首页 > 最新文献

Multivariate Behavioral Research最新文献

英文 中文
Exploring the Effects of Sampling Variability, Scale Variability, and Node Aggregation on the Consistency of Estimated Networks. 探讨抽样变异性、尺度变异性和节点聚集对估计网络一致性的影响。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-01 Epub Date: 2025-03-13 DOI: 10.1080/00273171.2024.2414479
Arianne Herrera-Bennett, Mijke Rhemtulla

Work surrounding the replicability and generalizability of network models has increased in recent years, prompting debate on whether network properties can be expected to be consistent across samples. To date, certain methodological practices may have contributed to observed inconsistencies, including use of single-item indicators and non-identical measurement tools. The current study used a resampling approach to disentangle the effects of sampling variability from scale variability when assessing network replicability in empirical data. Additionally, we explored whether consistencies in network characteristics were improved when more items were aggregated to estimate node scores, which we hypothesized should yield more representative measures of latent constructs. Overall, using different scales produced more variability in network properties than using different samples, but these discrepancies were markedly reduced with larger samples and greater node aggregation. Findings underscored the impact of aggregating items when estimating nodes: Multi-item indicators led to denser networks, higher network sensitivity, greater estimates of global strength, and greater levels of consistency in network properties (e.g., edge weights, centrality scores). Taken together, variability in network properties across samples may arise from poor measurement conditions; additionally, variability may reflect properties of the true network model and/or the measurement instrument. All data and syntax are openly available online (https://osf.io/m37q2/).

近年来,围绕网络模型的可复制性和泛化性的工作有所增加,引发了关于网络属性是否可以在样本中保持一致的争论。迄今为止,某些方法实践可能导致观察到的不一致,包括使用单项指标和不相同的测量工具。在评估经验数据中的网络可复制性时,目前的研究使用了重新抽样方法来区分抽样变异性和尺度变异性的影响。此外,我们探讨了当更多的项目被聚合到估计节点得分时,网络特征的一致性是否得到改善,我们假设这应该产生更有代表性的潜在构式测量。总体而言,使用不同的尺度比使用不同的样本在网络特性上产生更多的可变性,但这些差异随着更大的样本和更大的节点聚集而显著减少。研究结果强调了在估计节点时聚合项目的影响:多项目指标导致更密集的网络,更高的网络敏感性,更大的全球强度估计,以及更高水平的网络属性一致性(例如,边缘权重,中心性得分)。综上所述,不良的测量条件可能导致样本之间网络特性的变化;此外,可变性可以反映真实网络模型和/或测量仪器的特性。所有数据和语法都可以在网上公开获得(https://osf.io/m37q2/)。
{"title":"Exploring the Effects of Sampling Variability, Scale Variability, and Node Aggregation on the Consistency of Estimated Networks.","authors":"Arianne Herrera-Bennett, Mijke Rhemtulla","doi":"10.1080/00273171.2024.2414479","DOIUrl":"10.1080/00273171.2024.2414479","url":null,"abstract":"<p><p>Work surrounding the replicability and generalizability of network models has increased in recent years, prompting debate on whether network properties can be expected to be consistent across samples. To date, certain methodological practices may have contributed to observed inconsistencies, including use of single-item indicators and non-identical measurement tools. The current study used a resampling approach to disentangle the effects of sampling variability from scale variability when assessing network replicability in empirical data. Additionally, we explored whether consistencies in network characteristics were improved when more items were aggregated to estimate node scores, which we hypothesized should yield more representative measures of latent constructs. Overall, using different scales produced more variability in network properties than using different samples, but these discrepancies were markedly reduced with larger samples and greater node aggregation. Findings underscored the impact of aggregating items when estimating nodes: Multi-item indicators led to denser networks, higher network sensitivity, greater estimates of global strength, and greater levels of consistency in network properties (e.g., edge weights, centrality scores). Taken together, variability in network properties across samples may arise from poor measurement conditions; additionally, variability may reflect properties of the true network model and/or the measurement instrument. All data and syntax are openly available online (https://osf.io/m37q2/).</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"275-295"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143626798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Causal View on Bias in Missing Data Imputation: The Impact of Evil Auxiliary Variables on Norming of Test Scores. 从因果角度看缺失数据估算中的偏差:邪恶辅助变量对测验分数规范化的影响。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-01 Epub Date: 2024-10-20 DOI: 10.1080/00273171.2024.2412682
Erik Sengewald, Katinka Hardt, Marie-Ann Sengewald

Among the most important merits of modern missing data techniques such as multiple imputation (MI) and full-information maximum likelihood estimation is the possibility to include additional information about the missingness process via auxiliary variables. During the past decade, the choice of auxiliary variables has been investigated under a variety of different conditions and more recent research points to the potentially biasing effect of certain auxiliary variables, particularly colliders (Thoemmes & Rose, 2014). In this article, we further extend biasing mechanisms of certain auxiliary variables considered in previous research and thereby focus on their effects on individual diagnosis based on norming, in which the whole distribution of a variable is of interest rather than average coefficients (e.g., means). For this, we first provide the theoretical underpinnings of the mechanisms under study and then provide two focused simulations that (i) directly expand on the collider scenario in Thoemmes and Rose (2014, appendix A) by considering outcomes that are relevant to norming and (ii) extend the scenarios under consideration by instrumental variable mechanisms. We illustrate the bias mechanisms for two different norming approaches and exemplify the procedures by means of an empirical example. We end by discussing limitations and implications of our research.

