Two potential obstacles stand between the observation of a statistical correlation and the design (and deployment) of an effective intervention, omitted variable bias and reverse causality. Whereas the former has received ample attention, comparably scant focus has been devoted to the latter in the methodological literature. Many existing methods for reverse causality testing commence by postulating a structural model that may suffer from widely recognized issues such as the difficulty of properly setting temporal lags, which are critical to model validity. In this article, we draw upon advances in machine learning, specifically the recently established link between causal direction and the effectiveness of semi-supervised learning algorithms, to develop a novel method for reverse causality testing that circumvents many of the assumptions required by traditional methods. Mathematical analysis and simulation studies were carried out to demonstrate the effectiveness of our method. We also performed tests over a real-world dataset to show how our method may be used to identify causal relationships in practice.
{"title":"Testing of Reverse Causality Using Semi-Supervised Machine Learning.","authors":"Nan Zhang, Heng Xu, Manuel J Vaulont, Zhen Zhang","doi":"10.1017/psy.2025.13","DOIUrl":"10.1017/psy.2025.13","url":null,"abstract":"<p><p>Two potential obstacles stand between the observation of a statistical correlation and the design (and deployment) of an effective intervention, <i>omitted variable bias</i> and <i>reverse causality</i>. Whereas the former has received ample attention, comparably scant focus has been devoted to the latter in the methodological literature. Many existing methods for reverse causality testing commence by postulating a structural model that may suffer from widely recognized issues such as the difficulty of properly setting temporal lags, which are critical to model validity. In this article, we draw upon advances in machine learning, specifically the recently established link between causal direction and the effectiveness of semi-supervised learning algorithms, to develop a novel method for reverse causality testing that circumvents many of the assumptions required by traditional methods. Mathematical analysis and simulation studies were carried out to demonstrate the effectiveness of our method. We also performed tests over a real-world dataset to show how our method may be used to identify causal relationships in practice.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-25"},"PeriodicalIF":3.1,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark de Rooij, Ligaya Breemer, Dion Woestenburg, Frank Busing
We present a multidimensional data analysis framework for the analysis of ordinal response variables. Underlying the ordinal variables, we assume a continuous latent variable, leading to cumulative logit models. The framework includes unsupervised methods, when no predictor variables are available, and supervised methods, when predictor variables are available. We distinguish between dominance variables and proximity variables, where dominance variables are analyzed using inner product models, whereas the proximity variables are analyzed using distance models. An expectation-majorization-minimization algorithm is derived for estimation of the parameters of the models. We illustrate our methodology with three empirical data sets highlighting the advantages of the proposed framework. A simulation study is conducted to evaluate the performance of the algorithm.
{"title":"Logistic Multidimensional Data Analysis for Ordinal Response Variables Using a Cumulative Link Function.","authors":"Mark de Rooij, Ligaya Breemer, Dion Woestenburg, Frank Busing","doi":"10.1017/psy.2025.10","DOIUrl":"10.1017/psy.2025.10","url":null,"abstract":"<p><p>We present a multidimensional data analysis framework for the analysis of ordinal response variables. Underlying the ordinal variables, we assume a continuous latent variable, leading to cumulative logit models. The framework includes unsupervised methods, when no predictor variables are available, and supervised methods, when predictor variables are available. We distinguish between dominance variables and proximity variables, where dominance variables are analyzed using inner product models, whereas the proximity variables are analyzed using distance models. An expectation-majorization-minimization algorithm is derived for estimation of the parameters of the models. We illustrate our methodology with three empirical data sets highlighting the advantages of the proposed framework. A simulation study is conducted to evaluate the performance of the algorithm.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-37"},"PeriodicalIF":3.1,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144026859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marian M Strazzeri, Jeffrey R Harring, Nan Bernstein Ratner
Structured latent curve models (SLCMs) for continuous repeated measures data have been the subject of considerable recent research activity. In this article, we develop a first-order SLCM for repeated measures count data where the underlying change process is theorized to develop in distinct phases. Parameters of the multiphase or piecewise growth model, including changepoints, are allowed to vary across individuals. Exposure is allowed to vary across both individuals and time. We demonstrate our modeling approach on empirical expressive language data (grammatical morpheme counts) drawn from multiple distinct corpora available in the Child Language Data Exchange System (CHILDES), where the acquisition of grammatical morphology is understood to occur in distinct phases in typically developing children. A multiphase SLCM is fit to summarize individuals' data as well as the average developmental pattern. Change in time-varying dispersion (unexplained variability in morpheme counts) over the course of early childhood is modeled concurrently to provide additional insights into acquisition. Unique characteristics of count data create modeling, identification, estimation, and diagnostic challenges that are exacerbated by incorporating growth models with nonlinear random effects. These are discussed at length. We provide annotated software code for each of models used in the empirical example.
