Pub Date : 2025-03-01Epub Date: 2024-12-09DOI: 10.1080/00273171.2024.2430630
Steven P Reise, Jared M Block, Maxwell Mansolf, Mark G Haviland, Benjamin D Schalet, Rachel Kimerling
The application of unidimensional IRT models requires item response data to be unidimensional. Often, however, item response data contain a dominant dimension, as well as one or more nuisance dimensions caused by content clusters. Applying a unidimensional IRT model to multidimensional data causes violations of local independence, which can vitiate IRT applications. To evaluate and, possibly, remedy the problems caused by forcing unidimensional models onto multidimensional data, we consider the creation of a projected unidimensional IRT model, where the multidimensionality caused by nuisance dimensions is controlled for by integrating them out from the model. Specifically, when item response data have a bifactor structure, one can create a unidimensional model based on projecting to the general factor. Importantly, the projected unidimensional IRT model can be used as a benchmark for comparison to a unidimensional model to judge the practical consequences of multidimensionality. Limitations of the proposed approach are detailed.
{"title":"Using Projective IRT to Evaluate the Effects of Multidimensionality on Unidimensional IRT Model Parameters.","authors":"Steven P Reise, Jared M Block, Maxwell Mansolf, Mark G Haviland, Benjamin D Schalet, Rachel Kimerling","doi":"10.1080/00273171.2024.2430630","DOIUrl":"10.1080/00273171.2024.2430630","url":null,"abstract":"<p><p>The application of unidimensional IRT models requires item response data to be unidimensional. Often, however, item response data contain a dominant dimension, as well as one or more nuisance dimensions caused by content clusters. Applying a unidimensional IRT model to multidimensional data causes violations of local independence, which can vitiate IRT applications. To evaluate and, possibly, remedy the problems caused by forcing unidimensional models onto multidimensional data, we consider the creation of a projected unidimensional IRT model, where the multidimensionality caused by nuisance dimensions is controlled for by integrating them out from the model. Specifically, when item response data have a bifactor structure, one can create a unidimensional model based on projecting to the general factor. Importantly, the projected unidimensional IRT model can be used as a benchmark for comparison to a unidimensional model to judge the practical consequences of multidimensionality. Limitations of the proposed approach are detailed.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"345-361"},"PeriodicalIF":5.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-17DOI: 10.1080/00273171.2024.2386686
Nataly Beribisky, Robert A Cribbie
A popular measure of model fit in structural equation modeling (SEM) is the standardized root mean squared residual (SRMR) fit index. Equivalence testing has been used to evaluate model fit in structural equation modeling (SEM) but has yet to be applied to SRMR. Accordingly, the present study proposed equivalence-testing based fit tests for the SRMR (ESRMR). Several variations of ESRMR were introduced, incorporating different equivalence bounds and methods of computing confidence intervals. A Monte Carlo simulation study compared these novel tests with traditional methods for evaluating model fit. The results demonstrated that certain ESRMR tests based on an analytic computation of the confidence interval correctly reject poor-fitting models and are well-powered for detecting good-fitting models. We also present an illustrative example with real data to demonstrate how ESRMR may be incorporated into model fit evaluation and reporting. Our recommendation is that ESRMR tests be presented in addition to descriptive fit indices for model fit reporting in SEM.
{"title":"Equivalence Testing Based Fit Index: Standardized Root Mean Squared Residual.","authors":"Nataly Beribisky, Robert A Cribbie","doi":"10.1080/00273171.2024.2386686","DOIUrl":"10.1080/00273171.2024.2386686","url":null,"abstract":"<p><p>A popular measure of model fit in structural equation modeling (SEM) is the standardized root mean squared residual (SRMR) fit index. Equivalence testing has been used to evaluate model fit in structural equation modeling (SEM) but has yet to be applied to SRMR. Accordingly, the present study proposed equivalence-testing based fit tests for the SRMR (ESRMR). Several variations of ESRMR were introduced, incorporating different equivalence bounds and methods of computing confidence intervals. A Monte Carlo simulation study compared these novel tests with traditional methods for evaluating model fit. The results demonstrated that certain ESRMR tests based on an analytic computation of the confidence interval correctly reject poor-fitting models and are well-powered for detecting good-fitting models. We also present an illustrative example with real data to demonstrate how ESRMR may be incorporated into model fit evaluation and reporting. Our recommendation is that ESRMR tests be presented in addition to descriptive fit indices for model fit reporting in SEM.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"138-157"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-22DOI: 10.1080/00273171.2024.2367485
Trà T Lê, Felix J Clouth, Jeroen K Vermunt
Bias-adjusted three-step latent class (LC) analysis is a popular technique for estimating the relationship between LC membership and distal outcomes. Since it is impossible to randomize LC membership, causal inference techniques are needed to estimate causal effects leveraging observational data. This paper proposes two novel strategies that make use of propensity scores to estimate the causal effect of LC membership on a distal outcome variable. Both strategies modify the bias-adjusted three-step approach by using propensity scores in the last step to control for confounding. The first strategy utilizes inverse propensity weighting (IPW), whereas the second strategy includes the propensity scores as control variables. Classification errors are accounted for using the BCH or ML corrections. We evaluate the performance of these methods in a simulation study by comparing it with three existing approaches that also use propensity scores in a stepwise LC analysis. Both of our newly proposed methods return essentially unbiased parameter estimates outperforming previously proposed methods. However, for smaller sample sizes our IPW based approach shows large variability in the estimates and can be prone to non-convergence. Furthermore, the use of these newly proposed methods is illustrated using data from the LISS panel.