多重估算(MI)和全信息最大似然估计等现代缺失数据技术的最重要优点之一,是可以通过辅助变量纳入有关缺失过程的额外信息。过去十年间,人们在各种不同条件下对辅助变量的选择进行了研究,最近的研究指出某些辅助变量,特别是对撞机可能会产生偏差效应(Thoemmes & Rose, 2014)。在本文中,我们将进一步扩展之前研究中考虑的某些辅助变量的偏差机制,从而关注它们对基于规范化的个体诊断的影响,在规范化中,我们关注的是变量的整体分布,而不是平均系数(如均值)。为此,我们首先提供了所研究机制的理论基础,然后提供了两个重点模拟:(i) 直接扩展 Thoemmes 和 Rose(2014 年,附录 A)中的对撞机情景,考虑与规范化相关的结果;(ii) 通过工具变量机制扩展所考虑的情景。我们说明了两种不同规范化方法的偏差机制,并通过一个实证例子举例说明了程序。最后,我们将讨论我们研究的局限性和影响。
{"title":"A Causal View on Bias in Missing Data Imputation: The Impact of Evil Auxiliary Variables on Norming of Test Scores.","authors":"Erik Sengewald, Katinka Hardt, Marie-Ann Sengewald","doi":"10.1080/00273171.2024.2412682","DOIUrl":"10.1080/00273171.2024.2412682","url":null,"abstract":"<p><p>Among the most important merits of modern missing data techniques such as multiple imputation (MI) and full-information maximum likelihood estimation is the possibility to include additional information about the missingness process via auxiliary variables. During the past decade, the choice of auxiliary variables has been investigated under a variety of different conditions and more recent research points to the potentially biasing effect of certain auxiliary variables, particularly colliders (Thoemmes & Rose, 2014). In this article, we further extend biasing mechanisms of certain auxiliary variables considered in previous research and thereby focus on their effects on individual diagnosis based on norming, in which the whole distribution of a variable is of interest rather than average coefficients (e.g., means). For this, we first provide the theoretical underpinnings of the mechanisms under study and then provide two focused simulations that (i) directly expand on the collider scenario in Thoemmes and Rose (2014, appendix A) by considering outcomes that are relevant to norming and (ii) extend the scenarios under consideration by instrumental variable mechanisms. We illustrate the bias mechanisms for two different norming approaches and exemplify the procedures by means of an empirical example. We end by discussing limitations and implications of our research.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"258-274"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why You Should Not Estimate Mediated Effects Using the Difference-in-Coefficients Method When the Outcome is Binary. 当结果是二元时,为什么不能使用系数差法估计中介效应?
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-01 Epub Date: 2024-10-29 DOI: 10.1080/00273171.2024.2418515
Judith J M Rijnhart, Matthew J Valente, David P MacKinnon

Despite previous warnings against the use of the difference-in-coefficients method for estimating the indirect effect when the outcome in the mediation model is binary, the difference-in-coefficients method remains readily used in a variety of fields. The continued use of this method is presumably because of the lack of awareness that this method conflates the indirect effect estimate and non-collapsibility. In this paper, we aim to demonstrate the problems associated with the difference-in-coefficients method for estimating indirect effects for mediation models with binary outcomes. We provide a formula that decomposes the difference-in-coefficients estimate into (1) an estimate of non-collapsibility, and (2) an indirect effect estimate. We use a simulation study and an empirical data example to illustrate the impact of non-collapsibility on the difference-in-coefficients estimate of the indirect effect. Further, we demonstrate the application of several alternative methods for estimating the indirect effect, including the product-of-coefficients method and regression-based causal mediation analysis. The results emphasize the importance of choosing a method for estimating the indirect effect that is not affected by non-collapsibility.

