首页 > 最新文献

Network-Computation in Neural Systems最新文献

英文 中文
Deep demosaicking convolution neural network and quantum wavelet transform-based image denoising. 基于深度去马赛克卷积神经网络和量子小波变换的图像去噪。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-11 DOI: 10.1080/0954898X.2024.2358950
Anitha Mary Chinnaiyan, Boyed Wesley Alfred Sylam

Demosaicking is a popular scientific area that is being explored by a vast number of scientists. Current digital imaging technologies capture colour images with a single monochrome sensor. In addition, the colour images were captured using a sensor coupled with a Colour Filter Array (CFA). Furthermore, the demosaicking procedure is required to obtain a full-colour image. Image denoising and image demosaicking are the two important image restoration techniques, which have increased popularity in recent years. Finding a suitable strategy for multiple image restoration is critical for researchers. Hence, a deep learning (DL) based image denoising and image demosaicking is developed in this research. Moreover, the Autoregressive Circle Wave Optimization (ACWO) based Demosaicking Convolutional Neural Network (DMCNN) is designed for image demosaicking. The Quantum Wavelet Transform (QWT) is used in the image denoising process. Similarly, Quantum Wavelet Transform (QWT) is used to analyse the abrupt changes in the input image with noise. The transformed image is then subjected to a thresholding technique, which determines an appropriate threshold range. Once the threshold range has been determined, soft thresholding is applied to the resulting wavelet coefficients. After that, the extraction and reconstruction of the original image is carried out using the Inverse Quantum Wavelet Transform (IQWT). Finally, the fused image is created by combining the results of both processes using a weighted average. The denoised and demosaicked images are combined using the weighted average technique. Furthermore, the proposed QWT+DMCNN-ACWO model provided the ideal values of Peak signal-to-noise ratio (PSNR), Second derivative like measure of enhancement (SDME), Structural Similarity Index (SSIM), Figure of Merit (FOM) of 0.890, and computational time of 49.549 dB, 59.53 dB, 0.963, 0.890, and 0.571, respectively.

去马赛克是一个热门科学领域,许多科学家都在对其进行探索。目前的数字成像技术使用单色传感器捕捉彩色图像。此外,彩色图像的捕捉还使用了一个与彩色滤光片阵列(CFA)耦合的传感器。此外,要获得全彩色图像,还需要进行去马赛克处理。图像去噪和图像去马赛克是近年来日益流行的两种重要图像复原技术。对于研究人员来说,找到合适的多重图像复原策略至关重要。因此,本研究开发了一种基于深度学习(DL)的图像去噪和图像去马赛克技术。此外,还为图像去马赛克设计了基于自回归圆波优化(ACWO)的去马赛克卷积神经网络(DMCNN)。量子小波变换(QWT)被用于图像去噪过程。同样,量子小波变换 (QWT) 也用于分析输入图像中的突变噪声。然后,对变换后的图像进行阈值处理,以确定适当的阈值范围。一旦确定了阈值范围,就会对得到的小波系数进行软阈值处理。之后,使用反量子小波变换 (IQWT) 对原始图像进行提取和重建。最后,使用加权平均法将两个过程的结果合并,生成融合图像。使用加权平均技术将去噪和去马赛克图像合并。此外,所提出的 QWT+DMCNN-ACWO 模型在峰值信噪比 (PSNR)、二阶导数增强度量 (SDME)、结构相似性指数 (SSIM)、功绩值 (FOM) 和计算时间方面分别达到了 49.549 dB、59.53 dB、0.963、0.890 和 0.571 的理想值。
{"title":"Deep demosaicking convolution neural network and quantum wavelet transform-based image denoising.","authors":"Anitha Mary Chinnaiyan, Boyed Wesley Alfred Sylam","doi":"10.1080/0954898X.2024.2358950","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2358950","url":null,"abstract":"<p><p>Demosaicking is a popular scientific area that is being explored by a vast number of scientists. Current digital imaging technologies capture colour images with a single monochrome sensor. In addition, the colour images were captured using a sensor coupled with a Colour Filter Array (CFA). Furthermore, the demosaicking procedure is required to obtain a full-colour image. Image denoising and image demosaicking are the two important image restoration techniques, which have increased popularity in recent years. Finding a suitable strategy for multiple image restoration is critical for researchers. Hence, a deep learning (DL) based image denoising and image demosaicking is developed in this research. Moreover, the Autoregressive Circle Wave Optimization (ACWO) based Demosaicking Convolutional Neural Network (DMCNN) is designed for image demosaicking. The Quantum Wavelet Transform (QWT) is used in the image denoising process. Similarly, Quantum Wavelet Transform (QWT) is used to analyse the abrupt changes in the input image with noise. The transformed image is then subjected to a thresholding technique, which determines an appropriate threshold range. Once the threshold range has been determined, soft thresholding is applied to the resulting wavelet coefficients. After that, the extraction and reconstruction of the original image is carried out using the Inverse Quantum Wavelet Transform (IQWT). Finally, the fused image is created by combining the results of both processes using a weighted average. The denoised and demosaicked images are combined using the weighted average technique. Furthermore, the proposed QWT+DMCNN-ACWO model provided the ideal values of Peak signal-to-noise ratio (PSNR), Second derivative like measure of enhancement (SDME), Structural Similarity Index (SSIM), Figure of Merit (FOM) of 0.890, and computational time of 49.549 dB, 59.53 dB, 0.963, 0.890, and 0.571, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":1.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images. 改进的阿基米德优化辅助多尺度深度学习分割与扩张集合 CNN 分类法,用于利用 CT 图像检测肺癌。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-08 DOI: 10.1080/0954898X.2024.2373127
Shalini Chowdary, Shyamala Bharathi Purushotaman

Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.

要防止肺癌导致的死亡,就必须及早发现肺癌。但是,基于一些深度学习算法的计算机断层扫描(CT)对肺癌的识别并不能提供准确的结果。我们开发了一种新的自适应深度学习,并进行了启发式改进。所提出的框架包括三个部分:(a)图像采集;(b)肺结节分割;(c)肺癌分类。原始 CT 图像通过标准数据源采集。然后通过 Adaptive Multi-Scale Dilated Trans-Unet3+ 进行结节分割。为提高分割精度,该模型的参数通过基于阿基米德优化的修正转移算子(MTO-AO)进行优化。最后,对分割后的图像进行分类程序,即高级稀释集合卷积神经网络(ADECNN),其中它由 Inception、ResNet 和 MobileNet 构建,超参数由 MTO-AO 调整。从这三个网络中,通过基于高排名的分类估算出最终结果。因此,使用多种测量方法对性能进行了研究,并对不同方法进行了比较。因此,模型的研究结果证明了系统检测癌症的效率,并帮助病人获得适当的治疗。
{"title":"An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images.","authors":"Shalini Chowdary, Shyamala Bharathi Purushotaman","doi":"10.1080/0954898X.2024.2373127","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2373127","url":null,"abstract":"<p><p>Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-39"},"PeriodicalIF":1.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-level authentication for security in cloud using improved quantum key distribution. 利用改进的量子密钥分配实现云安全的多级认证。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-08 DOI: 10.1080/0954898X.2024.2367480
Ashutosh Kumar, Garima Verma

Cloud computing is an on-demand virtual-based technology to develop, configure, and modify applications online through the internet. It enables the users to handle various operations such as storage, back-up, and recovery of data, data analysis, delivery of software applications, implementation of new services and applications, hosting websites and blogs, and streaming of audio and video files. Thereby, it provides us many benefits although it is backlashed due to problems related to cloud security like data leakage, data loss, cyber attacks, etc. To address the security concerns, researchers have developed a variety of authentication mechanisms. This means that the authentication procedure used in the suggested method is multi-levelled. As a result, a better QKD method is offered to strengthen cloud security against different types of security risks. Key generation for enhanced QKD is based on the ABE public key cryptography approach. Here, an approach named CPABE is used in improved QKD. The Improved QKD scored the reduced KCA attack ratings of 0.3193, this is superior to CMMLA (0.7915), CPABE (0.8916), AES (0.5277), Blowfish (0.6144), and ECC (0.4287), accordingly. Finally, this multi-level authentication using an improved QKD approach is analysed under various measures and validates the enhancement over the state-of-the-art models.

