With the rapid development of urban transportation and the increase in per capita car ownership, the problem of urban traffic congestion is becoming increasingly prominent. Due to the uneven distribution of crowd in different regions of the city, it is difficult to determine and solve the traffic dynamics congestion. In order to solve the problem that it is difficult to determine the dynamics of traffic congestion areas caused by uneven distribution of vitality in different regions of mountainous cities, a crowded mega mountainous city is selected as research object and it proposes a model to calculate the change characteristics of regional crowd gathering. Baidu Heatmap is used as it could distinguish crowd gathering in certain urban core area. The heat map pictures in dozens of consecutive days is extracted and researchers conducted pixel statistical classification on thermal map images. Based on the pixel data of different levels of the pictures, the calculation model is established and an algorithm based on particle swarm optimization is proposed. The calibration of the relative active population equivalent density is conducted, and the distribution characteristics of crowd gathering in time and space are analyzed. The results show that there are obvious spatiotemporal characteristics for this selected city. In time, holidays have an important impact on crowd gathering. The peak time of crowd gathering on weekdays is different from that on rest days. The research in this paper has a direct practical value for the identification of traffic congestion areas and the corresponding governance measures. The dynamic identification of population gathering areas in mountainous mega cities, demand prediction for various transportation regions, and future population OD(Origin—Destination) planning are of great significance.
{"title":"Research on spatiotemporal characteristics of urban crowd gathering based on Baidu map heat map","authors":"Yunwei Meng, Shibao Li, Kang Chen, Binbin Li, Ji’en Zhang, Guangyan Qing","doi":"10.61089/aot2023.1g53c194","DOIUrl":"https://doi.org/10.61089/aot2023.1g53c194","url":null,"abstract":"With the rapid development of urban transportation and the increase in per capita car ownership, the problem of urban traffic congestion is becoming increasingly prominent. Due to the uneven distribution of crowd in different regions of the city, it is difficult to determine and solve the traffic dynamics congestion. In order to solve the problem that it is difficult to determine the dynamics of traffic congestion areas caused by uneven distribution of vitality in different regions of mountainous cities, a crowded mega mountainous city is selected as research object and it proposes a model to calculate the change characteristics of regional crowd gathering. Baidu Heatmap is used as it could distinguish crowd gathering in certain urban core area. The heat map pictures in dozens of consecutive days is extracted and researchers conducted pixel statistical classification on thermal map images. Based on the pixel data of different levels of the pictures, the calculation model is established and an algorithm based on particle swarm optimization is proposed. The calibration of the relative active population equivalent density is conducted, and the distribution characteristics of crowd gathering in time and space are analyzed. The results show that there are obvious spatiotemporal characteristics for this selected city. In time, holidays have an important impact on crowd gathering. The peak time of crowd gathering on weekdays is different from that on rest days. The research in this paper has a direct practical value for the identification of traffic congestion areas and the corresponding governance measures. The dynamic identification of population gathering areas in mountainous mega cities, demand prediction for various transportation regions, and future population OD(Origin—Destination) planning are of great significance.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.61089/aot2023.w6hjz713
Sylwia Pazdan, M. Kiec
The increasing number of cyclists in cities around the world results in a greater focus on bicycle traffic. Next to traffic volume, the main characteristic of traffic used in road safety analysis, infrastructure planning, design, etc. is its speed. Bicycle speed is strongly affected by the type of bicycle facility, motor vehicle traffic parameters (volume, speed, share of heavy vehicles), trip motivation, weather conditions, etc., and therefore it is difficult to estimate. Traditionally, bicycle speed is determined directly using speed radar or indirectly, as a quotient of measurement base length and travel time calculated using a stopwatch or video technique. There are also researches where bicycle speed was estimated based on GPS sources, mainly mobile apps. However, depending on the GPS source and the group of cyclists, bicycle speed gained from GPS data can be different from the speed of regular cyclists (due to different levels of experience or types of bicycle). In the paper, the relationships between bicycle speed obtained from empirical measurements and two different GPS sources, which were bikesharing system (Wavelo) and Strava app, were analysed. In total 18 research sites were selected different in terms of bicycle facility (bicycle path, shared pedestrian/bicycle path, contraflow lane) and element of road network (road segment, bicycle crossing with or without traffic signals). Two-tailed test for two means was conducted to analyse the statistical significance of differences in bicycle speed estimated based on GPS data and empirical measurements using video technique. It showed that Wavelo and Strava speeds are by 17.4% lower are by 23.1% higher than the speeds of regular cyclists respectively. Two linear regression models describing relationships between bicycle speeds from empirical measurements and GPS data were developed. The results show that the variance of bicycle speed is almost 80% described by the variance of Wavelo speed and 60% described by the variance of Strava speed, which suggests that bicycle free-flow speed can be estimated based on GPS data either from bikeshare system or dedicated app.
