Pub Date : 2024-09-01DOI: 10.1016/j.inpa.2023.04.001
UAVs (Unmanned Aerial Vehicles) have become increasingly popular in the agricultural sector, promoting and enabling the application of aerial image monitoring in both the scientific and business contexts. Images captured by UAVs are fundamental for precision farming practices. They enable us do a better crop planning, input estimates, early identification and correction of sowing failures, more efficient irrigation systems, among other tasks. Since all these activities deal with low or medium altitude images, automated identification of crop lines plays a crucial role improving these tasks. We address the problem of detecting and segmenting crop lines. We use a Convolutional Neural Network to segment the images, labeling their regions in crop lines or unplanted soil. We also evaluated three traditional semantic networks: U-Net, LinkNet, and PSPNet. We compared each network in four segmentation datasets provided by an expert. We also assessed whether the network’s output requires a post-processing step to improve the segmentation. Results demonstrate the efficiency and feasibility of these networks in the proposed task.
{"title":"Automated detection of sugarcane crop lines from UAV images using deep learning","authors":"","doi":"10.1016/j.inpa.2023.04.001","DOIUrl":"10.1016/j.inpa.2023.04.001","url":null,"abstract":"<div><p>UAVs (Unmanned Aerial Vehicles) have become increasingly popular in the agricultural sector, promoting and enabling the application of aerial image monitoring in both the scientific and business contexts. Images captured by UAVs are fundamental for precision farming practices. They enable us do a better crop planning, input estimates, early identification and correction of sowing failures, more efficient irrigation systems, among other tasks. Since all these activities deal with low or medium altitude images, automated identification of crop lines plays a crucial role improving these tasks. We address the problem of detecting and segmenting crop lines. We use a Convolutional Neural Network to segment the images, labeling their regions in crop lines or unplanted soil. We also evaluated three traditional semantic networks: U-Net, LinkNet, and PSPNet. We compared each network in four segmentation datasets provided by an expert. We also assessed whether the network’s output requires a post-processing step to improve the segmentation. Results demonstrate the efficiency and feasibility of these networks in the proposed task.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 385-396"},"PeriodicalIF":7.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000501/pdfft?md5=8bf26d25efc6c7426867b082ac710793&pid=1-s2.0-S2214317323000501-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41738736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.inpa.2023.03.005
Plant growth monitoring techniques are of great interest to agricultural engineering. The interaction between root and soil water is one important plant response to environmental variations. This paper aims to develop a new method to estimate plant biological response using root-soil water interaction. It provides a case study on moisture transfer at the boundary area of a soil water retention zone (SWRZ). We produced a SWRZ around growing roots of a cultivated tomato plant in homogenous dried soil using water-saving drip irrigation. The irrigation was designed to supply moisture only in the root zone to meet the minimum need of plant growth. High-resolution soil moisture sensors were used to detect moisture transfer at the boundary area of the SWRZ. We applied frequency analysis to the acquired vibration spectrum using filtering and Fast Fourier Transform (FFT) in order to investigate the frequency content at each sensor location. Distinct frequencies of moisture vibration were identified at the boundary area of the SWRZ which indicated water transfer to the roots caused by plant water absorption. A mechanical vibration model was proposed to describe this phenomenon. The pinpoint irrigation to the root zone in the water-saving cultivation method enabled a well-structured spherical root system to form via hydrotropism. This enabled a simple method to analyze moisture transfer based on a mechanical vibration model. The results suggest a new method to estimate plant biological response by studying root-soil water interaction.