{"title":"Causal Latent Class Analysis with Distal Outcomes: A Modified Three-Step Method Using Inverse Propensity Weighting.","authors":"Trà T Lê, Felix J Clouth, Jeroen K Vermunt","doi":"10.1080/00273171.2024.2367485","DOIUrl":"10.1080/00273171.2024.2367485","url":null,"abstract":"<p><p>Bias-adjusted three-step latent class (LC) analysis is a popular technique for estimating the relationship between LC membership and distal outcomes. Since it is impossible to randomize LC membership, causal inference techniques are needed to estimate causal effects leveraging observational data. This paper proposes two novel strategies that make use of propensity scores to estimate the causal effect of LC membership on a distal outcome variable. Both strategies modify the bias-adjusted three-step approach by using propensity scores in the last step to control for confounding. The first strategy utilizes inverse propensity weighting (IPW), whereas the second strategy includes the propensity scores as control variables. Classification errors are accounted for using the BCH or ML corrections. We evaluate the performance of these methods in a simulation study by comparing it with three existing approaches that also use propensity scores in a stepwise LC analysis. Both of our newly proposed methods return essentially unbiased parameter estimates outperforming previously proposed methods. However, for smaller sample sizes our IPW based approach shows large variability in the estimates and can be prone to non-convergence. Furthermore, the use of these newly proposed methods is illustrated using data from the LISS panel.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"30-60"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-07DOI: 10.1080/00273171.2024.2386060
David Jendryczko, Fridtjof W Nussbeck
The social relations model (SRM) is the standard approach for analyzing dyadic data stemming from round-robin designs. The model can be used to estimate correlation-coefficients that reflect the overall reciprocity or accuracy of judgements for individual and dyads on the sample- or population level. Within the social relations structural equation modeling framework and on the statistical grounding of stochastic measurement and classical test theory, we show how the multiple indicator SRM can be modified to capture inter-individual and inter-dyadic differences in reciprocal engagement or inter-individual differences in reciprocal accuracy. All models are illustrated on an open-access round-robin data set containing measures of mimicry, liking, and meta-liking (the belief to be liked). Results suggest that people who engage more strongly in reciprocal mimicry are liked more after an interaction with someone and that overestimating one's own popularity is strongly associated with being liked less. Further applications, advantages and limitations of the models are discussed.
{"title":"Latent Reciprocal Engagement and Accuracy Variables in Social Relations Structural Equation Modeling.","authors":"David Jendryczko, Fridtjof W Nussbeck","doi":"10.1080/00273171.2024.2386060","DOIUrl":"10.1080/00273171.2024.2386060","url":null,"abstract":"<p><p>The social relations model (SRM) is the standard approach for analyzing dyadic data stemming from round-robin designs. The model can be used to estimate correlation-coefficients that reflect the overall reciprocity or accuracy of judgements for individual and dyads on the sample- or population level. Within the social relations structural equation modeling framework and on the statistical grounding of stochastic measurement and classical test theory, we show how the multiple indicator SRM can be modified to capture inter-individual and inter-dyadic differences in reciprocal engagement or inter-individual differences in reciprocal accuracy. All models are illustrated on an open-access round-robin data set containing measures of mimicry, liking, and meta-liking (the belief to be liked). Results suggest that people who engage more strongly in reciprocal mimicry are liked more after an interaction with someone and that overestimating one's own popularity is strongly associated with being liked less. Further applications, advantages and limitations of the models are discussed.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"115-137"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-04-01DOI: 10.1080/00273171.2025.2443364
Parisa Rafiee, Manshu Yang
{"title":"Cross-Domain Latent Growth Curve Analysis in the Presence of Missing Data and Small Samples.","authors":"Parisa Rafiee, Manshu Yang","doi":"10.1080/00273171.2025.2443364","DOIUrl":"https://doi.org/10.1080/00273171.2025.2443364","url":null,"abstract":"","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"60 1","pages":"23-24"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-23DOI: 10.1080/00273171.2024.2374826
Cara J Arizmendi, Kathleen M Gates
Idiographic measurement models such as p-technique and dynamic factor analysis (DFA) assess latent constructs at the individual level. These person-specific methods may provide more accurate models than models obtained from aggregated data when individuals are heterogeneous in their processes. Developing clustering methods for the grouping of individuals with similar measurement models would enable researchers to identify if measurement model subtypes exist across individuals as well as assess if the different models correspond to the same latent concept or not. In this paper, methods for clustering individuals based on similarity in measurement model loadings obtained from time series data are proposed. We review literature on idiographic factor modeling and measurement invariance, as well as clustering for time series analysis. Through two studies, we explore the utility and effectiveness of these measures. In Study 1, a simulation study is conducted, demonstrating the recovery of groups generated to have differing factor loadings using the proposed clustering method. In Study 2, an extension of Study 1 to DFA is presented with a simulation study. Overall, we found good recovery of simulated clusters and provide an example demonstrating the method with empirical data.