云计算是一种通过互联网在线开发、配置和修改应用程序的按需虚拟技术。它使用户能够处理各种操作,如数据的存储、备份和恢复、数据分析、软件应用程序的交付、新服务和应用程序的实施、网站和博客的托管以及音频和视频文件的流式传输。因此,云计算为我们带来了许多好处,尽管由于数据泄露、数据丢失、网络攻击等与云计算安全相关的问题,云计算也受到了质疑。为了解决安全问题,研究人员开发了各种认证机制。这意味着建议方法中使用的认证程序是多层次的。因此,我们提供了一种更好的 QKD 方法,以加强云安全,抵御不同类型的安全风险。增强型 QKD 的密钥生成基于 ABE 公钥加密方法。这里,一种名为 CPABE 的方法被用于改进型 QKD。改进型 QKD 的 KCA 攻击评分为 0.3193,优于 CMMLA (0.7915)、CPABE (0.8916)、AES (0.5277)、Blowfish (0.6144) 和 ECC (0.4287)。最后,使用改进的 QKD 方法对这种多层次身份验证进行了各种分析,并验证了与最先进的模型相比所取得的进步。
{"title":"Multi-level authentication for security in cloud using improved quantum key distribution.","authors":"Ashutosh Kumar, Garima Verma","doi":"10.1080/0954898X.2024.2367480","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2367480","url":null,"abstract":"<p><p>Cloud computing is an on-demand virtual-based technology to develop, configure, and modify applications online through the internet. It enables the users to handle various operations such as storage, back-up, and recovery of data, data analysis, delivery of software applications, implementation of new services and applications, hosting websites and blogs, and streaming of audio and video files. Thereby, it provides us many benefits although it is backlashed due to problems related to cloud security like data leakage, data loss, cyber attacks, etc. To address the security concerns, researchers have developed a variety of authentication mechanisms. This means that the authentication procedure used in the suggested method is multi-levelled. As a result, a better QKD method is offered to strengthen cloud security against different types of security risks. Key generation for enhanced QKD is based on the ABE public key cryptography approach. Here, an approach named CPABE is used in improved QKD. The Improved QKD scored the reduced KCA attack ratings of 0.3193, this is superior to CMMLA (0.7915), CPABE (0.8916), AES (0.5277), Blowfish (0.6144), and ECC (0.4287), accordingly. Finally, this multi-level authentication using an improved QKD approach is analysed under various measures and validates the enhancement over the state-of-the-art models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-21"},"PeriodicalIF":1.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid deep learning and optimized clustering mechanism for load balancing and fault tolerance in cloud computing. 用于云计算负载平衡和容错的混合深度学习和优化聚类机制。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-27 DOI: 10.1080/0954898X.2024.2369137
Vahini Siruvoru, Shivampeta Aparna

Cloud services are one of the most quickly developing technologies. Furthermore, load balancing is recognized as a fundamental challenge for achieving energy efficiency. The primary function of load balancing is to deliver optimal services by releasing the load over multiple resources. Fault tolerance is being used to improve the reliability and accessibility of the network. In this paper, a hybrid Deep Learning-based load balancing algorithm is developed. Initially, tasks are allocated to all VMs in a round-robin method. Furthermore, the Deep Embedding Cluster (DEC) utilizes the Central Processing Unit (CPU), bandwidth, memory, processing elements, and frequency scaling factors while determining if a VM is overloaded or underloaded. The task performed on the overloaded VM is valued and the tasks accomplished on the overloaded VM are assigned to the underloaded VM for cloud load balancing. In addition, the Deep Q Recurrent Neural Network (DQRNN) is proposed to balance the load based on numerous factors such as supply, demand, capacity, load, resource utilization, and fault tolerance. Furthermore, the effectiveness of this model is assessed by load, capacity, resource consumption, and success rate, with ideal values of 0.147, 0.726, 0.527, and 0.895 are achieved.