{"title":"Soil moisture transfer at the boundary area of soil water retention zone: A case study","authors":"","doi":"10.1016/j.inpa.2023.03.005","DOIUrl":"10.1016/j.inpa.2023.03.005","url":null,"abstract":"<div><p>Plant growth monitoring techniques are of great interest to agricultural engineering. The interaction between root and soil water is one important plant response to environmental variations. This paper aims to develop a new method to estimate plant biological response using root-soil water interaction. It provides a case study on moisture transfer at the boundary area of a soil water retention zone (SWRZ). We produced a SWRZ around growing roots of a cultivated tomato plant in homogenous dried soil using water-saving drip irrigation. The irrigation was designed to supply moisture only in the root zone to meet the minimum need of plant growth. High-resolution soil moisture sensors were used to detect moisture transfer at the boundary area of the SWRZ. We applied frequency analysis to the acquired vibration spectrum using filtering and Fast Fourier Transform (FFT) in order to investigate the frequency content at each sensor location. Distinct frequencies of moisture vibration were identified at the boundary area of the SWRZ which indicated water transfer to the roots caused by plant water absorption. A mechanical vibration model was proposed to describe this phenomenon. The pinpoint irrigation to the root zone in the water-saving cultivation method enabled a well-structured spherical root system to form via hydrotropism. This enabled a simple method to analyze moisture transfer based on a mechanical vibration model. The results suggest a new method to estimate plant biological response by studying root-soil water interaction.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 372-384"},"PeriodicalIF":7.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000495/pdfft?md5=9ee982b0952f86fbbf84e2b5c866da5e&pid=1-s2.0-S2214317323000495-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49217644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.inpa.2023.04.003
The importance of Model Predictive Control (MPC) has significant applications in the agricultural industry, more specifically for greenhouse’s control tasks. However, the complexity of the greenhouse and its limited prior knowledge prevent an exact mathematical description of the system. Subspace methods provide a promising solution to this issue through their capacity to identify the system’s comportment using the fit between model output and observed data. In this paper, we introduce an application of Constrained Model Predictive Control (CMPC) for a greenhouse temperature and relative humidity. For this purpose, two Multi Input Single Output (MISO) systems, using Numerical Subspace State Space System Identification (N4SID) algorithm, are firstly suggested to identify the temperature and the relative humidity comportment to heating and ventilation actions. In this sense, linear state space models were adopted in order to evaluate the robustness of the control strategy. Once the system is identified, the MPC technique is applied for the temperature and the humidity regulation. Simulation results show that the regulation of the temperature and the relative humidity under constraints was guaranteed, both parameters respect the ranges 15 °C ≤ Tint ≤ 30 °C and 50 % ≤ Hint ≤ 70 % respectively. On the other hand, the control signals uf and uh applied to the fan and the heater, respect the hard constraints notion, the control signals for the fan and the heater did not exceed 0 ≤ uf ≤ 4.3 Volts and 0 ≤ uh ≤ 5 Volts, respectively, which proves the effectiveness of the MPC and the tracking tasks. Moreover, we show that with the proposed technique, using a new optimization toolbox, the computational complexity has been significantly reduced. The greenhouse in question is devoted to Schefflera Arboricola cultivation.