尽管以前有人警告过,当中介模型中的结果是二元的时候,不要使用系数差法来估计间接效应,但系数差法仍然被广泛应用于各个领域。之所以继续使用这种方法,大概是因为人们没有意识到这种方法混淆了间接效应估计和非可比性。在本文中,我们旨在说明用系数差法估计二元结果中介模型间接效应的相关问题。我们提供了一个公式,将系数差估计值分解为(1)非可比性估计值和(2)间接效应估计值。我们使用一个模拟研究和一个经验数据示例来说明非可比性对间接效应的系数差估计值的影响。此外,我们还演示了几种间接效应估计替代方法的应用,包括系数乘积法和基于回归的因果中介分析。结果强调了选择不受非可比性影响的间接效应估计方法的重要性。
{"title":"Why You Should Not Estimate Mediated Effects Using the Difference-in-Coefficients Method When the Outcome is Binary.","authors":"Judith J M Rijnhart, Matthew J Valente, David P MacKinnon","doi":"10.1080/00273171.2024.2418515","DOIUrl":"10.1080/00273171.2024.2418515","url":null,"abstract":"<p><p>Despite previous warnings against the use of the difference-in-coefficients method for estimating the indirect effect when the outcome in the mediation model is binary, the difference-in-coefficients method remains readily used in a variety of fields. The continued use of this method is presumably because of the lack of awareness that this method conflates the indirect effect estimate and non-collapsibility. In this paper, we aim to demonstrate the problems associated with the difference-in-coefficients method for estimating indirect effects for mediation models with binary outcomes. We provide a formula that decomposes the difference-in-coefficients estimate into (1) an estimate of non-collapsibility, and (2) an indirect effect estimate. We use a simulation study and an empirical data example to illustrate the impact of non-collapsibility on the difference-in-coefficients estimate of the indirect effect. Further, we demonstrate the application of several alternative methods for estimating the indirect effect, including the product-of-coefficients method and regression-based causal mediation analysis. The results emphasize the importance of choosing a method for estimating the indirect effect that is not affected by non-collapsibility.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"296-304"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11991894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Importance of Considering Concurrent Effects in Random-Intercept Cross-Lagged Panel Modelling: Example Analysis of Bullying and Internalising Problems. 论随机截距交叉滞后面板模型中考虑并发效应的重要性:欺凌和内化问题的实例分析。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-01 Epub Date: 2024-11-26 DOI: 10.1080/00273171.2024.2428222
Lydia G Speyer, Xinxin Zhu, Yi Yang, Denis Ribeaud, Manuel Eisner

Random-intercept cross-lagged panel models (RI-CLPMs) are increasingly used to investigate research questions focusing on how one variable at one time point affects another variable at the subsequent time point. Due to the implied temporal sequence of events in such research designs, interpretations of RI-CLPMs primarily focus on longitudinal cross-lagged paths while disregarding concurrent associations and modeling these only as residual covariances. However, this may cause biased cross-lagged effects. This may be especially so when data collected at the same time point refers to different reference timeframes, creating a temporal sequence of events for constructs measured concurrently. To examine this issue, we conducted a series of empirical analyses in which the impact of modeling or not modeling of directional within-time point associations may impact inferences drawn from RI-CLPMs using data from the longitudinal z-proso study. Results highlight that not considering directional concurrent effects may lead to biased cross-lagged effects. Thus, it is essential to carefully consider potential directional concurrent effects when choosing models to analyze directional associations between variables over time. If temporal sequences of concurrent effects cannot be clearly established, testing multiple models and drawing conclusions based on the robustness of effects across all models is recommended.

随机截距交叉滞后面板模型(RI-CLPMs)越来越多地用于研究一个时间点的一个变量如何影响随后时间点的另一个变量的问题。由于此类研究设计中隐含了事件的时间顺序,因此对 RI-CLPM 的解释主要集中在纵向交叉滞后路径上,而忽略了并发关联,仅将其建模为残差协方差。然而,这可能会导致有偏差的交叉滞后效应。尤其是当在同一时间点收集的数据指的是不同的参考时间范围,从而为同时测量的构念创建了一个事件的时间序列时,这种情况可能会更加严重。为了研究这个问题,我们利用纵向 z-proso 研究的数据进行了一系列实证分析,其中建模或不建模时间点内的定向关联可能会影响从 RI-CLPMs 得出的推论。结果突出表明,不考虑方向性并发效应可能会导致有偏差的交叉滞后效应。因此,在选择模型分析变量随时间变化的方向性关联时,必须仔细考虑潜在的方向性并发效应。如果无法明确确定并发效应的时间序列,建议测试多个模型,并根据所有模型效应的稳健性得出结论。
{"title":"On the Importance of Considering Concurrent Effects in Random-Intercept Cross-Lagged Panel Modelling: Example Analysis of Bullying and Internalising Problems.","authors":"Lydia G Speyer, Xinxin Zhu, Yi Yang, Denis Ribeaud, Manuel Eisner","doi":"10.1080/00273171.2024.2428222","DOIUrl":"10.1080/00273171.2024.2428222","url":null,"abstract":"<p><p>Random-intercept cross-lagged panel models (RI-CLPMs) are increasingly used to investigate research questions focusing on how one variable at one time point affects another variable at the subsequent time point. Due to the implied temporal sequence of events in such research designs, interpretations of RI-CLPMs primarily focus on longitudinal cross-lagged paths while disregarding concurrent associations and modeling these only as residual covariances. However, this may cause biased cross-lagged effects. This may be especially so when data collected at the same time point refers to different reference timeframes, creating a temporal sequence of events for constructs measured concurrently. To examine this issue, we conducted a series of empirical analyses in which the impact of modeling or not modeling of directional within-time point associations may impact inferences drawn from RI-CLPMs using data from the longitudinal z-proso study. Results highlight that not considering directional concurrent effects may lead to biased cross-lagged effects. Thus, it is essential to carefully consider potential directional concurrent effects when choosing models to analyze directional associations between variables over time. If temporal sequences of concurrent effects cannot be clearly established, testing multiple models and drawing conclusions based on the robustness of effects across all models is recommended.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"328-344"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latently Mediating: A Bayesian Take on Causal Mediation Analysis with Structured Survey Data. 潜中介:利用结构化调查数据的贝叶斯因果中介分析。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-01 Epub Date: 2024-11-18 DOI: 10.1080/00273171.2024.2424514
Alessandro Varacca

