Pub Date : 2022-09-30DOI: 10.5604/01.3001.0015.9928
Rasmus Bøgh Holmen, Benjamin Biesinger, Ivo Handriks
Transportation appraisal has a potential important role in prioritization of transportation investment projects and other transportation measures. Appraisal practices vary much over countries and time, but these differences are not fully known. More knowledge on the variation in practices may contribute to smoother knowledge exchange between countries and more informed choices in the further development of each national practice. In this paper, we present both an updated mapping and a meta-analysis of impact coverage in national appraisal guidelines for transportation measures and spatial measures more generally. Our updated mapping of impact coverage covers 18 national and regional guideline sets and 44 sorts of impact. It shows rather similar overall impact coverage in the reviewed guide-lines for economic, social and environmental impacts. The most advanced appraisal practices are found in Northern and Western Europe and Oceania. We find that supplementary quantitative analyses are most common for economic impacts, while multi-criteria analyses are most common for environmental impacts. Our meta-analysis covers ours and 15 earlier impact mappings, jointly covering 42 countries and regions. In this examination, we show how impact cover-age in appraisal practices has improved over time, particularly for environmental, user and wider economic impacts. The meta-analysis also reveals that Western and Northern European and Oceanian countries and dependencies have had the widest impact coverage from 1998 to 2020, both in CB and overall. To examine what characterize countries with broad and narrow impact coverage, we have applied econometric regression models that are linear (i.e. linear least squares), quasi-linear (i.e. Tobit) and fractional response-based (i.e. fractional probit and fractional logit). In these regression analyses, we control for study-specific characteristics and clustering the standard errors on countries. Our results show that the CB impact coverage tends to increase with economic wealth, equality and population size in developed countries, while we find no such patterns for overall impact coverage.
{"title":"Impacts from transportation measures in national appraisal guidelines: coverage and practices","authors":"Rasmus Bøgh Holmen, Benjamin Biesinger, Ivo Handriks","doi":"10.5604/01.3001.0015.9928","DOIUrl":"https://doi.org/10.5604/01.3001.0015.9928","url":null,"abstract":"Transportation appraisal has a potential important role in prioritization of transportation investment projects and other transportation measures. Appraisal practices vary much over countries and time, but these differences are not fully known. More knowledge on the variation in practices may contribute to smoother knowledge exchange between countries and more informed choices in the further development of each national practice. In this paper, we present both an updated mapping and a meta-analysis of impact coverage in national appraisal guidelines for transportation measures and spatial measures more generally. Our updated mapping of impact coverage covers 18 national and regional guideline sets and 44 sorts of impact. It shows rather similar overall impact coverage in the reviewed guide-lines for economic, social and environmental impacts. The most advanced appraisal practices are found in Northern and Western Europe and Oceania. We find that supplementary quantitative analyses are most common for economic impacts, while multi-criteria analyses are most common for environmental impacts. Our meta-analysis covers ours and 15 earlier impact mappings, jointly covering 42 countries and regions. In this examination, we show how impact cover-age in appraisal practices has improved over time, particularly for environmental, user and wider economic impacts. The meta-analysis also reveals that Western and Northern European and Oceanian countries and dependencies have had the widest impact coverage from 1998 to 2020, both in CB and overall. To examine what characterize countries with broad and narrow impact coverage, we have applied econometric regression models that are linear (i.e. linear least squares), quasi-linear (i.e. Tobit) and fractional response-based (i.e. fractional probit and fractional logit). In these regression analyses, we control for study-specific characteristics and clustering the standard errors on countries. Our results show that the CB impact coverage tends to increase with economic wealth, equality and population size in developed countries, while we find no such patterns for overall impact coverage.\u0000\u0000","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45455204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.5604/01.3001.0015.9924
Xianfu Shi, Xingliang Liu, Menghui Li, Tangzhi Liu
Expressway emergencies tend to cause traffic congestion, and understanding the travel time delays of on-road vehicles under different combinations of event scenarios and road traffic conditions is valuable for guiding the accurate emer-gency dispatch services. Most existing studies used methods that combine the Lighthill–Whitham–Richards (LWR) theory and basic traffic diagrams to solve this problem, but the discrete traffic flow characteristics caused by the pres-ence of heavy vehicles have not been considered, thus affecting the applicability of those results to road traffic charac-teristics in China. Moreover, there is a lack of systematic research on multiple combinations of unexpected event sce-narios and traffic conditions, and the guidance value of the previously obtained results is limited. In order to improve the applicability of the prediction model and accurately predict the severity of emergencies, based on a logistic model that is applicable to emergencies, a velocity–density model is constructed to describe discrete traffic flow characteris-tics. Based on LWR theory, the internal driving force of expressway traffic state evolution under emergency conditions is explored. Combined with real-time traffic flow data, the parameters of the logistic model are calibrated, and a lo-gistic velocity–density model is constructed using a goodness-of-fit test and a marching method, including the free-flow velocity, turning density and heavy vehicle mixing ratio. Thus, the problem that existing models lack applicability to road traffic characteristics in China is solved. Travel time delay is associated with the impact range of an emergency, and it is an effective index for evaluating the severity of emergency incidents. Thus, the travel time delays under differ-ent scenarios, different numbers of blocked lanes and different orthogonal combinations of approximate saturation conditions are explored, and the impacts of lane blockage on emergency incidents and travel time delays are obtained. The conclusions show that the presented logistic velocity–density model constructed based on discrete traffic flow characteristics can properly quantify the impact of the presence of heavy vehicles. Additionally, the results can provide theoretical support for handling emergencies and emergency rescues.
