The walktrap algorithm is one of the most popular community-detection methods in psychological research. Several simulation studies have shown that it is often effective at determining the correct number of communities and assigning items to their proper community. Nevertheless, it is important to recognize that the walktrap algorithm relies on hierarchical clustering because it was originally developed for networks much larger than those encountered in psychological research. In this paper, we present and demonstrate a computational alternative to the hierarchical algorithm that is conceptually easier to understand. More importantly, we show that better solutions to the sum-of-squares optimization problem that is heuristically tackled by hierarchical clustering in the walktrap algorithm can often be obtained using exact or approximate methods for K-means clustering. Three simulation studies and analyses of empirical networks were completed to assess the impact of better sum-of-squares solutions.
Forced-choice questionnaires involve presenting items in blocks and asking respondents to provide a full or partial ranking of the items within each block. To prevent involuntary or voluntary response distortions, blocks are usually formed of items that possess similar levels of desirability. Assembling forced-choice blocks is not a trivial process, because in addition to desirability, both the direction and magnitude of relationships between items and the traits being measured (i.e., factor loadings) need to be carefully considered. Based on simulations and empirical studies using item pairs, we provide recommendations on how to construct item pairs matched by desirability. When all pairs contain items keyed in the same direction, score reliability is improved by maximizing within-block loading differences. Higher reliability is obtained when even a small number of pairs consist of unequally keyed items.
In a cluster randomized trial clusters of persons, for instance, schools or health centers, are assigned to treatments, and all persons in the same cluster get the same treatment. Although less powerful than individual randomization, cluster randomization is a good alternative if individual randomization is impossible or leads to severe treatment contamination (carry-over). Focusing on cluster randomized trials with a pretest and post-test of a quantitative outcome, this paper shows the equivalence of four methods of analysis: a three-level mixed (multilevel) regression for repeated measures with as levels cluster, person, and time, and allowing for unstructured between-cluster and within-cluster covariance matrices; a two-level mixed regression with as levels cluster and person, using change from baseline as outcome; a two-level mixed regression with as levels cluster and time, using cluster means as data; a one-level analysis of cluster means of change from baseline. Subsequently, similar equivalences are shown between a constrained mixed model and methods using the pretest as covariate. All methods are also compared on a cluster randomized trial on mental health in children. From these equivalences follows a simple method to calculate the sample size for a cluster randomized trial with baseline measurement, which is demonstrated step-by-step.