{"title":"Bicycle free-flow speed estimation based on GPS data – comparison of bikesharing system and Strava data","authors":"Sylwia Pazdan, M. Kiec","doi":"10.61089/aot2023.w6hjz713","DOIUrl":"https://doi.org/10.61089/aot2023.w6hjz713","url":null,"abstract":"The increasing number of cyclists in cities around the world results in a greater focus on bicycle traffic. Next to traffic volume, the main characteristic of traffic used in road safety analysis, infrastructure planning, design, etc. is its speed. Bicycle speed is strongly affected by the type of bicycle facility, motor vehicle traffic parameters (volume, speed, share of heavy vehicles), trip motivation, weather conditions, etc., and therefore it is difficult to estimate. Traditionally, bicycle speed is determined directly using speed radar or indirectly, as a quotient of measurement base length and travel time calculated using a stopwatch or video technique. There are also researches where bicycle speed was estimated based on GPS sources, mainly mobile apps. However, depending on the GPS source and the group of cyclists, bicycle speed gained from GPS data can be different from the speed of regular cyclists (due to different levels of experience or types of bicycle). In the paper, the relationships between bicycle speed obtained from empirical measurements and two different GPS sources, which were bikesharing system (Wavelo) and Strava app, were analysed. In total 18 research sites were selected different in terms of bicycle facility (bicycle path, shared pedestrian/bicycle path, contraflow lane) and element of road network (road segment, bicycle crossing with or without traffic signals). Two-tailed test for two means was conducted to analyse the statistical significance of differences in bicycle speed estimated based on GPS data and empirical measurements using video technique. It showed that Wavelo and Strava speeds are by 17.4% lower are by 23.1% higher than the speeds of regular cyclists respectively. Two linear regression models describing relationships between bicycle speeds from empirical measurements and GPS data were developed. The results show that the variance of bicycle speed is almost 80% described by the variance of Wavelo speed and 60% described by the variance of Strava speed, which suggests that bicycle free-flow speed can be estimated based on GPS data either from bikeshare system or dedicated app.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139238484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.61089/aot2023.5k2g5t42
R. Burdzik
This paper presents a description of the methodology developed for estimation of pathogen transmission in transport and the results of the case study application for long-distance passenger transport. The primary objective is to report the method developed and the application for case studies in various passenger transport services. The most important findings and achievements of the presented study are the original universal methodology to estimate the probability of pathogen transmission with full mathematical disclosure and an open process formula, to make it possible to take other specific mechanisms of virus transmission when providing transport services. The results presented conducted an analysis on the mechanisms of transmission of SARS-CoV-2 virus pathogens during the transport process, to examine the chain of events as a result of which passengers may be infected. The author proposed a new method to estimate the probability of transmission of viral pathogens using the probability theory of the sum of elementary events. This is a new approach in this area, the advantage of which is a fully explicit mathematical formula that allows the method to be applied to various cases. The findings of this study can facilitate the management of epidemic risk in passenger transport operators and government administration. It should be clearly emphasised that the developed method and estimated values are the probabilities of pathogen transmission. Estimating the probability of transmission of the SARS-CoV-2 virus pathogen is not the same as the probability of viral infection, and more so the probability of contracting COVID-19. Viral infection strongly depends on viral mechanisms, exposure doses, and contact frequency. The probability of contracting COVID-19 and its complications depends on the individual characteristics of the immune system, even with confirmed viral infection. However, it is undoubtedly that the probability of transmission of the SARS-CoV-2 virus pathogen is the most reliable measure of infection risk, which can be estimated according to the objective determinants of pathogen transmission.