{"title":"Analysis of the influence of expressway emergencies on transmission speeds and travel delays","authors":"Xianfu Shi, Xingliang Liu, Menghui Li, Tangzhi Liu","doi":"10.5604/01.3001.0015.9924","DOIUrl":"https://doi.org/10.5604/01.3001.0015.9924","url":null,"abstract":"Expressway emergencies tend to cause traffic congestion, and understanding the travel time delays of on-road vehicles under different combinations of event scenarios and road traffic conditions is valuable for guiding the accurate emer-gency dispatch services. Most existing studies used methods that combine the Lighthill–Whitham–Richards (LWR) theory and basic traffic diagrams to solve this problem, but the discrete traffic flow characteristics caused by the pres-ence of heavy vehicles have not been considered, thus affecting the applicability of those results to road traffic charac-teristics in China. Moreover, there is a lack of systematic research on multiple combinations of unexpected event sce-narios and traffic conditions, and the guidance value of the previously obtained results is limited. In order to improve the applicability of the prediction model and accurately predict the severity of emergencies, based on a logistic model that is applicable to emergencies, a velocity–density model is constructed to describe discrete traffic flow characteris-tics. Based on LWR theory, the internal driving force of expressway traffic state evolution under emergency conditions is explored. Combined with real-time traffic flow data, the parameters of the logistic model are calibrated, and a lo-gistic velocity–density model is constructed using a goodness-of-fit test and a marching method, including the free-flow velocity, turning density and heavy vehicle mixing ratio. Thus, the problem that existing models lack applicability to road traffic characteristics in China is solved. Travel time delay is associated with the impact range of an emergency, and it is an effective index for evaluating the severity of emergency incidents. Thus, the travel time delays under differ-ent scenarios, different numbers of blocked lanes and different orthogonal combinations of approximate saturation conditions are explored, and the impacts of lane blockage on emergency incidents and travel time delays are obtained. The conclusions show that the presented logistic velocity–density model constructed based on discrete traffic flow characteristics can properly quantify the impact of the presence of heavy vehicles. Additionally, the results can provide theoretical support for handling emergencies and emergency rescues.\u0000\u0000","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42611213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.5604/01.3001.0015.9253
Xuanhua Lin, Xiaohui Lin, Kelian Chen
MFD is widely used in traffic state evaluation because of its description of the macro level of urban road net-work. Aiming at the control strategy optimization problem of urban arterial road network under saturated traffic flow state, this study analyzes the MFD characteristics of a typical three-segment "ascending-stable-descending segment" and its advantages in characterizing the macroscopic operation efficiency of the road network, a arte-rial coordination control strategy considering MFD is proposed. According to the characteristics of MFD, it is proposed that the slope of the ascending segment and the capacity of the road network represent the operating efficiency of the free flow and saturated flow of the road network respectively. The traffic flow and density data of road segment are obtained by the road detector through Vissim simulation software. Aiming at the problem that the MFD is too discrete due to unreasonable control strategy or traffic condition, and in order to extract the MFD optimization target indicators, it is proposed to extract the key boundary points of the MFD by the “tic-tac-toe” method and divide the MFD state by Gaussian mixture clustering. The genetic algorithm integrates the multi-objective particle swarm algorithm as the solution algorithm, and the simulation iterative process is com-pleted through Python programming and the com interface of Vissim software. In order to verify the validity of the model and algorithm, the actual three-intersections arterial road network is used for verification, and the model in this study is compared with the optimization model without considering MFD, the model solved by traditional algebraic method, and the optimization model solved by typical multi-objective particle swarm. Re-sults show that the model in this research performs well in efficiency indicators such as total delay, average delay, and queue coefficient. At the same time, the MFD form has highest stability, the control effect is the best in the saturated state. The solution algorithm GA-MOPSO also has a better solution effect.