{"title":"Multiphase Structured Latent Curve Models for Count Response Data: A Re-Analysis of the Acquisition of Morphology in English.","authors":"Marian M Strazzeri, Jeffrey R Harring, Nan Bernstein Ratner","doi":"10.1017/psy.2025.8","DOIUrl":"10.1017/psy.2025.8","url":null,"abstract":"<p><p>Structured latent curve models (SLCMs) for continuous repeated measures data have been the subject of considerable recent research activity. In this article, we develop a first-order SLCM for repeated measures count data where the underlying change process is theorized to develop in distinct phases. Parameters of the multiphase or piecewise growth model, including changepoints, are allowed to vary across individuals. Exposure is allowed to vary across both individuals and time. We demonstrate our modeling approach on empirical expressive language data (grammatical morpheme counts) drawn from multiple distinct corpora available in the Child Language Data Exchange System (CHILDES), where the acquisition of grammatical morphology is understood to occur in distinct phases in typically developing children. A multiphase SLCM is fit to summarize individuals' data as well as the average developmental pattern. Change in time-varying dispersion (unexplained variability in morpheme counts) over the course of early childhood is modeled concurrently to provide additional insights into acquisition. Unique characteristics of count data create modeling, identification, estimation, and diagnostic challenges that are exacerbated by incorporating growth models with nonlinear random effects. These are discussed at length. We provide annotated software code for each of models used in the empirical example.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-40"},"PeriodicalIF":3.1,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144053925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cognitive diagnosis models (CDMs) have been popularly used in fields such as education, psychology, and social sciences. While parametric likelihood estimation is a prevailing method for fitting CDMs, nonparametric methodologies are attracting increasing attention due to their ease of implementation and robustness, particularly when sample sizes are relatively small. However, existing consistency results of the nonparametric estimation methods often rely on certain restrictive conditions, which may not be easily satisfied in practice. In this article, the consistency theory for the general nonparametric classification method is reestablished under weaker and more practical conditions.
{"title":"Consistency Theory of General Nonparametric Classification Methods in Cognitive Diagnosis.","authors":"Chengyu Cui, Yanlong Liu, Gongjun Xu","doi":"10.1017/psy.2025.9","DOIUrl":"10.1017/psy.2025.9","url":null,"abstract":"<p><p>Cognitive diagnosis models (CDMs) have been popularly used in fields such as education, psychology, and social sciences. While parametric likelihood estimation is a prevailing method for fitting CDMs, nonparametric methodologies are attracting increasing attention due to their ease of implementation and robustness, particularly when sample sizes are relatively small. However, existing consistency results of the nonparametric estimation methods often rely on certain restrictive conditions, which may not be easily satisfied in practice. In this article, the consistency theory for the general nonparametric classification method is reestablished under weaker and more practical conditions.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-17"},"PeriodicalIF":3.1,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Kaplan, Kjorte Harra, Jonas Stampka, Nina Jude
To assess country-level progress toward these educational goals it is important to monitor trends in educational outcomes over time. The purpose of this article is to demonstrate how optimally predictive growth models can be constructed to monitor the pace of progress at which countries are moving toward (or way from) the education sustainable development goals as specified by the United Nations. A number of growth curve models can be specified to estimate the pace of progress, however, choosing one model and using it for predictive purposes assumes that the chosen model is the one that generated the data, and this choice runs the risk of "over-confident inferences and decisions that are more risky than one thinks they are" (Hoeting et al., 1999). To mitigate this problem, we adapt and apply Bayesian stacking to form mixtures of predictive distributions from an ensemble of individual models specified to predict country-level pace of progress. We demonstrate Bayesian stacking using country-level data from the Program on International Student Assessment. Our results show that Bayesian stacking yields better predictive accuracy than any single model as measured by the Kullback-Leibler divergence. Issues of Bayesian model identification and estimation for growth models are also discussed.
