Pub Date : 2023-12-01DOI: 10.1109/JXCDC.2023.3333716
{"title":"INFORMATION FOR AUTHORS","authors":"","doi":"10.1109/JXCDC.2023.3333716","DOIUrl":"https://doi.org/10.1109/JXCDC.2023.3333716","url":null,"abstract":"","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"9 2","pages":"C3-C3"},"PeriodicalIF":2.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10416971","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-30DOI: 10.1109/JXCDC.2023.3338480
Qianqian Huang;Shaodi Xu;Ru Huang
Field-effect transistors (FETs) switched by quantum band-to-band tunneling (BTBT) mechanism, rather than conventional thermionic emission mechanism, are emerging as an exciting device candidate for future ultralow-power electronics due to their exceptional electronic properties of subthermionic subthreshold swing. However, fundamental limitations in drive current have hindered such technology encountering for high-performance and high-speed operations, especially for silicon-based device. Here, we demonstrate a novel pathway of integrating tunneling and thermionic emission mechanisms together, to circumvent their respective limitation and design a hybrid adaptively modulated FET (HamFET) that orients power saving and performance enhancement simultaneously. This transistor architecture, utilizing a nested source configuration without cost or area penalties, exhibits both ultrasteep (subthermionic) subthreshold swing and the largest “on” and “off” current ratio over the state-of-the-art tunneling transistors. Our design methodology of hybrid switching mechanism is also applicable to other mechanism, material, and architecture systems, opening the doors to a range of high-speed application opportunities for ultralow-power but performance-insufficient electronics.
{"title":"HamFET: A High-Performance Subthermionic Transistor Through Incorporating Hybrid Switching Mechanism","authors":"Qianqian Huang;Shaodi Xu;Ru Huang","doi":"10.1109/JXCDC.2023.3338480","DOIUrl":"https://doi.org/10.1109/JXCDC.2023.3338480","url":null,"abstract":"Field-effect transistors (FETs) switched by quantum band-to-band tunneling (BTBT) mechanism, rather than conventional thermionic emission mechanism, are emerging as an exciting device candidate for future ultralow-power electronics due to their exceptional electronic properties of subthermionic subthreshold swing. However, fundamental limitations in drive current have hindered such technology encountering for high-performance and high-speed operations, especially for silicon-based device. Here, we demonstrate a novel pathway of integrating tunneling and thermionic emission mechanisms together, to circumvent their respective limitation and design a hybrid adaptively modulated FET (HamFET) that orients power saving and performance enhancement simultaneously. This transistor architecture, utilizing a nested source configuration without cost or area penalties, exhibits both ultrasteep (subthermionic) subthreshold swing and the largest “on” and “off” current ratio over the state-of-the-art tunneling transistors. Our design methodology of hybrid switching mechanism is also applicable to other mechanism, material, and architecture systems, opening the doors to a range of high-speed application opportunities for ultralow-power but performance-insufficient electronics.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"1-7"},"PeriodicalIF":2.4,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10336778","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139727434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1109/JXCDC.2023.3330767
Amol D. Gaidhane;Rakshith Saligram;Wriddhi Chakraborty;Suman Datta;Arijit Raychowdhury;Yu Cao
Cryogenic operation of CMOS transistors (i.e., cryo-CMOS) effectively brings an ultrasteep subthreshold slope (SS) and ultralow leakage, enabling high energy efficiency with appropriate tuning of threshold voltage and supply voltage. On the other hand, cryo-CMOS suffers from elevated sensitivity to process and voltage variations. To facilitate early-stage design exploration, we develop predictive BSIM-CMG model cards, which are calibrated with 14 nm TCAD simulation and our experimental FinFET data from 300 to 77 K. These models are scalable with temperatures from 300 K down to 77 K, device engineering and variations. Based on them, we benchmark various circuit examples to illustrate the tremendous potential of cryo-CMOS for energy-efficient computing, in the presence of process variations. For logic circuits, such as a canonical critical path, more than $15times $