{"title":"Saturated arterial coordinate control strategy optimization considering macroscopic fundamental diagram","authors":"Xuanhua Lin, Xiaohui Lin, Kelian Chen","doi":"10.5604/01.3001.0015.9253","DOIUrl":"https://doi.org/10.5604/01.3001.0015.9253","url":null,"abstract":"MFD is widely used in traffic state evaluation because of its description of the macro level of urban road net-work. Aiming at the control strategy optimization problem of urban arterial road network under saturated traffic flow state, this study analyzes the MFD characteristics of a typical three-segment \"ascending-stable-descending segment\" and its advantages in characterizing the macroscopic operation efficiency of the road network, a arte-rial coordination control strategy considering MFD is proposed. According to the characteristics of MFD, it is proposed that the slope of the ascending segment and the capacity of the road network represent the operating efficiency of the free flow and saturated flow of the road network respectively. The traffic flow and density data of road segment are obtained by the road detector through Vissim simulation software. Aiming at the problem that the MFD is too discrete due to unreasonable control strategy or traffic condition, and in order to extract the MFD optimization target indicators, it is proposed to extract the key boundary points of the MFD by the “tic-tac-toe” method and divide the MFD state by Gaussian mixture clustering. The genetic algorithm integrates the multi-objective particle swarm algorithm as the solution algorithm, and the simulation iterative process is com-pleted through Python programming and the com interface of Vissim software. In order to verify the validity of the model and algorithm, the actual three-intersections arterial road network is used for verification, and the model in this study is compared with the optimization model without considering MFD, the model solved by traditional algebraic method, and the optimization model solved by typical multi-objective particle swarm. Re-sults show that the model in this research performs well in efficiency indicators such as total delay, average delay, and queue coefficient. At the same time, the MFD form has highest stability, the control effect is the best in the saturated state. The solution algorithm GA-MOPSO also has a better solution effect.\u0000\u0000","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45612341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.5604/01.3001.0015.9177
Jiandong Qiu, Wei Ren, Minan Tang, Panpan Ma, Yang Zhang
As an important department of railway transportation and production, large freight train depot is responsible for the regular overhaul and maintenance of railway trucks. The shunting operation of freight train depot covers the whole process of railway trucks entering, storing, overhauling and leaving the depot. It is an important step in the implemen-tation of the maintenance operation. Usually, shunting personnel in the depot transport the trucks to be overhauled to the maintenance line by relying on the shunting operation plan, which is the key to determine the shunting operation plan according to the distribution relationship between vehicles and maintenance. Firstly, this paper analyzes the process of centralized shunting operation in the freight train depot and the factors affecting the time-consuming based on the research idea of flexible workshop scheduling problem. Then, on the premise that the proportion of the weight coefficient will have an impact on the time-consuming of truck busy and shunting in the shunting process, and with the goal of minimizing the time-consuming of truck maintenance busy and shunting, the allocation model between trucks and maintenance lines is established; In addition, an improved genetic algorithm is proposed to solve the established model; Finally, combined with the maintenance of railway trucks in a large freight train depot, an example analysis is carried out on this basis. The results demonstrate that using simulated annealing genetic algorithm to solve the model can obtain the allocation scheme between railway trucks and maintenance operation line. Under the influence of three different coefficients, compared with genetic algorithm, simulated annealing genetic algorithm can reduce the deten-tion time of railway trucks in depot by 0.21%, 0.09% and 0.12% respectively, which is beneficial to reducing the deten-tion time of maintenance vehicles in depot, It plays a positive role in improving the maintenance efficiency of trucks in the depot, and also provides new ideas for the research of railway truck shunting operation.