云服务是发展最迅速的技术之一。此外,负载平衡被认为是实现能源效率的基本挑战。负载平衡的主要功能是通过在多个资源上释放负载来提供最佳服务。容错被用来提高网络的可靠性和可访问性。本文开发了一种基于深度学习的混合负载平衡算法。最初,任务以轮循方式分配给所有虚拟机。此外,深度嵌入集群(DEC)会利用中央处理器(CPU)、带宽、内存、处理元件和频率缩放因子,同时确定虚拟机是否超载或欠载。对超载虚拟机上执行的任务进行估值,并将超载虚拟机上完成的任务分配给负载不足的虚拟机,以实现云负载平衡。此外,还提出了深度 Q 循环神经网络(DQRNN),以根据供应、需求、容量、负载、资源利用率和容错等众多因素来平衡负载。此外,还通过负载、容量、资源消耗和成功率评估了该模型的有效性,其理想值分别为 0.147、0.726、0.527 和 0.895。
{"title":"Hybrid deep learning and optimized clustering mechanism for load balancing and fault tolerance in cloud computing.","authors":"Vahini Siruvoru, Shivampeta Aparna","doi":"10.1080/0954898X.2024.2369137","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2369137","url":null,"abstract":"<p><p>Cloud services are one of the most quickly developing technologies. Furthermore, load balancing is recognized as a fundamental challenge for achieving energy efficiency. The primary function of load balancing is to deliver optimal services by releasing the load over multiple resources. Fault tolerance is being used to improve the reliability and accessibility of the network. In this paper, a hybrid Deep Learning-based load balancing algorithm is developed. Initially, tasks are allocated to all VMs in a round-robin method. Furthermore, the Deep Embedding Cluster (DEC) utilizes the Central Processing Unit (CPU), bandwidth, memory, processing elements, and frequency scaling factors while determining if a VM is overloaded or underloaded. The task performed on the overloaded VM is valued and the tasks accomplished on the overloaded VM are assigned to the underloaded VM for cloud load balancing. In addition, the Deep Q Recurrent Neural Network (DQRNN) is proposed to balance the load based on numerous factors such as supply, demand, capacity, load, resource utilization, and fault tolerance. Furthermore, the effectiveness of this model is assessed by load, capacity, resource consumption, and success rate, with ideal values of 0.147, 0.726, 0.527, and 0.895 are achieved.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-22"},"PeriodicalIF":1.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational models advance deep brain stimulation for Parkinson's disease. 计算模型推动了治疗帕金森病的深部脑刺激疗法。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-26 DOI: 10.1080/0954898X.2024.2361799
Yongtong Wu, Kejia Hu, Shenquan Liu

Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.

脑深部刺激(DBS)已成为治疗晚期帕金森病(PD)的有效干预手段,但DBS的确切机制仍不清楚。在这篇综述中,我们将讨论 DBS 的历史、基底节(BG)的解剖和内部结构、帕金森病基底节的异常病理变化以及计算模型如何帮助理解和推进 DBS。我们还介绍了两类模型:数学理论模型和临床预测模型。数学理论模型模拟 BG 的神经元或神经网络,以揭示 DBS 的机理原理;而临床预测模型则更关注患者的预后,帮助调整适合每位患者的治疗方案并推进新型电极设计。最后,我们对未来技术提出了见解和展望。
{"title":"Computational models advance deep brain stimulation for Parkinson's disease.","authors":"Yongtong Wu, Kejia Hu, Shenquan Liu","doi":"10.1080/0954898X.2024.2361799","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2361799","url":null,"abstract":"<p><p>Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":1.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing radiographic image interpretation: WARES-PRS model for knee bone tumour detection. 增强放射影像判读:用于膝关节骨肿瘤检测的 WARES-PRS 模型
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-26 DOI: 10.1080/0954898X.2024.2357660
Rahamathunnisa Usuff, Sudhakar Kothandapani, Rajesh Rangan, Saravanan Dhatchnamurthy

The early diagnosis of tumour is significant in biomedical research field to lower the severity level and restrict the process extension from cancer. Moreover, the detection of early sign of cancer is undertaken with extensive research efforts that dedicated to the disclosure and recognition of tumours. However, the limited data size as well as diverse appearance of images lowered the detection performance and failed to detect complex stage of tumour. So to solve these issues, a Weighted Adaptive Random Ensemble Support Vector-based Partial Reinforcement Search (WARES-PRS) algorithm is proposed that detected bone lesions accurately and also predicted the severity level stage efficiently. Further, the detection is performed with varied stages to diminish the presence of noise and undertaken effective classification. The performance is validated with CNUH dataset that enhanced image pre-processing tasks. Despite the proposed method uncover the mutual relationships between each pixel's local texture and the overall image's global context. The detection and classification efficiency is validated with various measures and the experimental results revealed that the detection accuracy is enhanced for the proposed approach by 98.5%. The outcomes of our study have exhibited a substantial contribution to assisting physicians in the detection of knee bone tumours.