In this paper, we propose a Bayesian causal mediation approach to the analysis of experimental data when both the outcome and the mediator are measured through structured questionnaires based on Likert-scaled inquiries. Our estimation strategy builds upon the error-in-variables literature and, specifically, it leverages Item Response Theory to explicitly model the observed surrogate mediator and outcome measures. We employ their elicited latent counterparts in a simple g-computation algorithm, where we exploit the fundamental identifying assumptions of causal mediation analysis to impute all the relevant counterfactuals and estimate the causal parameters of interest. We finally devise a sensitivity analysis procedure to test the robustness of the proposed methods to the restrictive requirement of mediator's conditional ignorability. We demonstrate the functioning of our proposed methodology through an empirical application using survey data from an online experiment on food purchasing intentions and the effect of different labeling regimes.

在本文中,我们提出了一种贝叶斯因果中介方法来分析实验数据,即通过基于李克特量表调查的结构化问卷来测量结果和中介。我们的估算策略建立在变量误差文献的基础上,具体来说,它利用项目反应理论(Item Response Theory)对观察到的中介变量和结果变量进行明确建模。我们在一个简单的 g 计算算法中使用了所激发的潜在对应变量,利用因果中介分析的基本识别假设来估算所有相关的反事实,并估算相关的因果参数。最后,我们设计了一个敏感性分析程序,以检验所提出的方法对中介人条件无知这一限制性要求的稳健性。我们通过一个关于食品购买意向和不同标签制度影响的在线实验调查数据的实证应用,证明了我们提出的方法的功能。
{"title":"Latently Mediating: A Bayesian Take on Causal Mediation Analysis with Structured Survey Data.","authors":"Alessandro Varacca","doi":"10.1080/00273171.2024.2424514","DOIUrl":"10.1080/00273171.2024.2424514","url":null,"abstract":"<p><p>In this paper, we propose a Bayesian causal mediation approach to the analysis of experimental data when both the outcome and the mediator are measured through structured questionnaires based on Likert-scaled inquiries. Our estimation strategy builds upon the error-in-variables literature and, specifically, it leverages Item Response Theory to explicitly model the observed surrogate mediator and outcome measures. We employ their elicited latent counterparts in a simple g-computation algorithm, where we exploit the fundamental identifying assumptions of causal mediation analysis to impute all the relevant counterfactuals and estimate the causal parameters of interest. We finally devise a sensitivity analysis procedure to test the robustness of the proposed methods to the restrictive requirement of mediator's conditional ignorability. We demonstrate the functioning of our proposed methodology through an empirical application using survey data from an online experiment on food purchasing intentions and the effect of different labeling regimes.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"305-327"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Estimation Procedures for Reducing Dimensionality in Psychological Network Modeling. 探索心理网络建模中降低维度的估算程序。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-01 Epub Date: 2024-09-16 DOI: 10.1080/00273171.2024.2395941
Dingjing Shi, Alexander P Christensen, Eric Anthony Day, Hudson F Golino, Luis Eduardo Garrido

To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys' priors to estimate the graphical structure and then used the Louvain community detection algorithm to partition and identify groups of nodes, which allowed the detection of the multi- and unidimensional factor structures. Monte Carlo simulations suggested that the two alternative Bayesian estimation algorithms had comparable or better performance when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When estimating the multidimensional factor structure, the analytically based method (i.e., EGA.analytical) showed the best balance between accuracy and mean biased/absolute errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower accuracy but also lower errors than EGA. Techniques from the two algorithms had more stable performance than EGA and PA across different data conditions. When estimating the unidimensional structure, the PA technique performed the best, followed closely by EGA, and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full Bayesian techniques to assess dimensionality in network psychometrics. The results demonstrated superior performance when using Bayesian hypothesis testing or deriving posterior samples of graph structures under small sample sizes. The study recommends using the EGA.analytical technique as an alternative tool for assessing dimensionality and advocates for the usefulness of the EGA.sampling method as a valuable alternate technique. The findings also indicated encouraging results for extending the regularization-based network modeling EGA method to the Bayesian framework and discussed future directions in this line of work. The study illustrated the practical application of the techniques to two empirical examples in R.