{"title":"Determination of Truck Maintenance Allocation Scheme Based on SA-GA","authors":"Jiandong Qiu, Wei Ren, Minan Tang, Panpan Ma, Yang Zhang","doi":"10.5604/01.3001.0015.9177","DOIUrl":"https://doi.org/10.5604/01.3001.0015.9177","url":null,"abstract":"As an important department of railway transportation and production, large freight train depot is responsible for the regular overhaul and maintenance of railway trucks. The shunting operation of freight train depot covers the whole process of railway trucks entering, storing, overhauling and leaving the depot. It is an important step in the implemen-tation of the maintenance operation. Usually, shunting personnel in the depot transport the trucks to be overhauled to the maintenance line by relying on the shunting operation plan, which is the key to determine the shunting operation plan according to the distribution relationship between vehicles and maintenance. Firstly, this paper analyzes the process of centralized shunting operation in the freight train depot and the factors affecting the time-consuming based on the research idea of flexible workshop scheduling problem. Then, on the premise that the proportion of the weight coefficient will have an impact on the time-consuming of truck busy and shunting in the shunting process, and with the goal of minimizing the time-consuming of truck maintenance busy and shunting, the allocation model between trucks and maintenance lines is established; In addition, an improved genetic algorithm is proposed to solve the established model; Finally, combined with the maintenance of railway trucks in a large freight train depot, an example analysis is carried out on this basis. The results demonstrate that using simulated annealing genetic algorithm to solve the model can obtain the allocation scheme between railway trucks and maintenance operation line. Under the influence of three different coefficients, compared with genetic algorithm, simulated annealing genetic algorithm can reduce the deten-tion time of railway trucks in depot by 0.21%, 0.09% and 0.12% respectively, which is beneficial to reducing the deten-tion time of maintenance vehicles in depot, It plays a positive role in improving the maintenance efficiency of trucks in the depot, and also provides new ideas for the research of railway truck shunting operation.\u0000\u0000","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44804562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.5604/01.3001.0015.9175
Jinit J. M. D’Cruz, A. Alex, V. Manju
Mode choice analysis of school trips becomes important due to the fact that these trips contribute to the second largest share of peak hour traffic. This scenario is more relevant in India, which has almost 265 million students enrolled in different accredited urban and rural schools of India, from Class I to XII as per the UDISE report of 2019-20. Thus, it becomes necessary to understand what mode of transport will be mostly used for school trips in order to design an efficient transportation system. Modal attributes and socio-economic characteristics are mostly considered as explana-tory variables in travel mode choice models. Multinomial Logit (MNL) model is one of the classic models used in the development of mode choice models. These logistic regression models predict outcomes based on a set of independent variables. With the recent advances in machine learning, transportation problems are getting a wide arena of methods and solutions. Among them the method of ensemble learning is finding a prominent place in contemporary modelling. This study explores the potential of using ensembles of random decision trees in mode choice analysis by Random Forest Technique with a comparative analysis on conventional method. It was observed that Random Forest method outperforms MNL method in predicting the mode choice preference of students. The high accuracy of machine learning models is mainly due to its ability to consider complex nonlinear relationship between socio-economic attributes and travel mode choice. These models can learn and identify pattern characteristics extracted from sample data and form adaptive structures through computational process thereby offering insights into the relationships between variables that random utility models cannot recognize. This study considered activity -travel information, personal data and household characteristics of students as attributes for model development and observed that the age of the student and distance of school from home plays a significant role in deciding the mode choice of school trips.