{"title":"Probability of transmission of SARS-CoV-2 virus pathogens in long-distance passenger transport","authors":"R. Burdzik","doi":"10.61089/aot2023.5k2g5t42","DOIUrl":"https://doi.org/10.61089/aot2023.5k2g5t42","url":null,"abstract":"This paper presents a description of the methodology developed for estimation of pathogen transmission in transport and the results of the case study application for long-distance passenger transport. The primary objective is to report the method developed and the application for case studies in various passenger transport services. The most important findings and achievements of the presented study are the original universal methodology to estimate the probability of pathogen transmission with full mathematical disclosure and an open process formula, to make it possible to take other specific mechanisms of virus transmission when providing transport services. The results presented conducted an analysis on the mechanisms of transmission of SARS-CoV-2 virus pathogens during the transport process, to examine the chain of events as a result of which passengers may be infected. The author proposed a new method to estimate the probability of transmission of viral pathogens using the probability theory of the sum of elementary events. This is a new approach in this area, the advantage of which is a fully explicit mathematical formula that allows the method to be applied to various cases. The findings of this study can facilitate the management of epidemic risk in passenger transport operators and government administration. It should be clearly emphasised that the developed method and estimated values are the probabilities of pathogen transmission. Estimating the probability of transmission of the SARS-CoV-2 virus pathogen is not the same as the probability of viral infection, and more so the probability of contracting COVID-19. Viral infection strongly depends on viral mechanisms, exposure doses, and contact frequency. The probability of contracting COVID-19 and its complications depends on the individual characteristics of the immune system, even with confirmed viral infection. However, it is undoubtedly that the probability of transmission of the SARS-CoV-2 virus pathogen is the most reliable measure of infection risk, which can be estimated according to the objective determinants of pathogen transmission.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":"63 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.61089/aot2023.vf1jsa33
Maciej Urbaniak, Dominik Zimon, Peter Madzík
The article presents the results of conducted empirical research in which an attempt was made to identify the expectations of manufacturing companies towards suppliers in terms of process (logistics customer service, supervision over property customer, production monitoring, supplier supervision) improvement. The research was conducted using the Computer Assisted Telephone Interview (CATI) technique. The research covered 150 production medium and large size companies (employing over 50 people) who were suppliers for enterprises from the automotive, electromechanical and chemical sectors operating in the Polish industrial market. The expectations of production companies towards their suppliers regarding improvement of processes concept were assigned a rank on a scale from one (the least important criterion) to five (the most significant). The analysis of the results of the conducted research shows that the implementation of management tools such as international organizational standards (ISO), Kaizen or Lean Management by companies that are purchasers may affect the expectations towards suppliers in terms of improving their processes. The considerations undertaken in this article confirm that in order to compete on the modern market, close cooperation and cooperation within the supply chain are needed. Representatives of the surveyed manufacturing companies notice this fact and set high expectations for their suppliers in virtually all the surveyed aspects. Conducted research shows that suppliers must pay special attention to the implementation of processes related to ensuring and improving the technical quality of products by focusing on improving control and supervision processes and logistical aspects of customer service. Proper implementation and improvement of these processes requires a methodical approach. Based on the obtained research results, managers of organizations supplying manufacturing companies can obtain important information that will be used to improve processes that are important from the point of view of their recipients. On this basis, they can make an optimal allocation of resources and modify the management style to improve cooperation with manufacturing companies.
{"title":"Expectations of manufacturing companies for suppliers regarding the improvement of their processes","authors":"Maciej Urbaniak, Dominik Zimon, Peter Madzík","doi":"10.61089/aot2023.vf1jsa33","DOIUrl":"https://doi.org/10.61089/aot2023.vf1jsa33","url":null,"abstract":"The article presents the results of conducted empirical research in which an attempt was made to identify the expectations of manufacturing companies towards suppliers in terms of process (logistics customer service, supervision over property customer, production monitoring, supplier supervision) improvement. The research was conducted using the Computer Assisted Telephone Interview (CATI) technique. The research covered 150 production medium and large size companies (employing over 50 people) who were suppliers for enterprises from the automotive, electromechanical and chemical sectors operating in the Polish industrial market. The expectations of production companies towards their suppliers regarding improvement of processes concept were assigned a rank on a scale from one (the least important criterion) to five (the most significant). The analysis of the results of the conducted research shows that the implementation of management tools such as international organizational standards (ISO), Kaizen or Lean Management by companies that are purchasers may affect the expectations towards suppliers in terms of improving their processes. The considerations undertaken in this article confirm that in order to compete on the modern market, close cooperation and cooperation within the supply chain are needed. Representatives of the surveyed manufacturing companies notice this fact and set high expectations for their suppliers in virtually all the surveyed aspects. Conducted research shows that suppliers must pay special attention to the implementation of processes related to ensuring and improving the technical quality of products by focusing on improving control and supervision processes and logistical aspects of customer service. Proper implementation and improvement of these processes requires a methodical approach. Based on the obtained research results, managers of organizations supplying manufacturing companies can obtain important information that will be used to improve processes that are important from the point of view of their recipients. On this basis, they can make an optimal allocation of resources and modify the management style to improve cooperation with manufacturing companies.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139240650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.61089/aot2023.fz9g6c16