要理解心理数据,研究变量的结构和维度至关重要。在本研究中,我们研究了网络心理测量模型中基于传统 GLASSO 的探索性图分析(EGA)的替代估计算法,以评估数据的维度结构。研究采用贝叶斯共轭或杰弗里斯先验来估计图结构,然后使用卢万群落检测算法来划分和识别节点群,从而检测出多维和单维因子结构。蒙特卡罗模拟表明,与基于 GLASSO 的 EGA 和传统的并行分析(PA)相比,这两种贝叶斯估计算法的性能相当或更好。在估计多维因子结构时,基于分析的方法(即 EGA.analytical)在准确性和平均偏差/绝对误差之间表现出最佳平衡,准确性与 EGA 并列最高,但误差最小。与 PA 相比,基于采样的方法(EGA.采样)精度更高,误差更小;与 EGA 相比,精度较低,但误差也较小。在不同的数据条件下,这两种算法的技术比 EGA 和 PA 具有更稳定的性能。在估计单维结构时,PA 技术表现最好,紧随其后的是 EGA,然后是 EGA.分析和 EGA.采样。此外,研究还探索了四种完整的贝叶斯技术,以评估网络心理测量学中的维度。结果表明,在样本量较小的情况下,使用贝叶斯假设检验或推导图结构的后验样本时,效果更佳。研究建议使用 EGA.分析技术作为评估维度的替代工具,并主张将 EGA.抽样方法作为一种有价值的替代技术。研究结果还表明,将基于正则化的网络建模 EGA 方法扩展到贝叶斯框架取得了令人鼓舞的成果,并讨论了这一工作领域的未来方向。该研究以 R 语言中的两个经验实例说明了这些技术的实际应用。
{"title":"Exploring Estimation Procedures for Reducing Dimensionality in Psychological Network Modeling.","authors":"Dingjing Shi, Alexander P Christensen, Eric Anthony Day, Hudson F Golino, Luis Eduardo Garrido","doi":"10.1080/00273171.2024.2395941","DOIUrl":"10.1080/00273171.2024.2395941","url":null,"abstract":"<p><p>To understand psychological data, it is crucial to examine the structure and dimensions of variables. In this study, we examined alternative estimation algorithms to the conventional GLASSO-based exploratory graph analysis (EGA) in network psychometric models to assess the dimensionality structure of the data. The study applied Bayesian conjugate or Jeffreys' priors to estimate the graphical structure and then used the Louvain community detection algorithm to partition and identify groups of nodes, which allowed the detection of the multi- and unidimensional factor structures. Monte Carlo simulations suggested that the two alternative Bayesian estimation algorithms had comparable or better performance when compared with the GLASSO-based EGA and conventional parallel analysis (PA). When estimating the multidimensional factor structure, the analytically based method (i.e., EGA.analytical) showed the best balance between accuracy and mean biased/absolute errors, with the highest accuracy tied with EGA but with the smallest errors. The sampling-based approach (EGA.sampling) yielded higher accuracy and smaller errors than PA; lower accuracy but also lower errors than EGA. Techniques from the two algorithms had more stable performance than EGA and PA across different data conditions. When estimating the unidimensional structure, the PA technique performed the best, followed closely by EGA, and then EGA.analytical and EGA.sampling. Furthermore, the study explored four full Bayesian techniques to assess dimensionality in network psychometrics. The results demonstrated superior performance when using Bayesian hypothesis testing or deriving posterior samples of graph structures under small sample sizes. The study recommends using the EGA.analytical technique as an alternative tool for assessing dimensionality and advocates for the usefulness of the EGA.sampling method as a valuable alternate technique. The findings also indicated encouraging results for extending the regularization-based network modeling EGA method to the Bayesian framework and discussed future directions in this line of work. The study illustrated the practical application of the techniques to two empirical examples in R.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"184-210"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Make Some Noise: Generating Data from Imperfect Factor Models. 制造噪音从不完全性因子模型中生成数据。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-01 Epub Date: 2024-10-16 DOI: 10.1080/00273171.2024.2410760
Justin D Kracht, Niels G Waller