{"title":"Mode choice analysis of school trips using random forest technique","authors":"Jinit J. M. D’Cruz, A. Alex, V. Manju","doi":"10.5604/01.3001.0015.9175","DOIUrl":"https://doi.org/10.5604/01.3001.0015.9175","url":null,"abstract":"Mode choice analysis of school trips becomes important due to the fact that these trips contribute to the second largest share of peak hour traffic. This scenario is more relevant in India, which has almost 265 million students enrolled in different accredited urban and rural schools of India, from Class I to XII as per the UDISE report of 2019-20. Thus, it becomes necessary to understand what mode of transport will be mostly used for school trips in order to design an efficient transportation system. Modal attributes and socio-economic characteristics are mostly considered as explana-tory variables in travel mode choice models. Multinomial Logit (MNL) model is one of the classic models used in the development of mode choice models. These logistic regression models predict outcomes based on a set of independent variables. With the recent advances in machine learning, transportation problems are getting a wide arena of methods and solutions. Among them the method of ensemble learning is finding a prominent place in contemporary modelling. This study explores the potential of using ensembles of random decision trees in mode choice analysis by Random Forest Technique with a comparative analysis on conventional method. It was observed that Random Forest method outperforms MNL method in predicting the mode choice preference of students. The high accuracy of machine learning models is mainly due to its ability to consider complex nonlinear relationship between socio-economic attributes and travel mode choice. These models can learn and identify pattern characteristics extracted from sample data and form adaptive structures through computational process thereby offering insights into the relationships between variables that random utility models cannot recognize. This study considered activity -travel information, personal data and household characteristics of students as attributes for model development and observed that the age of the student and distance of school from home plays a significant role in deciding the mode choice of school trips.\u0000\u0000","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46487821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.5604/01.3001.0015.9568
Massimo Di Gangi, A. Comi, A. Polimeni, Orlando Marco Belcore
A substantial part of the environmental issues relies on fossil fuels. This dependence is crucial in transport even though many incentives and interventions have been proposed to reduce pollutant emissions. Electric vehicles with zero emissions might represent a viable solution in urban areas. Many cities encouraged modal shift policies from cars to an e-bike or car-sharing/pooling with electric vehicle fleets. This paper reports the ongoing outputs from a pilot project, relying on a modal shift to the e-bike, promoted in the city of Messina (Southern Italy) by the Ministry of Ecological Transition. The objective is to assess, in the territorial context of Messina, the e-bike as a competitive transport mode in terms of social awareness of eco-friendly mobility solutions. The available dataset consists of about nine months of observations; data on total distance and trips have been gathered for each e-bike. It emerged how, in a typical working day, the average distance travelled is about 6.9 km, the usage rate for working days is about 81 %, and the carbon dioxide reduction is about 245 kg per person each year. During the project, information was also collected on the satisfaction with the e-bike and the quality of travel. It emerged that regular bicycle use has good repercussions on the interviewees' psycho-physical well-being, reducing the stress factor connected with urban mobility. Despite mechanical breakdowns and the lack of an infrastructure dedicated to active mobility representing a limitation, travel comfort and safety are two latent variables that are transversally valid within the population; about 15 % became familiar with the e-bike and made it their primary mode choice for everyday activities. In this sense, outputs represent a starting point for future policies and give back adjustments before introducing similar services to students from the university and second-grade schools.
{"title":"E-bike use in urban commuting: empirical evidence from the home-work plan","authors":"Massimo Di Gangi, A. Comi, A. Polimeni, Orlando Marco Belcore","doi":"10.5604/01.3001.0015.9568","DOIUrl":"https://doi.org/10.5604/01.3001.0015.9568","url":null,"abstract":"A substantial part of the environmental issues relies on fossil fuels. This dependence is crucial in transport even though many incentives and interventions have been proposed to reduce pollutant emissions. Electric vehicles with zero emissions might represent a viable solution in urban areas. Many cities encouraged modal shift policies from cars to an e-bike or car-sharing/pooling with electric vehicle fleets. This paper reports the ongoing outputs from a pilot project, relying on a modal shift to the e-bike, promoted in the city of Messina (Southern Italy) by the Ministry of Ecological Transition. The objective is to assess, in the territorial context of Messina, the e-bike as a competitive transport mode in terms of social awareness of eco-friendly mobility solutions. The available dataset consists of about nine months of observations; data on total distance and trips have been gathered for each e-bike. It emerged how, in a typical working day, the average distance travelled is about 6.9 km, the usage rate for working days is about 81 %, and the carbon dioxide reduction is about 245 kg per person each year. During the project, information was also collected on the satisfaction with the e-bike and the quality of travel. It emerged that regular bicycle use has good repercussions on the interviewees' psycho-physical well-being, reducing the stress factor connected with urban mobility. Despite mechanical breakdowns and the lack of an infrastructure dedicated to active mobility representing a limitation, travel comfort and safety are two latent variables that are transversally valid within the population; about 15 % became familiar with the e-bike and made it their primary mode choice for everyday activities. In this sense, outputs represent a starting point for future policies and give back adjustments before introducing similar services to students from the university and second-grade schools.\u0000\u0000","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43055929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.5604/01.3001.0015.9174
N. Nadimi, Fariborz Mansourifar, Morteza Asadamraji, A. Amiri