Nan Wang, Tao Hou, Tianming Zhang
With the rapid development of intelligent rail transportation, the realization of intelligent detection of railroad foreign body intrusion has become an important topic of current research. Accurate detection of rail edge location, and then delineate the danger area is the premise and basis for railroad track foreign object intrusion detection. The application of a single edge detection algorithm in the process of rail identification is likely to cause the problem of missing important edges and weak gradient change edges of railroad tracks. It will affect the subsequent detection of track foreign objects. A combined global and local edge detection method is proposed to detect the edges of railroad tracks. In the global pixel-level edge detection, an improved blok-matching and 3D filtering (BM3D) algorithm combined with bilateral filtering is used for denoising to eliminate the interference information in the complex environment. Then the gradient direction is added to the Canny operator, the computational template is increased to achieve non-extreme value suppression, and the Otsu thresholding segmentation algorithm is used for thresholding improvement. It can effectively suppress noise while preserving image details, and improve the accuracy and efficiency of detection at the pixel level. For local subpixel-level edge detection, the improved Zernike moment algorithm is used to extract the edges of the obtained pixel-level images and obtain the corresponding subpixel-level images. It can enhance the extraction of tiny feature edges, effectively reduce the computational effort and obtain the subpixel edges of the orbit images. The experimental results show that compared with other improved algorithms, the method proposed in this paper can effectively extract the track edges of the detected images with higher accuracy, better preserve the track edge features, reduce the appearance of pseudo-edges, and shorten the edge detection time with certain noise immunity, which provides a reliable basis for subsequent track detection and analysis.
{"title":"Research on railway track edge detection based on BM3D and Zernike moments","authors":"Nan Wang, Tao Hou, Tianming Zhang","doi":"10.61089/aot2023.fz9g6c16","DOIUrl":"https://doi.org/10.61089/aot2023.fz9g6c16","url":null,"abstract":"With the rapid development of intelligent rail transportation, the realization of intelligent detection of railroad foreign body intrusion has become an important topic of current research. Accurate detection of rail edge location, and then delineate the danger area is the premise and basis for railroad track foreign object intrusion detection. The application of a single edge detection algorithm in the process of rail identification is likely to cause the problem of missing important edges and weak gradient change edges of railroad tracks. It will affect the subsequent detection of track foreign objects. A combined global and local edge detection method is proposed to detect the edges of railroad tracks. In the global pixel-level edge detection, an improved blok-matching and 3D filtering (BM3D) algorithm combined with bilateral filtering is used for denoising to eliminate the interference information in the complex environment. Then the gradient direction is added to the Canny operator, the computational template is increased to achieve non-extreme value suppression, and the Otsu thresholding segmentation algorithm is used for thresholding improvement. It can effectively suppress noise while preserving image details, and improve the accuracy and efficiency of detection at the pixel level. For local subpixel-level edge detection, the improved Zernike moment algorithm is used to extract the edges of the obtained pixel-level images and obtain the corresponding subpixel-level images. It can enhance the extraction of tiny feature edges, effectively reduce the computational effort and obtain the subpixel edges of the orbit images. The experimental results show that compared with other improved algorithms, the method proposed in this paper can effectively extract the track edges of the detected images with higher accuracy, better preserve the track edge features, reduce the appearance of pseudo-edges, and shorten the edge detection time with certain noise immunity, which provides a reliable basis for subsequent track detection and analysis.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.61089/aot2023.ttb8p367
Siyab Ul Arifeen, Mujahid Ali, Elżbieta Macioszek
In 2015, over 17% of pedestrians were killed during vehicle crashes in Hong Kong while it raised to 18% from 2017 to 2019 and expected to be 25% in the upcoming decade. In Hong Kong, buses and the metro are used for 89% of trips, and walking has traditionally been the primary way to use public transportation. This susceptibility of pedestrians to road crashes conflicts with sustainable transportation objectives. Most studies on crash severity ignored the severity correlations between pedestrian-vehicle units engaged in the same impacts. The estimates of the factor effects will be skewed in models that do not consider these within-crash correlations. Pedestrians made up 17% of the 20,381 traffic fatalities in which 66% of the fatalities on the highways were pedestrians. The motivation of this study is to examine the elements that pedestrian injuries on highways and build on safety for these endangered users. A traditional statistical model's ability to handle misfits, missing or noisy data, and strict presumptions has been questioned. The reasons for pedestrian injuries are typically explained using these models. To overcome these constraints, this study used a sophisticated machine learning technique called a Bayesian neural network (BNN), which combines the benefits of neural networks and Bayesian theory. The best construction model out of several constructed models was finally selected. It was discovered that the BNN model outperformed other machine learning techniques like K-Nearest Neighbors, a conventional neural network (NN), and a random forest (RF) model in terms of performance and predictions. The study also discovered that the time and circumstances of the accident and meteorological features were critical and significantly enhanced model performance when incorporated as input. To minimize the number of pedestrian fatalities due to traffic accidents, this research anticipates employing machine learning (ML) techniques. Besides, this study sets the framework for applying machine learning techniques to reduce the number of pedestrian fatalities brought on by auto accidents.