{"title":"Stacking Models of Growth: A Methodology for Predicting the Pace of Progress to the Education Sustainable Development Targets Using International Large-Scale Assessments.","authors":"David Kaplan, Kjorte Harra, Jonas Stampka, Nina Jude","doi":"10.1017/psy.2025.2","DOIUrl":"10.1017/psy.2025.2","url":null,"abstract":"<p><p>To assess country-level progress toward these educational goals it is important to monitor trends in educational outcomes over time. The purpose of this article is to demonstrate how optimally predictive growth models can be constructed to monitor the pace of progress at which countries are moving toward (or way from) the education sustainable development goals as specified by the United Nations. A number of growth curve models can be specified to estimate the pace of progress, however, choosing one model and using it for predictive purposes assumes that the chosen model is the one that generated the data, and this choice runs the risk of \"over-confident inferences and decisions that are more risky than one thinks they are\" (Hoeting et al., 1999). To mitigate this problem, we adapt and apply <i>Bayesian stacking</i> to form mixtures of predictive distributions from an ensemble of individual models specified to predict country-level pace of progress. We demonstrate Bayesian stacking using country-level data from the Program on International Student Assessment. Our results show that Bayesian stacking yields better predictive accuracy than any single model as measured by the Kullback-Leibler divergence. Issues of Bayesian model identification and estimation for growth models are also discussed.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-29"},"PeriodicalIF":3.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144058550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Factor rotation is a crucial step in interpreting the results of exploratory factor analysis. Several rotation methods have been developed for simple structure solutions, but their extensions to bi-factor analysis are often not well established. In this article, we propose a mathematical framework that incorporates customized factor structure as a regularization to produce the optimal orthogonal or oblique rotation. We demonstrate the utility of the framework using examples of simple structure rotation and bi-factor rotation. Through detailed simulations, we show that the new method is accurate and robust in recovering the factor structures and latent correlations when bi-factor analysis is applied. The new method is applied to a test data and a Quality of Life survey data. Results show that our method can reveal bi-factor structures that are consistent with the theories.
{"title":"A Generalized Factor Rotation Framework with Customized Regularization.","authors":"Yongfeng Wu, Xiangyi Liao, Qizhai Li","doi":"10.1017/psy.2025.1","DOIUrl":"10.1017/psy.2025.1","url":null,"abstract":"<p><p>Factor rotation is a crucial step in interpreting the results of exploratory factor analysis. Several rotation methods have been developed for simple structure solutions, but their extensions to bi-factor analysis are often not well established. In this article, we propose a mathematical framework that incorporates customized factor structure as a regularization to produce the optimal orthogonal or oblique rotation. We demonstrate the utility of the framework using examples of simple structure rotation and bi-factor rotation. Through detailed simulations, we show that the new method is accurate and robust in recovering the factor structures and latent correlations when bi-factor analysis is applied. The new method is applied to a test data and a Quality of Life survey data. Results show that our method can reveal bi-factor structures that are consistent with the theories.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-25"},"PeriodicalIF":3.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144112840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-30DOI: 10.1007/s11336-024-09978-1
Sainan Xu, Jing Lu, Jiwei Zhang, Chun Wang, Gongjun Xu
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational speed. This study introduces a novel "divide- and-conquer" parallel algorithm built on the Wasserstein posterior approximation concept, aiming to enhance computational speed while maintaining accurate parameter estimation. This algorithm enables drawing parameters from segmented data subsets in parallel, followed by an amalgamation of these parameters via Wasserstein posterior approximation. Theoretical support for the algorithm is established through asymptotic optimality under certain regularity assumptions. Practical validation is demonstrated using real-world data from the Programme for International Student Assessment. Ultimately, this research proposes a transformative approach to managing educational big data, offering a scalable, efficient, and precise alternative that promises to redefine traditional practices in educational assessments.