Coronavirus first appeared in January 2020 and has spread dramatically in most parts of the world. In addition to exerting enormous impacts on public health and well-being, it has also affected a broad spectrum of industries and sectors, including transportation. Countries around the world have imposed restrictions on travel and participation in activities due to the outbreak of the virus. Many countries have adopted social distancing rules requiring people to maintain a safe distance. Therefore, the pandemic has accelerated the transition into a world in which online educa-tion, online shopping, and remote working are becoming increasingly prevalent. Every aspect of our life has witnessed a series of new rules, habits, and behaviours during this period, and our travel choices or behaviours are no exception. Some of these changes can be permanent or have long-lasting effects. To control this situation, these changes must first be recognised in various aspects of transportation in order to provide policies for similar situations in the future. In this regard, this study seeks to examine how transportation sectors have changed in the first waves of the pandemic. Iran has been selected as the case study in this paper. This research is divided into two parts. The first part focuses on the effects of the Coronavirus pandemic on rural transportation in Iran. This is followed by assessing the impacts of the virus on urban transportation in Tehran (the capital of Iran). The behaviour of more than 700 travellers in terms of trip purpose, travel time, and mode choice is evaluated using a questionnaire. Results indicate that the number of passen-gers has reduced dramatically in rural transportation systems. In such systems, considerations such as keeping social distancing, disinfection of passengers and their luggage, and unemployment of a group of personnel working in the transportation industry have been more evident. In urban transportation, education trips have dropped the most. This might relate to an increase in online teaching and health concerns. The same pattern can be seen in the passengers who used bicycles, public taxis, and other public transportation systems. Finally, during the pandemic, drivers’ speed has increased, which justifies the need for traffic calming for drivers.
{"title":"Evaluation of the impact of COVID-19 pandemic on transportation: a case study of Iran","authors":"N. Nadimi, Fariborz Mansourifar, Morteza Asadamraji, A. Amiri","doi":"10.5604/01.3001.0015.9174","DOIUrl":"https://doi.org/10.5604/01.3001.0015.9174","url":null,"abstract":"Coronavirus first appeared in January 2020 and has spread dramatically in most parts of the world. In addition to exerting enormous impacts on public health and well-being, it has also affected a broad spectrum of industries and sectors, including transportation. Countries around the world have imposed restrictions on travel and participation in activities due to the outbreak of the virus. Many countries have adopted social distancing rules requiring people to maintain a safe distance. Therefore, the pandemic has accelerated the transition into a world in which online educa-tion, online shopping, and remote working are becoming increasingly prevalent. Every aspect of our life has witnessed a series of new rules, habits, and behaviours during this period, and our travel choices or behaviours are no exception. Some of these changes can be permanent or have long-lasting effects. To control this situation, these changes must first be recognised in various aspects of transportation in order to provide policies for similar situations in the future. In this regard, this study seeks to examine how transportation sectors have changed in the first waves of the pandemic. Iran has been selected as the case study in this paper. This research is divided into two parts. The first part focuses on the effects of the Coronavirus pandemic on rural transportation in Iran. This is followed by assessing the impacts of the virus on urban transportation in Tehran (the capital of Iran). The behaviour of more than 700 travellers in terms of trip purpose, travel time, and mode choice is evaluated using a questionnaire. Results indicate that the number of passen-gers has reduced dramatically in rural transportation systems. In such systems, considerations such as keeping social distancing, disinfection of passengers and their luggage, and unemployment of a group of personnel working in the transportation industry have been more evident. In urban transportation, education trips have dropped the most. This might relate to an increase in online teaching and health concerns. The same pattern can be seen in the passengers who used bicycles, public taxis, and other public transportation systems. Finally, during the pandemic, drivers’ speed has increased, which justifies the need for traffic calming for drivers.\u0000\u0000","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48927318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.5604/01.3001.0015.9583
I. Pielecha, Z. Stępień
The global policy of reducing road transport sector pollution requires the introduction of significantly modified already in use technologies and construction solutions. Currently, direct fuel injection technology is the best solution in terms of reducing fuel consumption and exhaust emissions of standard pollutants into the atmosphere, as well as further improving the engine performance. In terms of exhaust emissions, direct injection spark ignition engines are characterized by significantly higher exhaust emissions of particulate matter (approximately 10 times higher) compared to indirect fuel injection SI engines, they show a greater tendency to knocking combustion and are prone to the formation of harmful deposits on engine parts, including in the fuel injectors. The injector tips located in the combustion chamber are exposed to the direct influence of the very high pressure and temperature caused by the combusting fuel-air mixture, which contributes to the rapid formation of harmful deposits. Operation-based injectors contamination in spark ignition engines results in a reduction of the cross-sectional flow diameter of the injector, which then necessitates the extension of the injection time in order to maintain the fuel dose and the expected engine operating parameters. The tests were carried out on an engine dynamometer and an optical test stand for fuel atomization process. The presented research analyzes indicate the possibility of using admixtures that effectively reduce the likelihood of contamination. The paper presents a results analysis of engine tests performed in accordance with the CEC F-113-KC procedure. Additionally, the injectors were tested to conduct an analysis of the injected fuel stream’s geometric indicators. The range, surface area and speed of the injected fuel stream as well as the fuel distribution in the stream were determined based on an equivalent indicator. The obtained results indicated that ethanol and butanol admixtures of 10% (V/V) to gasoline did not significantly extend the fuel injection time as compared to the reference fuel. A further increase in the proportion of ethanol caused a significant deterioration of the fuel flow and the geometric indicators of the fuel spray.