{"title":"Analysis of vehicle pedestrian crash severity using advanced machine learning techniques","authors":"Siyab Ul Arifeen, Mujahid Ali, Elżbieta Macioszek","doi":"10.61089/aot2023.ttb8p367","DOIUrl":"https://doi.org/10.61089/aot2023.ttb8p367","url":null,"abstract":"In 2015, over 17% of pedestrians were killed during vehicle crashes in Hong Kong while it raised to 18% from 2017 to 2019 and expected to be 25% in the upcoming decade. In Hong Kong, buses and the metro are used for 89% of trips, and walking has traditionally been the primary way to use public transportation. This susceptibility of pedestrians to road crashes conflicts with sustainable transportation objectives. Most studies on crash severity ignored the severity correlations between pedestrian-vehicle units engaged in the same impacts. The estimates of the factor effects will be skewed in models that do not consider these within-crash correlations. Pedestrians made up 17% of the 20,381 traffic fatalities in which 66% of the fatalities on the highways were pedestrians. The motivation of this study is to examine the elements that pedestrian injuries on highways and build on safety for these endangered users. A traditional statistical model's ability to handle misfits, missing or noisy data, and strict presumptions has been questioned. The reasons for pedestrian injuries are typically explained using these models. To overcome these constraints, this study used a sophisticated machine learning technique called a Bayesian neural network (BNN), which combines the benefits of neural networks and Bayesian theory. The best construction model out of several constructed models was finally selected. It was discovered that the BNN model outperformed other machine learning techniques like K-Nearest Neighbors, a conventional neural network (NN), and a random forest (RF) model in terms of performance and predictions. The study also discovered that the time and circumstances of the accident and meteorological features were critical and significantly enhanced model performance when incorporated as input. To minimize the number of pedestrian fatalities due to traffic accidents, this research anticipates employing machine learning (ML) techniques. Besides, this study sets the framework for applying machine learning techniques to reduce the number of pedestrian fatalities brought on by auto accidents.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":"51 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139242145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.61089/aot2023.k0c5b837
Daniel Mokrzan, Tomasz Nowakowski, Grzegorz M. Szymański
The paper presents the course of investigations and the analysis of the possibility of applying selected methods of time-frequency processing of non-stationary acoustic signals in the assessment of the technical condition of tram drive components, as well as a new combined method proposed by the authors. An experiment was performed in the form of a pass-by test of the acoustic pressure generated by a Solaris Tramino S105p tram. A comparative analysis has been carried out for an efficient case and a case with damage to the traction gear of the third bogie in the form of broken gear teeth. The recorded signal was analyzed using short-time Fourier transform (STFT) and continuous wavelet transform (CWT). It was found that the gear failure causes an increase in the sound level generated by a given bogie for frequencies within the range of characteristic frequencies of the tested device. Due to the limitations associated with the fixed window resolution in STFT and the inability to directly translate scales to frequencies in CWT, it was found that these methods can be helpful in determining suspected damage, but are too imprecise and prone to errors when the parameters of both transforms are poorly chosen. A new CWT-Cepstrum method was proposed as a solution, using the wavelet transform as a pre-filter before cepstrum signal processing. With a sampling rate of 8192 Hz, a db6 mother wavelet, and a scale range of 1:200, the new method was found to infer the occurrence of damage in an interpretation-free manner. The results were validated on an independent pair of trams of the same model with identical damage and as a reference on a pair of undamaged trams demonstrating that the method can be successfully replicated for different vehicles.