{"title":"Optimizing Large-Scale Educational Assessment with a \"Divide-and-Conquer\" Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models.","authors":"Sainan Xu, Jing Lu, Jiwei Zhang, Chun Wang, Gongjun Xu","doi":"10.1007/s11336-024-09978-1","DOIUrl":"10.1007/s11336-024-09978-1","url":null,"abstract":"<p><p>With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational speed. This study introduces a novel \"divide- and-conquer\" parallel algorithm built on the Wasserstein posterior approximation concept, aiming to enhance computational speed while maintaining accurate parameter estimation. This algorithm enables drawing parameters from segmented data subsets in parallel, followed by an amalgamation of these parameters via Wasserstein posterior approximation. Theoretical support for the algorithm is established through asymptotic optimality under certain regularity assumptions. Practical validation is demonstrated using real-world data from the Programme for International Student Assessment. Ultimately, this research proposes a transformative approach to managing educational big data, offering a scalable, efficient, and precise alternative that promises to redefine traditional practices in educational assessments.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1119-1147"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-22DOI: 10.1007/s11336-024-10003-8
Robert J Mislevy
Sijtsma, Ellis, and Borsboom (Psychometrika, 89:84-117, 2024. https://doi.org/10.1007/s11336-024-09964-7 ) provide a thoughtful treatment in Psychometrika of the value and properties of sum scores and classical test theory at a depth at which few practicing psychometricians are familiar. In this note, I offer comments on their article from the perspective of evidentiary reasoning.
{"title":"Are Sum Scores a Great Accomplishment of Psychometrics or Intuitive Test Theory?","authors":"Robert J Mislevy","doi":"10.1007/s11336-024-10003-8","DOIUrl":"10.1007/s11336-024-10003-8","url":null,"abstract":"<p><p>Sijtsma, Ellis, and Borsboom (Psychometrika, 89:84-117, 2024. https://doi.org/10.1007/s11336-024-09964-7 ) provide a thoughtful treatment in Psychometrika of the value and properties of sum scores and classical test theory at a depth at which few practicing psychometricians are familiar. In this note, I offer comments on their article from the perspective of evidentiary reasoning.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1170-1174"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-05DOI: 10.1007/s11336-024-09983-4
Seunghyun Lee, Yuqi Gu
Cognitive diagnostic models (CDMs) are a popular family of discrete latent variable models that model students' mastery or deficiency of multiple fine-grained skills. CDMs have been most widely used to model categorical item response data such as binary or polytomous responses. With advances in technology and the emergence of varying test formats in modern educational assessments, new response types, including continuous responses such as response times, and count-valued responses from tests with repetitive tasks or eye-tracking sensors, have also become available. Variants of CDMs have been proposed recently for modeling such responses. However, whether these extended CDMs are identifiable and estimable is entirely unknown. We propose a very general cognitive diagnostic modeling framework for arbitrary types of multivariate responses with minimal assumptions, and establish identifiability in this general setting. Surprisingly, we prove that our general-response CDMs are identifiable under -matrix-based conditions similar to those for traditional categorical-response CDMs. Our conclusions set up a new paradigm of identifiable general-response CDMs. We propose an EM algorithm to efficiently estimate a broad class of exponential family-based general-response CDMs. We conduct simulation studies under various response types. The simulation results not only corroborate our identifiability theory, but also demonstrate the superior empirical performance of our estimation algorithms. We illustrate our methodology by applying it to a TIMSS 2019 response time dataset.