{"title":"Constrained temperature and relative humidity predictive control: Agricultural greenhouse case of study","authors":"","doi":"10.1016/j.inpa.2023.04.003","DOIUrl":"10.1016/j.inpa.2023.04.003","url":null,"abstract":"<div><p>The importance of Model Predictive Control (MPC) has significant applications in the agricultural industry, more specifically for greenhouse’s control tasks. However, the complexity of the greenhouse and its limited prior knowledge prevent an exact mathematical description of the system. Subspace methods provide a promising solution to this issue through their capacity to identify the system’s comportment using the fit between model output and observed data. In this paper, we introduce an application of Constrained Model Predictive Control (CMPC) for a greenhouse temperature and relative humidity. For this purpose, two Multi Input Single Output (MISO) systems, using Numerical Subspace State Space System Identification (N4SID) algorithm, are firstly suggested to identify the temperature and the relative humidity comportment to heating and ventilation actions. In this sense, linear state space models were adopted in order to evaluate the robustness of the control strategy. Once the system is identified, the MPC technique is applied for the temperature and the humidity regulation. Simulation results show that the regulation of the temperature and the relative humidity under constraints was guaranteed, both parameters respect the ranges 15 °C ≤ <em>T<sub>in</sub></em><sub>t</sub> ≤ 30 °C and 50 % ≤ <em>H<sub>int</sub></em> ≤ 70 % respectively. On the other hand, the control signals <em>u<sub>f</sub></em> and <em>u<sub>h</sub></em> applied to the fan and the heater, respect the hard constraints notion, the control signals for the fan and the heater did not exceed 0 ≤ <em>u<sub>f</sub></em> ≤ 4.3 Volts and 0 ≤ <em>u<sub>h</sub></em> ≤ 5 Volts, respectively, which proves the effectiveness of the MPC and the tracking tasks. Moreover, we show that with the proposed technique, using a new optimization toolbox, the computational complexity has been significantly reduced. The greenhouse in question is devoted to Schefflera Arboricola cultivation.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 409-420"},"PeriodicalIF":7.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000525/pdfft?md5=28017e650815dbaaf88b1c66c10a2507&pid=1-s2.0-S2214317323000525-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44233530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.inpa.2023.02.010
Tiger puffer is a commercially important fish cultured in high-density environments, and its accurate detection is indispensable for determining growth conditions and realizing accurate feeding. However, the detection precision and recall of farmed tiger puffer are low due to target blurring and occlusion in real farming environments. The farmed tiger puffer detection model, called knowledge aggregation YOLO (KAYOLO), fuses prior knowledge with improved YOLOv5 and was proposed to solve this problem. To alleviate feature loss caused by target blurring, we drew on the human practice of using prior knowledge for reasoning when recognizing blurred targets and used prior knowledge to strengthen the tiger puffer's features and improve detection precision. To address missed detection caused by mutual occlusion in high-density farming environments, a prediction box aggregation method, aggregating prediction boxes of the same object, was proposed to reduce the influence among different objects to improve detection recall. To validate the effectiveness of the proposed methods, ablation experiments, model performance experiments, and model robustness experiments were designed. The experimental results showed that KAYOLO's detection precision and recall results reached 94.92% and 92.21%, respectively. The two indices were improved by 1.29% and 1.35%, respectively, compared to those of YOLOv5. Compared with the recent state-of-the-art underwater object detection models, such as SWIPENet, RoIMix, FERNet, and SK-YOLOv5, KAYOLO achieved 2.09%, 1.63%, 1.13% and 0.85% higher precision and 1.2%, 0.18%, 1.74% and 0.39% higher recall, respectively. Experiments were conducted on different datasets to verify the model's robustness, and the precision and recall of KAYOLO were improved by approximately 1.3% compared to those of YOLOv5. The study showed that KAYOLO effectively enhanced farmed tiger puffer detection by reducing blurring and occlusion effects. Additionally, the model had a strong generalization ability on different datasets, indicating that the model can be adapted to different environments, and it has strong robustness.