Researchers simulating covariance structure models sometimes add model error to their data to produce model misfit. Presently, the most popular methods for generating error-perturbed data are those by Tucker, Koopman, and Linn (TKL), Cudeck and Browne (CB), and Wu and Browne (WB). Although all of these methods include parameters that control the degree of model misfit, none can generate data that reproduce multiple fit indices. To address this issue, we describe a multiple-target TKL method that can generate error-perturbed data that will reproduce target RMSEA and CFI values either individually or together. To evaluate this method, we simulated error-perturbed correlation matrices for an array of factor analysis models using the multiple-target TKL method, the CB method, and the WB method. Our results indicated that the multiple-target TKL method produced solutions with RMSEA and CFI values that were closer to their target values than those of the alternative methods. Thus, the multiple-target TKL method should be a useful tool for researchers who wish to generate error-perturbed correlation matrices with a known degree of model error. All functions that are described in this work are available in the fungible R library. Additional materials (e.g., R code, supplemental results) are available at https://osf.io/vxr8d/.

模拟协方差结构模型的研究人员有时会在数据中加入模型误差,以产生模型失配。目前,最流行的误差扰动数据生成方法是 Tucker、Koopman 和 Linn(TKL)、Cudeck 和 Browne(CB)以及 Wu 和 Browne(WB)的方法。虽然所有这些方法都包含控制模型不拟合程度的参数,但没有一种方法能生成重现多重拟合指数的数据。为了解决这个问题,我们介绍了一种多目标 TKL 方法,它可以生成误差扰动数据,从而单独或共同再现目标 RMSEA 和 CFI 值。为了评估这种方法,我们使用多目标 TKL 方法、CB 方法和 WB 方法模拟了一系列因子分析模型的误差扰动相关矩阵。结果表明,与其他方法相比,多目标 TKL 方法产生的解的 RMSEA 值和 CFI 值更接近目标值。因此,多目标 TKL 方法对于希望生成具有已知模型误差的误差扰动相关矩阵的研究人员来说,应该是一个有用的工具。本研究中描述的所有函数均可在可互换的 R 库中找到。更多资料(如 R 代码、补充结果)可从 https://osf.io/vxr8d/ 获取。
{"title":"Make Some Noise: Generating Data from Imperfect Factor Models.","authors":"Justin D Kracht, Niels G Waller","doi":"10.1080/00273171.2024.2410760","DOIUrl":"10.1080/00273171.2024.2410760","url":null,"abstract":"<p><p>Researchers simulating covariance structure models sometimes add model error to their data to produce model misfit. Presently, the most popular methods for generating error-perturbed data are those by Tucker, Koopman, and Linn (TKL), Cudeck and Browne (CB), and Wu and Browne (WB). Although all of these methods include parameters that control the degree of model misfit, none can generate data that reproduce multiple fit indices. To address this issue, we describe a multiple-target TKL method that can generate error-perturbed data that will reproduce target RMSEA and CFI values either individually or together. To evaluate this method, we simulated error-perturbed correlation matrices for an array of factor analysis models using the multiple-target TKL method, the CB method, and the WB method. Our results indicated that the multiple-target TKL method produced solutions with RMSEA and CFI values that were closer to their target values than those of the alternative methods. Thus, the multiple-target TKL method should be a useful tool for researchers who wish to generate error-perturbed correlation matrices with a known degree of model error. All functions that are described in this work are available in the fungible <math><mrow><mi>R</mi></mrow></math> library. Additional materials (e.g., <math><mrow><mi>R</mi></mrow></math> code, supplemental results) are available at https://osf.io/vxr8d/.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"236-257"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Latent Structure of Responses and Response Times from Multidimensional Personality Measurement with Ordinal Rating Scales. 基于顺序评定量表的多维人格测量反应的潜在结构和反应时间。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-01 Epub Date: 2024-12-23 DOI: 10.1080/00273171.2024.2436406
Inhan Kang

In this article, we propose latent variable models that jointly account for responses and response times (RTs) in multidimensional personality measurements. We address two key research questions regarding the latent structure of RT distributions through model comparisons. First, we decompose RT into decision and non-decision times by incorporating irreducible minimum shifts in RT distributions, as done in cognitive decision-making models. Second, we investigate whether the speed factor underlying decision times should be multidimensional with the same latent structure as personality traits, or, if a unidimensional speed factor suffices. Comprehensive model comparisons across four distinct datasets suggest that a joint model with person-specific parameters to account for shifts in RT distributions and a unidimensional speed factor provides the best account for ordinal responses and RTs. Posterior predictive checks further confirm these findings. Additionally, simulation studies validate the parameter recovery of the proposed models and support the empirical results. Most importantly, failing to account for the irreducible minimum shift in RT distributions leads to systematic biases in other model components and severe underestimation of the nonlinear relationship between responses and RTs.