{"title":"New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data.","authors":"Seunghyun Lee, Yuqi Gu","doi":"10.1007/s11336-024-09983-4","DOIUrl":"10.1007/s11336-024-09983-4","url":null,"abstract":"<p><p>Cognitive diagnostic models (CDMs) are a popular family of discrete latent variable models that model students' mastery or deficiency of multiple fine-grained skills. CDMs have been most widely used to model categorical item response data such as binary or polytomous responses. With advances in technology and the emergence of varying test formats in modern educational assessments, new response types, including continuous responses such as response times, and count-valued responses from tests with repetitive tasks or eye-tracking sensors, have also become available. Variants of CDMs have been proposed recently for modeling such responses. However, whether these extended CDMs are identifiable and estimable is entirely unknown. We propose a very general cognitive diagnostic modeling framework for arbitrary types of multivariate responses with minimal assumptions, and establish identifiability in this general setting. Surprisingly, we prove that our general-response CDMs are identifiable under <math><mi>Q</mi></math> -matrix-based conditions similar to those for traditional categorical-response CDMs. Our conclusions set up a new paradigm of identifiable general-response CDMs. We propose an EM algorithm to efficiently estimate a broad class of exponential family-based general-response CDMs. We conduct simulation studies under various response types. The simulation results not only corroborate our identifiability theory, but also demonstrate the superior empirical performance of our estimation algorithms. We illustrate our methodology by applying it to a TIMSS 2019 response time dataset.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1304-1336"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-06-11DOI: 10.1007/s11336-024-09984-3
Teague R Henry, Lindley R Slipetz, Ami Falk, Jiaxing Qiu, Meng Chen
Intensive longitudinal (IL) data are increasingly prevalent in psychological science, coinciding with technological advancements that make it simple to deploy study designs such as daily diary and ecological momentary assessments. IL data are characterized by a rapid rate of data collection (1+ collections per day), over a period of time, allowing for the capture of the dynamics that underlie psychological and behavioral processes. One powerful framework for analyzing IL data is state-space modeling, where observed variables are considered measurements for underlying states (i.e., latent variables) that change together over time. However, state-space modeling has typically relied on continuous measurements, whereas psychological data often come in the form of ordinal measurements such as Likert scale items. In this manuscript, we develop a general estimation approach for state-space models with ordinal measurements, specifically focusing on a graded response model for Likert scale items. We evaluate the performance of our model and estimator against that of the commonly used "linear approximation" model, which treats ordinal measurements as though they are continuous. We find that our model resulted in unbiased estimates of the state dynamics, while the linear approximation resulted in strongly biased estimates of the state dynamics. Finally, we develop an approximate standard error, termed slice standard errors and show that these approximate standard errors are more liberal than true standard errors (i.e., smaller) at a consistent bias.
密集纵向(IL)数据在心理科学中日益盛行,与此同时,技术的进步使日常日记和生态瞬间评估等研究设计的部署变得简单。纵向数据的特点是在一段时间内快速收集数据(每天收集 1 次以上),从而捕捉到心理和行为过程的动态变化。状态空间建模是分析 IL 数据的一个强大框架,其中观察变量被视为随时间变化的潜在状态(即潜在变量)的测量值。然而,状态空间建模通常依赖于连续测量,而心理数据通常采用李克特量表项目等序数测量形式。在本手稿中,我们为具有顺序测量的状态空间模型开发了一种通用估算方法,尤其侧重于李克特量表项目的分级反应模型。我们评估了我们的模型和估计方法与常用的 "线性近似 "模型的性能,后者将序数测量视为连续测量。我们发现,我们的模型对状态动态的估计没有偏差,而线性近似模型对状态动态的估计偏差很大。最后,我们提出了一种近似标准误差,称为切片标准误差,并证明在偏差一致的情况下,这些近似标准误差比真实标准误差更宽松(即更小)。
{"title":"Ordinal Outcome State-Space Models for Intensive Longitudinal Data.","authors":"Teague R Henry, Lindley R Slipetz, Ami Falk, Jiaxing Qiu, Meng Chen","doi":"10.1007/s11336-024-09984-3","DOIUrl":"10.1007/s11336-024-09984-3","url":null,"abstract":"<p><p>Intensive longitudinal (IL) data are increasingly prevalent in psychological science, coinciding with technological advancements that make it simple to deploy study designs such as daily diary and ecological momentary assessments. IL data are characterized by a rapid rate of data collection (1+ collections per day), over a period of time, allowing for the capture of the dynamics that underlie psychological and behavioral processes. One powerful framework for analyzing IL data is state-space modeling, where observed variables are considered measurements for underlying states (i.e., latent variables) that change together over time. However, state-space modeling has typically relied on continuous measurements, whereas psychological data often come in the form of ordinal measurements such as Likert scale items. In this manuscript, we develop a general estimation approach for state-space models with ordinal measurements, specifically focusing on a graded response model for Likert scale items. We evaluate the performance of our model and estimator against that of the commonly used \"linear approximation\" model, which treats ordinal measurements as though they are continuous. We find that our model resulted in unbiased estimates of the state dynamics, while the linear approximation resulted in strongly biased estimates of the state dynamics. Finally, we develop an approximate standard error, termed slice standard errors and show that these approximate standard errors are more liberal than true standard errors (i.e., smaller) at a consistent bias.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1203-1229"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}