{"title":"Detection of tiger puffer using improved YOLOv5 with prior knowledge fusion","authors":"","doi":"10.1016/j.inpa.2023.02.010","DOIUrl":"10.1016/j.inpa.2023.02.010","url":null,"abstract":"<div><p>Tiger puffer is a commercially important fish cultured in high-density environments, and its accurate detection is indispensable for determining growth conditions and realizing accurate feeding. However, the detection precision and recall of farmed tiger puffer are low due to target blurring and occlusion in real farming environments. The farmed tiger puffer detection model, called knowledge aggregation YOLO (KAYOLO), fuses prior knowledge with improved YOLOv5 and was proposed to solve this problem. To alleviate feature loss caused by target blurring, we drew on the human practice of using prior knowledge for reasoning when recognizing blurred targets and used prior knowledge to strengthen the tiger puffer's features and improve detection precision. To address missed detection caused by mutual occlusion in high-density farming environments, a prediction box aggregation method, aggregating prediction boxes of the same object, was proposed to reduce the influence among different objects to improve detection recall. To validate the effectiveness of the proposed methods, ablation experiments, model performance experiments, and model robustness experiments were designed. The experimental results showed that KAYOLO's detection precision and recall results reached 94.92% and 92.21%, respectively. The two indices were improved by 1.29% and 1.35%, respectively, compared to those of YOLOv5. Compared with the recent state-of-the-art underwater object detection models, such as SWIPENet, RoIMix, FERNet, and SK-YOLOv5, KAYOLO achieved 2.09%, 1.63%, 1.13% and 0.85% higher precision and 1.2%, 0.18%, 1.74% and 0.39% higher recall, respectively. Experiments were conducted on different datasets to verify the model's robustness, and the precision and recall of KAYOLO were improved by approximately 1.3% compared to those of YOLOv5. The study showed that KAYOLO effectively enhanced farmed tiger puffer detection by reducing blurring and occlusion effects. Additionally, the model had a strong generalization ability on different datasets, indicating that the model can be adapted to different environments, and it has strong robustness.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 3","pages":"Pages 299-309"},"PeriodicalIF":7.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317323000203/pdfft?md5=30fd08109e365823c7cc20853e938648&pid=1-s2.0-S2214317323000203-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48128022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1016/j.inpa.2024.06.001
Pedro C. Towers , Sean E. Roulet , Carlos Poblete-Echeverría
Knowledge of the spatial variation in vine yield at different scales is crucial for the wine business, and combined with estimations of vine size variability enables within-block mapping of vegetative-reproductive balance. Remote sensing combined with other data that excludes field sampling appears as an optimal approach for yield estimation for a broad range of scales. In this study, mean yield and factors known to affect yield components were collected for over 8000 blocks, over 18 seasons, in the western oasis of Mendoza, Argentina. Partial Least Squares (PLS) and Random Forest (RF) models were used to analyse the relationship between these factors and yield. The PLS model delivered very poor results, with coefficients of determination lower than 0.08. RF models with 49 to 19 variables produced predictions with coefficients of determination of 0.96 to 0.90, respectively. Some factors traditionally considered important in yield determination, such as trellis, frost occurrence, or planting density had limited influence, whereas location weighed heavily. Results suggest a successful approach to spatial prediction of yield that requires no fieldwork and indicates VRB mapping at block-scale may be possible with these tools. Several improvements to inputs are proposed.
{"title":"Vine yield estimation from block to regional scale employing remote sensing, weather, and management data","authors":"Pedro C. Towers , Sean E. Roulet , Carlos Poblete-Echeverría","doi":"10.1016/j.inpa.2024.06.001","DOIUrl":"10.1016/j.inpa.2024.06.001","url":null,"abstract":"<div><div>Knowledge of the spatial variation in vine yield at different scales is crucial for the wine business, and combined with estimations of vine size variability enables within-block mapping of vegetative-reproductive balance. Remote sensing combined with other data that excludes field sampling appears as an optimal approach for yield estimation for a broad range of scales. In this study, mean yield and factors known to affect yield components were collected for over 8000 blocks, over 18 seasons, in the western oasis of Mendoza, Argentina. Partial Least Squares (PLS) and Random Forest (RF) models were used to analyse the relationship between these factors and yield. The PLS model delivered very poor results, with coefficients of determination lower than 0.08. RF models with 49 to 19 variables produced predictions with coefficients of determination of 0.96 to 0.90, respectively. Some factors traditionally considered important in yield determination, such as trellis, frost occurrence, or planting density had limited influence, whereas location weighed heavily. Results suggest a successful approach to spatial prediction of yield that requires no fieldwork and indicates VRB mapping at block-scale may be possible with these tools. Several improvements to inputs are proposed.