PeriodicalIF":5.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10569074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1109/OJIES.2024.3415007
Miad Ahmadi;Aditya Shekhar;Pavol Bauer
Modular multilevel converters are favorable for efficiently operating high-power usages. The required number of components significantly increases when higher modularity is introduced for the given voltage level, thus reducing the system's reliability. This article suggests a mixed redundancy strategy (MRS) that combines the operational concepts using active and spare redundant submodules. It is shown that more than 50% higher B10 lifetime (the point in time when the system has a 90% probability of survival) is achievable as compared to reliability improvement using fixed-level active redundancy strategy, load-sharing active redundancy strategy, and standby redundancy strategy with the same number of redundant submodules. The tradeoff between operational efficiency and investment cost is explored to define the boundary for selecting the MRS over other redundancy strategies with varying dc-link voltages and average converter loading, considering a ten-year payback period and equivalent B10 lifetime. The change in viability boundary for the MRS is established with increasing B10 lifetime and its sensitivity to power electronic component costs and assumed failure rate. The effect of power capacity with a higher switch current rating is evaluated. Also, the Monte Carlo simulation methodology is proposed to evaluate the practicality and effectiveness of the proposed MRS scheme. Finally, the insights of this study are applied to existing literature.
{"title":"Mixed Redundancy Strategy for Modular Multilevel Converters in High-Power Applications","authors":"Miad Ahmadi;Aditya Shekhar;Pavol Bauer","doi":"10.1109/OJIES.2024.3415007","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3415007","url":null,"abstract":"Modular multilevel converters are favorable for efficiently operating high-power usages. The required number of components significantly increases when higher modularity is introduced for the given voltage level, thus reducing the system's reliability. This article suggests a mixed redundancy strategy (MRS) that combines the operational concepts using active and spare redundant submodules. It is shown that more than 50% higher B10 lifetime (the point in time when the system has a 90% probability of survival) is achievable as compared to reliability improvement using fixed-level active redundancy strategy, load-sharing active redundancy strategy, and standby redundancy strategy with the same number of redundant submodules. The tradeoff between operational efficiency and investment cost is explored to define the boundary for selecting the MRS over other redundancy strategies with varying dc-link voltages and average converter loading, considering a ten-year payback period and equivalent B10 lifetime. The change in viability boundary for the MRS is established with increasing B10 lifetime and its sensitivity to power electronic component costs and assumed failure rate. The effect of power capacity with a higher switch current rating is evaluated. Also, the Monte Carlo simulation methodology is proposed to evaluate the practicality and effectiveness of the proposed MRS scheme. Finally, the insights of this study are applied to existing literature.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"535-546"},"PeriodicalIF":5.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10570455","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141448035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1109/OJIES.2024.3417401
G. Geetha;P. Geethanjali
In machine learning, the extraction of features is necessary for intelligent motor fault diagnosis. In industrial applications, it is necessary to identify the optimal number of features to differentiate various types of fault characteristics with less computational complexity and cost. However, motor fault diagnosis for real-time applications has challenges in capturing characteristics due to variations in speed, load, force, run-to-failure state as well as the type of the motor and its parts. The deep learning techniques that automatically extract features and perform classification have algorithmic complexity. In this work, the authors address these challenges by: 1) selecting and ensembling optimal time-domain features that are capable of identifying motor faults using current signals of the permanent magnet synchronous motor (PMSM) in bearing; and 2) investigating the feature ensemble constituting optimal features for robust fault diagnosis in the PMSM bearing as well as the stator and bearing of squirrel cage induction motor (SCIM) for various conditions. The optimal features mean absolute value, simple sign integral, and waveform length yields 99.8% and 100% for bearing fault and stator fault diagnosis, respectively, in PMSM. These features show 100% accuracy for identification of fault in SCIM and 98.2% accuracy in the run-to-failure state.
{"title":"Optimal Robust Time-Domain Feature-Based Bearing Fault and Stator Fault Diagnosis","authors":"G. Geetha;P. Geethanjali","doi":"10.1109/OJIES.2024.3417401","DOIUrl":"https://doi.org/10.1109/OJIES.2024.3417401","url":null,"abstract":"In machine learning, the extraction of features is necessary for intelligent motor fault diagnosis. In industrial applications, it is necessary to identify the optimal number of features to differentiate various types of fault characteristics with less computational complexity and cost. However, motor fault diagnosis for real-time applications has challenges in capturing characteristics due to variations in speed, load, force, run-to-failure state as well as the type of the motor and its parts. The deep learning techniques that automatically extract features and perform classification have algorithmic complexity. In this work, the authors address these challenges by: 1) selecting and ensembling optimal time-domain features that are capable of identifying motor faults using current signals of the permanent magnet synchronous motor (PMSM) in bearing; and 2) investigating the feature ensemble constituting optimal features for robust fault diagnosis in the PMSM bearing as well as the stator and bearing of squirrel cage induction motor (SCIM) for various conditions. The optimal features mean absolute value, simple sign integral, and waveform length yields 99.8% and 100% for bearing fault and stator fault diagnosis, respectively, in PMSM. These features show 100% accuracy for identification of fault in SCIM and 98.2% accuracy in the run-to-failure state.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"562-574"},"PeriodicalIF":5.2,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10568251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1109/OJIES.2024.3412990
Sachin Yadav;Pavol Bauer;Zian Qin
This article discusses the various operating modes of a series resonant balancing converter for bipolar dc grids. It is shown that the converter can be operated in both the capacitive and inductive regions with respect to the resonant frequency of the LC