{"title":"Operational evaluation of atomization indicators for gasoline with admixtures of ethanol and butanol during Keep-Clean tests","authors":"I. Pielecha, Z. Stępień","doi":"10.5604/01.3001.0015.9583","DOIUrl":"https://doi.org/10.5604/01.3001.0015.9583","url":null,"abstract":"The global policy of reducing road transport sector pollution requires the introduction of significantly modified already in use technologies and construction solutions. Currently, direct fuel injection technology is the best solution in terms of reducing fuel consumption and exhaust emissions of standard pollutants into the atmosphere, as well as further improving the engine performance. In terms of exhaust emissions, direct injection spark ignition engines are characterized by significantly higher exhaust emissions of particulate matter (approximately 10 times higher) compared to indirect fuel injection SI engines, they show a greater tendency to knocking combustion and are prone to the formation of harmful deposits on engine parts, including in the fuel injectors. The injector tips located in the combustion chamber are exposed to the direct influence of the very high pressure and temperature caused by the combusting fuel-air mixture, which contributes to the rapid formation of harmful deposits. Operation-based injectors contamination in spark ignition engines results in a reduction of the cross-sectional flow diameter of the injector, which then necessitates the extension of the injection time in order to maintain the fuel dose and the expected engine operating parameters. The tests were carried out on an engine dynamometer and an optical test stand for fuel atomization process. The presented research analyzes indicate the possibility of using admixtures that effectively reduce the likelihood of contamination. The paper presents a results analysis of engine tests performed in accordance with the CEC F-113-KC procedure. Additionally, the injectors were tested to conduct an analysis of the injected fuel stream’s geometric indicators. The range, surface area and speed of the injected fuel stream as well as the fuel distribution in the stream were determined based on an equivalent indicator. The obtained results indicated that ethanol and butanol admixtures of 10% (V/V) to gasoline did not significantly extend the fuel injection time as compared to the reference fuel. A further increase in the proportion of ethanol caused a significant deterioration of the fuel flow and the geometric indicators of the fuel spray.\u0000\u0000","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49299122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.5604/01.3001.0015.9176
Łukasz Bakinowski, B. Firlik
In cities with developed transport infrastructure, many people use public transport in their everyday lives. In order for the passenger's journey to be comfortable and for the passenger to travel more willingly by tram than by car, many conditions must be met. A passenger must feel comfortable in a public transport vehicle, which includes, among others: appropriate temperature in the vehicle, no crowding, the possibility to seat, the possibility of a quick vehicle-change, short travel time, no noise and many others. A very important criterion from the point of view of travel comfort is also the level of vibrations in the tram. A tendency can be noticed that vehicles with a low vibration level are rated much higher by public transport passengers and citizens. Vibration itself can also be an indirect cause of noise. The greater the noise, the greater the dissatisfaction of the passenger which indicates the high role of vibrations as a factor of passenger satisfaction or dissatisfaction. The aim of the work is to test and evaluate the vibration level in the partially low-floor Moderus Beta MF 02 AC tram manufactured by the company Modertrans Poznań in Poland. Assessed was be the vibration comfort in selected points of the vehicle, including the floor and passenger seat. The level of vibrations in trams of the same type were compared. Due to the lack of specific Polish regulations regarding the permissible level of vibration in trams, an attempt was made to compare the obtained results with railway standards requirements or for-eign countries requirements. The study proved that the level of vibrations differs in trams belonging to the same type. Significant damping of vibrations in the vertical direction by the passenger seat was observed. Maximum level of vibrations in the passenger area of the vehicle was observed on the floor above the bogie. It was found when compar-ing the values of vibration accelerations and comfort indicators with railway standards - that the Moderus Beta tram on the reference section of the track could be considered as a very comfortable vehicle.