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 2","pages":"Pages 195-208"},"PeriodicalIF":7.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144115959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cucumber downy mildew is caused by the infection of leaves with downy mildew spores. However, research on the prevention and control of cucumber downy mildew often focuses on the stage after symptoms have appeared on the leaves, that is, once disease spots have already formed. Since the occurrence of downy mildew is closely related to the quantity of spores, early-stage research on the quantity of downy mildew spores is of great significance for the prevention and control of cucumber downy mildew. Consequently, developing a rapid, accurate, and efficient method for detecting cucumber downy mildew spores is critical for advancing disease control. This study introduces an improved YOLOv5s model for spore detection. The model incorporates a transformer module into YOLOv5s’s backbone, enhancing global feature information extraction. It also adds a small object detection head to counter YOLOv5s’s extensive down-sampling and difficulty in learning features of small objects. Integration with the Convolutional Block Attention Module (CBAM) further refines detection precision for small objects like mildew spores. Upon evaluation with an image dataset collected through a microscope, the improved YOLOv5s model demonstrated superior performance metrics across various resolutions. At a resolution of 1440px × 1440px, it achieved the highest mean Average Precision ([email protected]) of 95.4 %, a precision (P) score of 89.1 %, and a recall (R) rate of 90.3 %. These metrics surpassed the original YOLOv5s model at the same 1440px × 1440px resolution by 1.6 % in [email protected], 1.6 % in P, and 0.5 % in R. Additionally, the model’s [email protected] across various resolution scales indicates superior detection precision compared to other leading models like YOLOv7. In the context of microscopic images with small spores and complex backgrounds, the improved YOLOv5s model effectively detects cucumber downy mildew spores, offering valuable insights and technical support for advancing the prevention and control measures against cucumber downy mildew.
{"title":"Detection of cucumber downy mildew spores based on improved YOLOv5s","authors":"Chen Qiao , Kaiyu Li , Xinyi Zhu , Jiaping Jing , Wei Gao , Lingxian Zhang","doi":"10.1016/j.inpa.2024.05.002","DOIUrl":"10.1016/j.inpa.2024.05.002","url":null,"abstract":"<div><div>Cucumber downy mildew is caused by the infection of leaves with downy mildew spores. However, research on the prevention and control of cucumber downy mildew often focuses on the stage after symptoms have appeared on the leaves, that is, once disease spots have already formed. Since the occurrence of downy mildew is closely related to the quantity of spores, early-stage research on the quantity of downy mildew spores is of great significance for the prevention and control of cucumber downy mildew. Consequently, developing a rapid, accurate, and efficient method for detecting cucumber downy mildew spores is critical for advancing disease control. This study introduces an improved YOLOv5s model for spore detection. The model incorporates a transformer module into YOLOv5s’s backbone, enhancing global feature information extraction. It also adds a small object detection head to counter YOLOv5s’s extensive down-sampling and difficulty in learning features of small objects. Integration with the Convolutional Block Attention Module (CBAM) further refines detection precision for small objects like mildew spores. Upon evaluation with an image dataset collected through a microscope, the improved YOLOv5s model demonstrated superior performance metrics across various resolutions. At a resolution of 1440px × 1440px, it achieved the highest mean Average Precision ([email protected]) of 95.4 %, a precision (P) score of 89.1 %, and a recall (R) rate of 90.3 %. These metrics surpassed the original YOLOv5s model at the same 1440px × 1440px resolution by 1.6 % in [email protected], 1.6 % in P, and 0.5 % in R. Additionally, the model’s [email protected] across various resolution scales indicates superior detection precision compared to other leading models like YOLOv7. In the context of microscopic images with small spores and complex backgrounds, the improved YOLOv5s model effectively detects cucumber downy mildew spores, offering valuable insights and technical support for advancing the prevention and control measures against cucumber downy mildew.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 2","pages":"Pages 179-194"},"PeriodicalIF":7.7,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144115958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-12DOI: 10.1016/j.inpa.2024.05.001