{"title":"The application of time-frequency methods of acoustic signal processing in the diagnostics of tram drive components","authors":"Daniel Mokrzan, Tomasz Nowakowski, Grzegorz M. Szymański","doi":"10.61089/aot2023.k0c5b837","DOIUrl":"https://doi.org/10.61089/aot2023.k0c5b837","url":null,"abstract":"The paper presents the course of investigations and the analysis of the possibility of applying selected methods of time-frequency processing of non-stationary acoustic signals in the assessment of the technical condition of tram drive components, as well as a new combined method proposed by the authors. An experiment was performed in the form of a pass-by test of the acoustic pressure generated by a Solaris Tramino S105p tram. A comparative analysis has been carried out for an efficient case and a case with damage to the traction gear of the third bogie in the form of broken gear teeth. The recorded signal was analyzed using short-time Fourier transform (STFT) and continuous wavelet transform (CWT). It was found that the gear failure causes an increase in the sound level generated by a given bogie for frequencies within the range of characteristic frequencies of the tested device. Due to the limitations associated with the fixed window resolution in STFT and the inability to directly translate scales to frequencies in CWT, it was found that these methods can be helpful in determining suspected damage, but are too imprecise and prone to errors when the parameters of both transforms are poorly chosen. A new CWT-Cepstrum method was proposed as a solution, using the wavelet transform as a pre-filter before cepstrum signal processing. With a sampling rate of 8192 Hz, a db6 mother wavelet, and a scale range of 1:200, the new method was found to infer the occurrence of damage in an interpretation-free manner. The results were validated on an independent pair of trams of the same model with identical damage and as a reference on a pair of undamaged trams demonstrating that the method can be successfully replicated for different vehicles.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":"2012 33","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139239296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.61089/aot2023.rf1py857
Anna Pańka, P. Wołejsza
The era of autonomous ships has already begun in maritime transport. The 30-year forecast for the development of marine technologies predicts many autonomous vessels at sea. This will necessitate radical implementation of new intelligent maritime navigation systems. One of the intelligent systems that has to be implemented is a collision avoidance system. The inference process is a key element of autonomous manoeuvres. These authors propose an inference process that enables exchange of information, intentions and expectations between autonomous vessels and gives them an opportunity to negotiate a safe manoeuvre satisfying all the parties concerned. The model of inference in the communication process has been presented. Methods and algorithms for information exchange and negotiation have been developed. These models were implemented and tested under various conditions. The results of case studies indicate that it is possible to effectively communicate and negotiate used the developed method. To demonstrate the effectiveness of the presented approach over 30 random simulations have been carried out. After successful laboratory tests, over 100 scenarios were executed in quasi-real conditions and fully operational conditions. Tests were carried out in the center of the Foundation for the Safety of Navigation and Environmental Protection on Lake Silm in Iława, Poland. In the framework of project AVAL (Autonomous Vessel with an Air Look) POIR.04.01.04-00-0025-16, 82 random scenarios involving four vessels were performed and 60 random scenarios with two vessels. In 2020 tests were carried out in real conditions on the ferries Wolin and m/f Gryf. The communication and negotiation system presented in the article has been designed and developed specially for maritime navigation purposes. The authors believe that the presented solution can be one of various solutions implemented in autonomous shipping in the near future.
在海上运输领域,自动驾驶船舶的时代已经来临。根据海洋技术 30 年发展预测,海上将出现许多自动驾驶船舶。这就需要大力实施新的智能海上导航系统。必须实施的智能系统之一是防撞系统。推理过程是自主操纵的关键因素。这些作者提出了一种推理过程,使自主航行的船只之间能够交换信息、意图和期望,并使它们有机会协商出一个让所有相关方都满意的安全机动方案。文中介绍了通信过程中的推理模型。开发了信息交换和协商的方法和算法。这些模型已在各种条件下实施和测试。案例研究结果表明,使用所开发的方法可以进行有效的交流和谈判。为了证明所提出方法的有效性,我们进行了 30 多次随机模拟。实验室测试成功后,又在准真实条件和全面运行条件下执行了 100 多个场景。测试在波兰 Iława 的 Silm 湖航行安全和环境保护基金会中心进行。在 "AVAL(Autonomous Vessel with an Air Look)POIR.04.01.04-00-0025-16 "项目框架内,共进行了 82 次涉及四艘船只的随机场景测试和 60 次涉及两艘船只的随机场景测试。2020 年,在 Wolin 和 m/f Gryf 渡轮上进行了实际测试。文章中介绍的通信和协商系统是专门为海上航行目的设计和开发的。作者认为,所介绍的解决方案可以成为不久的将来在自主航运中实施的各种解决方案之一。