{"title":"Clustering Individuals Based on Similarity in Idiographic Factor Loading Patterns.","authors":"Cara J Arizmendi, Kathleen M Gates","doi":"10.1080/00273171.2024.2374826","DOIUrl":"10.1080/00273171.2024.2374826","url":null,"abstract":"<p><p>Idiographic measurement models such as p-technique and dynamic factor analysis (DFA) assess latent constructs at the individual level. These person-specific methods may provide more accurate models than models obtained from aggregated data when individuals are heterogeneous in their processes. Developing clustering methods for the grouping of individuals with similar measurement models would enable researchers to identify if measurement model subtypes exist across individuals as well as assess if the different models correspond to the same latent concept or not. In this paper, methods for clustering individuals based on similarity in measurement model loadings obtained from time series data are proposed. We review literature on idiographic factor modeling and measurement invariance, as well as clustering for time series analysis. Through two studies, we explore the utility and effectiveness of these measures. In <b>Study 1</b>, a simulation study is conducted, demonstrating the recovery of groups generated to have differing factor loadings using the proposed clustering method. In <b>Study 2</b>, an extension of Study 1 to DFA is presented with a simulation study. Overall, we found good recovery of simulated clusters and provide an example demonstrating the method with empirical data.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"90-114"},"PeriodicalIF":3.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754526/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-04-01DOI: 10.1080/00273171.2025.2442258
Ti Hsu, Lesa Hoffman, Emily B K Thomas
{"title":"Measurement invariance and confirmatory measurement modeling of a psychological flexibility questionnaire across Likert and Expanded response formats.","authors":"Ti Hsu, Lesa Hoffman, Emily B K Thomas","doi":"10.1080/00273171.2025.2442258","DOIUrl":"https://doi.org/10.1080/00273171.2025.2442258","url":null,"abstract":"","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"60 1","pages":"9-10"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144057489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2025-04-01DOI: 10.1080/00273171.2025.2478711
{"title":"2024 List of Reviewers.","authors":"","doi":"10.1080/00273171.2025.2478711","DOIUrl":"https://doi.org/10.1080/00273171.2025.2478711","url":null,"abstract":"","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"60 1","pages":"158-160"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-07-12DOI: 10.1080/00273171.2024.2371816
Yanling Li, Zita Oravecz, Linying Ji, Sy-Miin Chow
Missingness in intensive longitudinal data triggered by latent factors constitute one type of nonignorable missingness that can generate simultaneous missingness across multiple items on each measurement occasion. To address this issue, we propose a multiple imputation (MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing data indicators into the imputation model. In the context of process factor analysis (PFA), we conducted a Monte Carlo simulation study to compare the performance of MI-FS to listwise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements MI on covariates and handles missing dependent variables via full-information maximum likelihood) under different conditions. Across conditions, we found MI-based methods overall outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except AR parameters compared to MI-FS. These approaches were also compared using an empirical example investigating the relationships between negative affect and perceived stress over time. Recommendations on when and how to incorporate factor scores into MI processes were discussed.
{"title":"Multiple Imputation with Factor Scores: A Practical Approach for Handling Simultaneous Missingness Across Items in Longitudinal Designs.","authors":"Yanling Li, Zita Oravecz, Linying Ji, Sy-Miin Chow","doi":"10.1080/00273171.2024.2371816","DOIUrl":"10.1080/00273171.2024.2371816","url":null,"abstract":"<p><p>Missingness in intensive longitudinal data triggered by latent factors constitute one type of nonignorable missingness that can generate simultaneous missingness across multiple items on each measurement occasion. To address this issue, we propose a multiple imputation (MI) strategy called MI-FS, which incorporates factor scores, lag/lead variables, and missing data indicators into the imputation model. In the context of process factor analysis (PFA), we conducted a Monte Carlo simulation study to compare the performance of MI-FS to listwise deletion (LD), MI with manifest variables (MI-MV, which implements MI on both dependent variables and covariates), and partial MI with MVs (PMI-MV, which implements MI on covariates and handles missing dependent variables <i>via</i> full-information maximum likelihood) under different conditions. Across conditions, we found MI-based methods overall outperformed the LD; the MI-FS approach yielded lower root mean square errors (RMSEs) and higher coverage rates for auto-regression (AR) parameters compared to MI-MV; and the PMI-MV and MI-MV approaches yielded higher coverage rates for most parameters except AR parameters compared to MI-FS. These approaches were also compared using an empirical example investigating the relationships between negative affect and perceived stress over time. Recommendations on when and how to incorporate factor scores into MI processes were discussed.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"61-89"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}