Wenxin Le , Pengyang Xie , Jian Chen
In order to solve the problem of stability of agricultural quadrotor working, its controller designing is the first priority. Therefore, this paper makes an attempt to use the Radial Basis Function (RBF) neural network adaptive method combined with sliding mode control to control its height channel. Validation of the efficacy of the RBF neural network in control is conducted through simulation experiments utilizing quadrotor parameters. The application of the method to the control of agricultural quadrotor has laid a theoretical foundation. At the same time, through simulation experiments, it is concluded in theory that the RBF neural network can have a good prediction and elimination effect on the interference during the flight, and the change of the time constant will not affect the control effect of the aircraft. Notably, abrupt changes in time constant indicate UAV motor malfunction. Simulation results affirm the efficacy of the proposed control method in regulating UAV altitude and addressing sudden faults. Real-world experimentation (vegetable field including bean, pepper, eggplant, tomoto, etc.) reveals that even when UAV propellers sustain damage to a certain extent, altitude control and hover capabilities remain intact. These findings provide a solid groundwork for subsequent altitude control endeavors in agricultural quadrotor operations, while also offering innovative avenues for advancing the field.
{"title":"Disturbance rejection control of the agricultural quadrotor based on adaptive neural network","authors":"Wenxin Le , Pengyang Xie , Jian Chen","doi":"10.1016/j.inpa.2024.05.001","DOIUrl":"10.1016/j.inpa.2024.05.001","url":null,"abstract":"<div><div>In order to solve the problem of stability of agricultural quadrotor working, its controller designing is the first priority. Therefore, this paper makes an attempt to use the Radial Basis Function (RBF) neural network adaptive method combined with sliding mode control to control its height channel. Validation of the efficacy of the RBF neural network in control is conducted through simulation experiments utilizing quadrotor parameters. The application of the method to the control of agricultural quadrotor has laid a theoretical foundation. At the same time, through simulation experiments, it is concluded in theory that the RBF neural network can have a good prediction and elimination effect on the interference during the flight, and the change of the time constant will not affect the control effect of the aircraft. Notably, abrupt changes in time constant indicate UAV motor malfunction. Simulation results affirm the efficacy of the proposed control method in regulating UAV altitude and addressing sudden faults. Real-world experimentation (vegetable field including bean, pepper, eggplant, tomoto, etc.) reveals that even when UAV propellers sustain damage to a certain extent, altitude control and hover capabilities remain intact. These findings provide a solid groundwork for subsequent altitude control endeavors in agricultural quadrotor operations, while also offering innovative avenues for advancing the field.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 2","pages":"Pages 169-178"},"PeriodicalIF":7.7,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141023570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rice is an essential food crop that is cultivated in many countries. Rice leaf diseases can cause significant damage to crop cultivation, leading to reduced yields and economic losses. Traditional disease detection approaches are often time-consuming, labor-intensive, and require expertise. Automatic leaf disease detection approaches help farmers detect diseases without or with less human interference. Most of the earlier studies on rice leaf disease detection depended on image processing and machine learning techniques. Image processing techniques are used to extract features from diseased leaf images, such as the color, texture, vein patterns, and shape of lesions. Machine learning techniques are used to detect diseases based on the extracted features. In contrast, deep learning techniques learn complex patterns from large datasets without explicit feature extraction techniques and are well-suited for disease detection tasks. This systematic review explores various deep learning approaches used in the literature for rice leaf disease detection, such as Transfer Learning, Ensemble Learning, and Hybrid approaches. This review also discusses the effectiveness of these approaches in addressing various challenges. This review discusses the details of various models and hyperparameter settings used, model fine-tuning techniques followed, and performance evaluation metrics utilized in various studies. This review also discusses the limitations of existing studies and presents future directions for further developing more robust and efficient rice leaf disease detection techniques.