{"title":"Inference processes in the automatic communication system for autonomous vessels","authors":"Anna Pańka, P. Wołejsza","doi":"10.61089/aot2023.rf1py857","DOIUrl":"https://doi.org/10.61089/aot2023.rf1py857","url":null,"abstract":"The era of autonomous ships has already begun in maritime transport. The 30-year forecast for the development of marine technologies predicts many autonomous vessels at sea. This will necessitate radical implementation of new intelligent maritime navigation systems. One of the intelligent systems that has to be implemented is a collision avoidance system. The inference process is a key element of autonomous manoeuvres. These authors propose an inference process that enables exchange of information, intentions and expectations between autonomous vessels and gives them an opportunity to negotiate a safe manoeuvre satisfying all the parties concerned. The model of inference in the communication process has been presented. Methods and algorithms for information exchange and negotiation have been developed. These models were implemented and tested under various conditions. The results of case studies indicate that it is possible to effectively communicate and negotiate used the developed method. To demonstrate the effectiveness of the presented approach over 30 random simulations have been carried out. After successful laboratory tests, over 100 scenarios were executed in quasi-real conditions and fully operational conditions. Tests were carried out in the center of the Foundation for the Safety of Navigation and Environmental Protection on Lake Silm in Iława, Poland. In the framework of project AVAL (Autonomous Vessel with an Air Look) POIR.04.01.04-00-0025-16, 82 random scenarios involving four vessels were performed and 60 random scenarios with two vessels. In 2020 tests were carried out in real conditions on the ferries Wolin and m/f Gryf. The communication and negotiation system presented in the article has been designed and developed specially for maritime navigation purposes. The authors believe that the presented solution can be one of various solutions implemented in autonomous shipping in the near future.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":"227 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139242261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.5604/01.3001.0053.7463
M. Izdebski
The work deals with the issue of assigning vehicles to tasks in transport companies, taking into account the minimization of the risk of dangerous events on the route of vehicles performing the assigned transport tasks. The proposed risk management procedure based on a heuristic algorithm reduces the risk to a minimum. The ant algorithm reduces it in the event of exceeding the limit, which differs from the classic methods of risk management, which are dedicated only to risk assessment. A decision model has been developed for risk management. The decision model considers the limitations typical of the classic model of assigning vehicles to tasks, e.g. window limits and additionally contains limitations on the acceptable risk on the route of vehicles' travel. The criterion function minimizes the probability of an accident occurring along the entire assignment route. The probability of the occurrence of dangerous events on the routes of vehicles was determined based on known theoretical distributions. The random variable of the distributions was defined as the moment of the vehicle's appearance at a given route point. Theoretical probability distributions were determined based on empirical data using the STATISTICA 13 package. The decision model takes into account such constraints as the time of task completion and limiting the acceptable risk. The criterion function minimizes the probability of dangerous events occurring in the routes of vehicles. The ant algorithm has been validated on accurate input data. The proposed ant algorithm was 95% effective in assessing the risk of adverse events in assigning vehicles to tasks. The algorithm was run 100 times. The designated routes were compared with the actual hours of the accident at the bottom of the measurement points. The graphical interpretation of the results is shown in the PTV Visum software. Verification of the algorithm confirmed its effectiveness. The work presents the process of building the algorithm along with its calibration.
{"title":"Risk management in the allocation of vehicles to tasks in transport companies using a heuristic algorithm","authors":"M. Izdebski","doi":"10.5604/01.3001.0053.7463","DOIUrl":"https://doi.org/10.5604/01.3001.0053.7463","url":null,"abstract":"The work deals with the issue of assigning vehicles to tasks in transport companies, taking into account the minimization of the risk of dangerous events on the route of vehicles performing the assigned transport tasks. The proposed risk management procedure based on a heuristic algorithm reduces the risk to a minimum. The ant algorithm reduces it in the event of exceeding the limit, which differs from the classic methods of risk management, which are dedicated only to risk assessment. A decision model has been developed for risk management. The decision model considers the limitations typical of the classic model of assigning vehicles to tasks, e.g. window limits and additionally contains limitations on the acceptable risk on the route of vehicles' travel. The criterion function minimizes the probability of an accident occurring along the entire assignment route. The probability of the occurrence of dangerous events on the routes of vehicles was determined based on known theoretical distributions. The random variable of the distributions was defined as the moment of the vehicle's appearance at a given route point. Theoretical probability distributions were determined based on empirical data using the STATISTICA 13 package. The decision model takes into account such constraints as the time of task completion and limiting the acceptable risk. The criterion function minimizes the probability of dangerous events occurring in the routes of vehicles. The ant algorithm has been validated on accurate input data. The proposed ant algorithm was 95% effective in assessing the risk of adverse events in assigning vehicles to tasks. The algorithm was run 100 times. The designated routes were compared with the actual hours of the accident at the bottom of the measurement points. The graphical interpretation of the results is shown in the PTV Visum software. Verification of the algorithm confirmed its effectiveness. The work presents the process of building the algorithm along with its calibration.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42436679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-30DOI: 10.5604/01.3001.0053.7264