在本文中,我们提出了潜在变量模型,共同解释多维人格测量中的反应和反应时间(RTs)。我们通过模型比较解决了关于RT分布潜在结构的两个关键研究问题。首先,我们将RT分解为决策时间和非决策时间,通过纳入RT分布中不可约的最小位移,就像在认知决策模型中所做的那样。其次,我们研究决策时间的速度因子是否应该是多维的,具有与人格特质相同的潜在结构,或者如果一个单维的速度因子就足够了。对四个不同数据集的综合模型比较表明,考虑RT分布变化的个体参数和一维速度因子的联合模型最能解释有序响应和RT。后验预测检查进一步证实了这些发现。此外,仿真研究验证了所提出模型的参数恢复,并支持了实证结果。最重要的是,未能考虑到RT分布中不可约的最小位移会导致其他模型成分的系统性偏差,并严重低估响应与RT之间的非线性关系。
{"title":"On the Latent Structure of Responses and Response Times from Multidimensional Personality Measurement with Ordinal Rating Scales.","authors":"Inhan Kang","doi":"10.1080/00273171.2024.2436406","DOIUrl":"10.1080/00273171.2024.2436406","url":null,"abstract":"<p><p>In this article, we propose latent variable models that jointly account for responses and response times (RTs) in multidimensional personality measurements. We address two key research questions regarding the latent structure of RT distributions through model comparisons. First, we decompose RT into decision and non-decision times by incorporating irreducible minimum shifts in RT distributions, as done in cognitive decision-making models. Second, we investigate whether the speed factor underlying decision times should be multidimensional with the same latent structure as personality traits, or, if a unidimensional speed factor suffices. Comprehensive model comparisons across four distinct datasets suggest that a joint model with person-specific parameters to account for shifts in RT distributions and a unidimensional speed factor provides the best account for ordinal responses and RTs. Posterior predictive checks further confirm these findings. Additionally, simulation studies validate the parameter recovery of the proposed models and support the empirical results. Most importantly, failing to account for the irreducible minimum shift in RT distributions leads to systematic biases in other model components and severe underestimation of the nonlinear relationship between responses and RTs.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"393-422"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Gentle Introduction and Application of Feature-Based Clustering with Psychological Time Series. 基于心理时间序列的特征聚类及其应用。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-01 Epub Date: 2024-12-11 DOI: 10.1080/00273171.2024.2432918
Jannis Kreienkamp, Maximilian Agostini, Rei Monden, Kai Epstude, Peter de Jonge, Laura F Bringmann

Psychological researchers and practitioners collect increasingly complex time series data aimed at identifying differences between the developments of participants or patients. Past research has proposed a number of dynamic measures that describe meaningful developmental patterns for psychological data (e.g., instability, inertia, linear trend). Yet, commonly used clustering approaches are often not able to include these meaningful measures (e.g., due to model assumptions). We propose feature-based time series clustering as a flexible, transparent, and well-grounded approach that clusters participants based on the dynamic measures directly using common clustering algorithms. We introduce the approach and illustrate the utility of the method with real-world empirical data that highlight common ESM challenges of multivariate conceptualizations, structural missingness, and non-stationary trends. We use the data to showcase the main steps of input selection, feature extraction, feature reduction, feature clustering, and cluster evaluation. We also provide practical algorithm overviews and readily available code for data preparation, analysis, and interpretation.

心理学研究人员和从业人员收集越来越复杂的时间序列数据,旨在识别参与者或患者发展之间的差异。过去的研究提出了一些动态测量方法来描述有意义的心理数据发展模式(如不稳定性、惯性、线性趋势)。然而,常用的聚类方法通常不能包括这些有意义的度量(例如,由于模型假设)。我们提出基于特征的时间序列聚类是一种灵活、透明和有充分基础的方法,它直接使用常见的聚类算法基于动态度量对参与者进行聚类。我们介绍了该方法,并用现实世界的经验数据说明了该方法的实用性,这些数据突出了多变量概念化、结构缺失和非平稳趋势等常见的ESM挑战。我们使用这些数据来展示输入选择、特征提取、特征约简、特征聚类和聚类评估的主要步骤。我们还提供实用的算法概述和现成的数据准备、分析和解释代码。
{"title":"A Gentle Introduction and Application of Feature-Based Clustering with Psychological Time Series.","authors":"Jannis Kreienkamp, Maximilian Agostini, Rei Monden, Kai Epstude, Peter de Jonge, Laura F Bringmann","doi":"10.1080/00273171.2024.2432918","DOIUrl":"10.1080/00273171.2024.2432918","url":null,"abstract":"<p><p>Psychological researchers and practitioners collect increasingly complex time series data aimed at identifying differences between the developments of participants or patients. Past research has proposed a number of dynamic measures that describe meaningful developmental patterns for psychological data (e.g., instability, inertia, linear trend). Yet, commonly used clustering approaches are often not able to include these meaningful measures (e.g., due to model assumptions). We propose feature-based time series clustering as a flexible, transparent, and well-grounded approach that clusters participants based on the dynamic measures directly using common clustering algorithms. We introduce the approach and illustrate the utility of the method with real-world empirical data that highlight common ESM challenges of multivariate conceptualizations, structural missingness, and non-stationary trends. We use the data to showcase the main steps of input selection, feature extraction, feature reduction, feature clustering, and cluster evaluation. We also provide practical algorithm overviews and readily available code for data preparation, analysis, and interpretation.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"362-392"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Killing Two Birds with One Stone: Accounting for Unfolding Item Response Process and Response Styles Using Unfolding Item Response Tree Models. 一石二鸟:使用展开式项目反应树模型考虑展开式项目反应过程和反应风格。
IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-03-01 Epub Date: 2024-08-31 DOI: 10.1080/00273171.2024.2394607
Zhaojun Li, Lingyue Li, Bo Zhang, Mengyang Cao, Louis Tay