{"title":"Deep learning for rice leaf disease detection: A systematic literature review on emerging trends, methodologies and techniques","authors":"Chinna Gopi Simhadri , Hari Kishan Kondaveeti , Valli Kumari Vatsavayi , Alakananda Mitra , Preethi Ananthachari","doi":"10.1016/j.inpa.2024.04.006","DOIUrl":"10.1016/j.inpa.2024.04.006","url":null,"abstract":"<div><div>Rice is an essential food crop that is cultivated in many countries. Rice leaf diseases can cause significant damage to crop cultivation, leading to reduced yields and economic losses. Traditional disease detection approaches are often time-consuming, labor-intensive, and require expertise. Automatic leaf disease detection approaches help farmers detect diseases without or with less human interference. Most of the earlier studies on rice leaf disease detection depended on image processing and machine learning techniques. Image processing techniques are used to extract features from diseased leaf images, such as the color, texture, vein patterns, and shape of lesions. Machine learning techniques are used to detect diseases based on the extracted features. In contrast, deep learning techniques learn complex patterns from large datasets without explicit feature extraction techniques and are well-suited for disease detection tasks. This systematic review explores various deep learning approaches used in the literature for rice leaf disease detection, such as Transfer Learning, Ensemble Learning, and Hybrid approaches. This review also discusses the effectiveness of these approaches in addressing various challenges. This review discusses the details of various models and hyperparameter settings used, model fine-tuning techniques followed, and performance evaluation metrics utilized in various studies. This review also discusses the limitations of existing studies and presents future directions for further developing more robust and efficient rice leaf disease detection techniques.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 2","pages":"Pages 151-168"},"PeriodicalIF":7.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141038935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study focuses on the shift from traditional farming methods, reliant on farmer intuition and manual processes, to modern, automated approaches crucial for Thailand’s agricultural sustainability. Despite its vital role in the country’s economy, outdated practices lead to supply imbalances and perpetuate poverty among smallholder farmers. Using geographic information systems (GIS) and mathematical optimization, the present study aims to determine optimal agricultural crop allocation. A multi-objective optimization crop spatial allocation model leverages geospatial data, including crop, soil and climate suitability, to enhance the accuracy of our model. Additionally, we incorporate agricultural economics data, such as market price, crop yield, production cost, distances to secondary producers, production budget limitations, and minimum crop production requirements. To speedup the convergence of the algorithm, we introduce more suitable crossover and mutation operators in NSGA-II, aiming to direct the search towards the Pareto optimal solutions. We demonstrate the effectiveness of our approach in a case study of the agricultural area in Chiang Mai province, Thailand, focusing on three major industrial crops: corn, cane, and rice. Our model suggests land allocation that adheres to both the budget constraint and the minimum production requirements, while retaining only a small surplus for each crop. The successful implementation of this approach in our case study marks a significant advancement in Thai agricultural research, paving the way for long-term economic and environmental sustainability.
