Pub Date : 2024-06-06DOI: 10.1109/JXCDC.2024.3410681
Sai Sanjeet;Jonathan Bird;Bibhu Datta Sahoo
Memory-augmented neural networks (MANNs) require large external memories to enable long-term memory storage and retrieval. Content-addressable memory (CAM) is a type of memory used for high-speed searching applications and is well-suited for MANNs. Recent advances in exploratory nonvolatile devices have spurred the development of nonvolatile CAMs. However, these devices suffer from poor ON-OFF ratio, large write voltages, and long write times. This work proposes a nonvolatile ternary CAM (TCAM) using magnetoelectric field effect transistors (MEFETs). The energy and delay of various operations are simulated using the ASAP 7-nm predictive technology for the transistors and a Verilog-A model of the MEFET. The proposed structure achieves orders of magnitude improvement in search energy and $gt 45times $