Two research streams on responses to Likert-type items have been developing in parallel: (a) unfolding models and (b) individual response styles (RSs). To accurately understand Likert-type item responding, it is vital to parse unfolding responses from RSs. Therefore, we propose the Unfolding Item Response Tree (UIRTree) model. First, we conducted a Monte Carlo simulation study to examine the performance of the UIRTree model compared to three other models - Samejima's Graded Response Model, Generalized Graded Unfolding Model, and Dominance Item Response Tree model, for Likert-type responses. Results showed that when data followed an unfolding response process and contained RSs, AIC was able to select the UIRTree model, while BIC was biased toward the DIRTree model in many conditions. In addition, model parameters in the UIRTree model could be accurately recovered under realistic conditions, and mis-specifying item response process or wrongly ignoring RSs was detrimental to the estimation of key parameters. Then, we used datasets from empirical studies to show that the UIRTree model could fit personality datasets well and produced more reasonable parameter estimates compared to competing models. A strong presence of RS(s) was also revealed by the UIRTree model. Finally, we provided examples with R code for UIRTree model estimation to facilitate the modeling of responses to Likert-type items in future studies.

关于李克特类型项目反应的两个研究流一直在并行发展:(a) 展开模型和 (b) 个人反应风格 (RS)。为了准确理解李克特类型项目的反应,从 RSs 中解析展开式反应至关重要。因此,我们提出了展开项目反应树(UIRTree)模型。首先,我们进行了蒙特卡罗模拟研究,考察了 UIRTree 模型与其他三种模型(Samejima 的分级反应模型、广义分级展开模型和优势项目反应树模型)相比在李克特型反应方面的性能。结果表明,当数据遵循展开式反应过程并包含 RS 时,AIC 能够选择 UIRTree 模型,而 BIC 在许多情况下偏向于 DIRTree 模型。此外,在现实条件下,UIRTree 模型中的模型参数可以准确恢复,而错误地指定项目反应过程或错误地忽略 RSs 则不利于关键参数的估计。然后,我们利用实证研究的数据集表明,UIRTree 模型能很好地拟合个性数据集,与其他竞争模型相比,它能产生更合理的参数估计。UIRTree 模型还揭示了 RS(s)的强烈存在。最后,我们提供了 UIRTree 模型估计的 R 代码示例,以方便在未来的研究中对李克特类型项目的反应进行建模。
{"title":"Killing Two Birds with One Stone: Accounting for Unfolding Item Response Process and Response Styles Using Unfolding Item Response Tree Models.","authors":"Zhaojun Li, Lingyue Li, Bo Zhang, Mengyang Cao, Louis Tay","doi":"10.1080/00273171.2024.2394607","DOIUrl":"10.1080/00273171.2024.2394607","url":null,"abstract":"<p><p>Two research streams on responses to Likert-type items have been developing in parallel: (a) unfolding models and (b) individual response styles (RSs). To accurately understand Likert-type item responding, it is vital to parse unfolding responses from RSs. Therefore, we propose the Unfolding Item Response Tree (UIRTree) model. First, we conducted a Monte Carlo simulation study to examine the performance of the UIRTree model compared to three other models - Samejima's Graded Response Model, Generalized Graded Unfolding Model, and Dominance Item Response Tree model, for Likert-type responses. Results showed that when data followed an unfolding response process and contained RSs, AIC was able to select the UIRTree model, while BIC was biased toward the DIRTree model in many conditions. In addition, model parameters in the UIRTree model could be accurately recovered under realistic conditions, and mis-specifying item response process or wrongly ignoring RSs was detrimental to the estimation of key parameters. Then, we used datasets from empirical studies to show that the UIRTree model could fit personality datasets well and produced more reasonable parameter estimates compared to competing models. A strong presence of RS(s) was also revealed by the UIRTree model. Finally, we provided examples with <i>R</i> code for UIRTree model estimation to facilitate the modeling of responses to Likert-type items in future studies.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"161-183"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Multivariate Behavioral Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1