{"title":"GIS spatial optimization for agricultural crop allocation using NSGA-II","authors":"Tipaluck Krityakierne , Pornpimon Sinpayak , Noppadon Khiripet","doi":"10.1016/j.inpa.2024.04.005","DOIUrl":"10.1016/j.inpa.2024.04.005","url":null,"abstract":"<div><div>This study focuses on the shift from traditional farming methods, reliant on farmer intuition and manual processes, to modern, automated approaches crucial for Thailand’s agricultural sustainability. Despite its vital role in the country’s economy, outdated practices lead to supply imbalances and perpetuate poverty among smallholder farmers. Using geographic information systems (GIS) and mathematical optimization, the present study aims to determine optimal agricultural crop allocation. A multi-objective optimization crop spatial allocation model leverages geospatial data, including crop, soil and climate suitability, to enhance the accuracy of our model. Additionally, we incorporate agricultural economics data, such as market price, crop yield, production cost, distances to secondary producers, production budget limitations, and minimum crop production requirements. To speedup the convergence of the algorithm, we introduce more suitable crossover and mutation operators in NSGA-II, aiming to direct the search towards the Pareto optimal solutions. We demonstrate the effectiveness of our approach in a case study of the agricultural area in Chiang Mai province, Thailand, focusing on three major industrial crops: corn, cane, and rice. Our model suggests land allocation that adheres to both the budget constraint and the minimum production requirements, while retaining only a small surplus for each crop. The successful implementation of this approach in our case study marks a significant advancement in Thai agricultural research, paving the way for long-term economic and environmental sustainability.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 2","pages":"Pages 139-150"},"PeriodicalIF":7.7,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140783666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-invasive potato defects detection has been demanded for sorting and grading purpose. Researches on the classification of the defects has been available, however, investigation on the severity level calculation is limited. For the detection of the common scab, it has been found that imaging in the infrared region provide an interesting characteristic that could distinguish defected area to normal area. Thus, investigations on this wavelength range is interesting to add more knowledge and for applications. In this research, the multispectral image has been obtained and investigated especially at three wavelengths (950, 1 150, 1 600 nm). Image pre-processing and pseudo-color conversion techniques were explored to enhance the contrast between defects, normal background skin area and soil deposits. Results show that external defects, such as common scab and some mechanical damage types, appear brighter in the near infrared region, especially at 1 600 nm against the normal skin background. It has been found that pseudo-color images conversion provides more information regarding type if surface characteristics compared to grayscale single imaging. Image segmentation using pseudo-color images after multiplication operation pre-processing could be used for common scab and mechanical damage detection excluding soil deposits with a Dice Sorensen coefficient of 0.64. In addition, image segmentation using single image at 1 600 nm shown relatively better results with Dice Sorensen coefficient of 0.72 with note that thick soil deposits will also be segmented. Defect severity level evaluation had an R2 correlation of 0.84 against standard measurements of severity.
{"title":"External defects and severity level evaluation of potato using single and multispectral imaging in near infrared region","authors":"Dimas Firmanda Al Riza , Slamet Widodo , Kazuya Yamamoto , Kazunori Ninomiya , Tetsuhito Suzuki , Yuichi Ogawa , Naoshi Kondo","doi":"10.1016/j.inpa.2022.09.001","DOIUrl":"10.1016/j.inpa.2022.09.001","url":null,"abstract":"<div><p>Non-invasive potato defects detection has been demanded for sorting and grading purpose. Researches on the classification of the defects has been available, however, investigation on the severity level calculation is limited. For the detection of the common scab, it has been found that imaging in the infrared region provide an interesting characteristic that could distinguish defected area to normal area. Thus, investigations on this wavelength range is interesting to add more knowledge and for applications. In this research, the multispectral image has been obtained and investigated especially at three wavelengths (950, 1 150, 1 600 nm). Image pre-processing and pseudo-color conversion techniques were explored to enhance the contrast between defects, normal background skin area and soil deposits. Results show that external defects, such as common scab and some mechanical damage types, appear brighter in the near infrared region, especially at 1 600 nm against the normal skin background. It has been found that pseudo-color images conversion provides more information regarding type if surface characteristics compared to grayscale single imaging. Image segmentation using pseudo-color images after multiplication operation pre-processing could be used for common scab and mechanical damage detection excluding soil deposits with a Dice Sorensen coefficient of 0.64. In addition, image segmentation using single image at 1 600 nm shown relatively better results with Dice Sorensen coefficient of 0.72 with note that thick soil deposits will also be segmented. Defect severity level evaluation had an R<sup>2</sup> correlation of 0.84 against standard measurements of severity.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 1","pages":"Pages 80-90"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317322000725/pdfft?md5=4f99b9e0d9f62df98198e21f91cbdeca&pid=1-s2.0-S2214317322000725-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44156487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}