{"title":"Influence of the type of place occupied by a tram passenger on the ride comfort","authors":"Łukasz Bakinowski, B. Firlik","doi":"10.5604/01.3001.0015.9176","DOIUrl":"https://doi.org/10.5604/01.3001.0015.9176","url":null,"abstract":"In cities with developed transport infrastructure, many people use public transport in their everyday lives. In order for the passenger's journey to be comfortable and for the passenger to travel more willingly by tram than by car, many conditions must be met. A passenger must feel comfortable in a public transport vehicle, which includes, among others: appropriate temperature in the vehicle, no crowding, the possibility to seat, the possibility of a quick vehicle-change, short travel time, no noise and many others. A very important criterion from the point of view of travel comfort is also the level of vibrations in the tram. A tendency can be noticed that vehicles with a low vibration level are rated much higher by public transport passengers and citizens. Vibration itself can also be an indirect cause of noise. The greater the noise, the greater the dissatisfaction of the passenger which indicates the high role of vibrations as a factor of passenger satisfaction or dissatisfaction. The aim of the work is to test and evaluate the vibration level in the partially low-floor Moderus Beta MF 02 AC tram manufactured by the company Modertrans Poznań in Poland. Assessed was be the vibration comfort in selected points of the vehicle, including the floor and passenger seat. The level of vibrations in trams of the same type were compared. Due to the lack of specific Polish regulations regarding the permissible level of vibration in trams, an attempt was made to compare the obtained results with railway standards requirements or for-eign countries requirements. The study proved that the level of vibrations differs in trams belonging to the same type. Significant damping of vibrations in the vertical direction by the passenger seat was observed. Maximum level of vibrations in the passenger area of the vehicle was observed on the floor above the bogie. It was found when compar-ing the values of vibration accelerations and comfort indicators with railway standards - that the Moderus Beta tram on the reference section of the track could be considered as a very comfortable vehicle.\u0000\u0000","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46544478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.5604/01.3001.0015.9569
Oleg Sablin, D. Bosyi, V. Kuznetsov, Konrad Lewczuk, I. Kebal, S. Myamlin
The problems of storage and supplying the energy, together with reducing energy intensity for transport, are now crucial for developing sustainable and reliable transport systems. The energy network must be gradually adapted to new loads and power consumption patterns, especially in railways. The article aims to develop the simulation model to investigate the energy storage systems in its use in the electric transport infrastructure. The authors review selected technical solutions for electric energy storage in transport. The theoretical aspects of energy exchange in the energy storage systems were presented as a base for a continuous simulation model of electric transport power supply. In the non-periodic random voltage input applied to the storage unit, it is pro-posed to use the calculation method based on the Duamel integral to analyze its charge-discharge processes. The resistance functions were applied to analyze the traction power supply mode with variable in time and space by active loads. The simulation showed that the direct connection of the unit to the traction network significantly reduces the traction energy consumption.
{"title":"Efficiency of energy storage control in the electric transport systems","authors":"Oleg Sablin, D. Bosyi, V. Kuznetsov, Konrad Lewczuk, I. Kebal, S. Myamlin","doi":"10.5604/01.3001.0015.9569","DOIUrl":"https://doi.org/10.5604/01.3001.0015.9569","url":null,"abstract":"The problems of storage and supplying the energy, together with reducing energy intensity for transport, are now crucial for developing sustainable and reliable transport systems. The energy network must be gradually adapted to new loads and power consumption patterns, especially in railways. The article aims to develop the simulation model to investigate the energy storage systems in its use in the electric transport infrastructure.\u0000The authors review selected technical solutions for electric energy storage in transport. The theoretical aspects of energy exchange in the energy storage systems were presented as a base for a continuous simulation model of electric transport power supply. In the non-periodic random voltage input applied to the storage unit, it is pro-posed to use the calculation method based on the Duamel integral to analyze its charge-discharge processes. The resistance functions were applied to analyze the traction power supply mode with variable in time and space by active loads. The simulation showed that the direct connection of the unit to the traction network significantly reduces the traction energy consumption.\u0000\u0000","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49567616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}