K. Krasuski, Marta Lalak, P. Gołda, A. Ciećko, G. Grunwald, M. Mrozik, J. Kozuba
This paper presents an algorithm for determining the precision parameter for aircraft position coordinates based on a combined GPS/EGNOS and GPS/SDCM solution. The proposed algorithm uses a weighted average model that com-bines a single GPS/EGNOS and GPS/SDCM position navigation solution to determine the resulting aircraft coordi-nates. The weighted mean model include the linear coefficients as a function of: the inverse of the number of tracked GPS satellites for which EGNOS and SDCM corrections have been generated, and the inverse of the geometric coeffi-cient of the PDOP (Position Dilution of Precision). The corrections between the single GPS/EGNOS and GPS/SDCM solution to the aircraft's resultant coordinates are then calculated on this basis. Finally, the standard deviation for the aircraft resultant BLh (B-Latitude, L-Longitude, h- ellipsoidal height) coordinates is calculated as a measure of preci-sion. The research experiment used recorded on-board GPS+SBAS data from two GNSS receivers mounted on a Dia-mond DA 20-C1 aircraft. The test flight was carried out on the Olsztyn-Suwaki-Olsztyn route. The calculations of aircraft position based on GPS/EGNOS and GPS/SDCM solution were performed in the RTKLIB v.2.4.3 program in the RTKPOST module. Next, aircraft resultant coordinates and standard deviations were computed in Scilab v.6.0.0 soft-ware package. Based on the tests performed, it was found that for the Trimble Alloy receiver, the standard deviation values for the ellipsoidal coordinates BLh of the aircraft do not exceed 1.77 m. However, for the Septentrio AsterRx2i receiver, the values of standard deviations for the aircraft's ellipsoidal BLh coordinates do not exceed 5.04 m. The use of linear coefficients as the inverse of the number of tracked GPS satellites with SBAS corrections in the GPS/EGNOS+GPS/SDCM positioning model resulted in a reduction in standard deviations of approximately 50-51% relative to the solution with linear coefficients calculated as the inverse of the PDOP parameter. In paper, the standard deviation was also obtained using arithmetic mean model. However the values of standard deviation from weighted mean model are lower than arithmetic mean model.
{"title":"Analysis of the precision of determination of aircraft coordinates using EGNOS+SDCM solution","authors":"K. Krasuski, Marta Lalak, P. Gołda, A. Ciećko, G. Grunwald, M. Mrozik, J. Kozuba","doi":"10.5604/01.3001.0053.7264","DOIUrl":"https://doi.org/10.5604/01.3001.0053.7264","url":null,"abstract":"This paper presents an algorithm for determining the precision parameter for aircraft position coordinates based on a combined GPS/EGNOS and GPS/SDCM solution. The proposed algorithm uses a weighted average model that com-bines a single GPS/EGNOS and GPS/SDCM position navigation solution to determine the resulting aircraft coordi-nates. The weighted mean model include the linear coefficients as a function of: the inverse of the number of tracked GPS satellites for which EGNOS and SDCM corrections have been generated, and the inverse of the geometric coeffi-cient of the PDOP (Position Dilution of Precision). The corrections between the single GPS/EGNOS and GPS/SDCM solution to the aircraft's resultant coordinates are then calculated on this basis. Finally, the standard deviation for the aircraft resultant BLh (B-Latitude, L-Longitude, h- ellipsoidal height) coordinates is calculated as a measure of preci-sion. The research experiment used recorded on-board GPS+SBAS data from two GNSS receivers mounted on a Dia-mond DA 20-C1 aircraft. The test flight was carried out on the Olsztyn-Suwaki-Olsztyn route. The calculations of aircraft position based on GPS/EGNOS and GPS/SDCM solution were performed in the RTKLIB v.2.4.3 program in the RTKPOST module. Next, aircraft resultant coordinates and standard deviations were computed in Scilab v.6.0.0 soft-ware package. Based on the tests performed, it was found that for the Trimble Alloy receiver, the standard deviation values for the ellipsoidal coordinates BLh of the aircraft do not exceed 1.77 m. However, for the Septentrio AsterRx2i receiver, the values of standard deviations for the aircraft's ellipsoidal BLh coordinates do not exceed 5.04 m. The use of linear coefficients as the inverse of the number of tracked GPS satellites with SBAS corrections in the GPS/EGNOS+GPS/SDCM positioning model resulted in a reduction in standard deviations of approximately 50-51% relative to the solution with linear coefficients calculated as the inverse of the PDOP parameter. In paper, the standard deviation was also obtained using arithmetic mean model. However the values of standard deviation from weighted mean model are lower than arithmetic mean model.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41549414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}