在生物医学研究领域,肿瘤的早期诊断对于降低癌症的严重程度和限制癌症的扩展过程具有重要意义。此外,癌症早期征兆的检测也得到了广泛的研究,致力于肿瘤的揭示和识别。然而,有限的数据量和多样化的图像外观降低了检测性能,无法检测到复杂的肿瘤阶段。因此,为了解决这些问题,我们提出了一种基于加权自适应随机集合支持向量的部分强化搜索(WARES-PRS)算法,该算法能准确检测骨病变,还能有效预测严重程度阶段。此外,还采用了不同阶段的检测方法,以减少噪声的存在并进行有效分类。通过增强图像预处理任务的 CNUH 数据集对其性能进行了验证。尽管所提出的方法揭示了每个像素的局部纹理与整个图像的全局背景之间的相互关系,但其检测和分类效率仍得到了 CNUH 数据集的验证。实验结果表明,所提方法的检测准确率提高了 98.5%。我们的研究成果为协助医生检测膝骨肿瘤做出了重大贡献。
{"title":"Enhancing radiographic image interpretation: WARES-PRS model for knee bone tumour detection.","authors":"Rahamathunnisa Usuff, Sudhakar Kothandapani, Rajesh Rangan, Saravanan Dhatchnamurthy","doi":"10.1080/0954898X.2024.2357660","DOIUrl":"10.1080/0954898X.2024.2357660","url":null,"abstract":"<p><p>The early diagnosis of tumour is significant in biomedical research field to lower the severity level and restrict the process extension from cancer. Moreover, the detection of early sign of cancer is undertaken with extensive research efforts that dedicated to the disclosure and recognition of tumours. However, the limited data size as well as diverse appearance of images lowered the detection performance and failed to detect complex stage of tumour. So to solve these issues, a Weighted Adaptive Random Ensemble Support Vector-based Partial Reinforcement Search (WARES-PRS) algorithm is proposed that detected bone lesions accurately and also predicted the severity level stage efficiently. Further, the detection is performed with varied stages to diminish the presence of noise and undertaken effective classification. The performance is validated with CNUH dataset that enhanced image pre-processing tasks. Despite the proposed method uncover the mutual relationships between each pixel's local texture and the overall image's global context. The detection and classification efficiency is validated with various measures and the experimental results revealed that the detection accuracy is enhanced for the proposed approach by 98.5%. The outcomes of our study have exhibited a substantial contribution to assisting physicians in the detection of knee bone tumours.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-31"},"PeriodicalIF":1.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analyses of weighted superposition attraction-repulsion algorithms in solving difficult optimization problems. 加权叠加吸引-排斥算法在解决困难优化问题中的性能分析。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-24 DOI: 10.1080/0954898X.2024.2367481
Adil Baykasoğlu

The purpose of this paper is to test the performance of the recently proposed weighted superposition attraction-repulsion algorithms (WSA and WSAR) on unconstrained continuous optimization test problems and constrained optimization problems. WSAR is a successor of weighted superposition attraction algorithm (WSA). WSAR is established upon the superposition principle from physics and mimics attractive and repulsive movements of solution agents (vectors). Differently from the WSA, WSAR also considers repulsive movements with updated solution move equations. WSAR requires very few algorithm-specific parameters to be set and has good convergence and searching capability. Through extensive computational tests on many benchmark problems including CEC'2015 and CEC'2020 performance of the WSAR is compared against WSA and other metaheuristic algorithms. It is statistically shown that the WSAR algorithm is able to produce good and competitive results in comparison to its predecessor WSA and other metaheuristic algorithms.

本文旨在测试最近提出的加权叠加吸引-排斥算法(WSA 和 WSAR)在无约束连续优化测试问题和约束优化问题上的性能。WSAR 是加权叠加吸引算法(WSA)的后续算法。WSAR 基于物理学中的叠加原理,模仿解代理(向量)的吸引和排斥运动。与 WSA 不同的是,WSAR 还通过更新解移动方程来考虑排斥运动。WSAR 只需设置很少的特定算法参数,并具有良好的收敛性和搜索能力。通过对包括 CEC'2015 和 CEC'2020 在内的许多基准问题进行广泛的计算测试,WSAR 的性能与 WSA 和其他元启发式算法进行了比较。统计结果表明,WSAR 算法与其前身 WSA 和其他元启发式算法相比,能够产生良好且有竞争力的结果。
{"title":"Performance analyses of weighted superposition attraction-repulsion algorithms in solving difficult optimization problems.","authors":"Adil Baykasoğlu","doi":"10.1080/0954898X.2024.2367481","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2367481","url":null,"abstract":"<p><p>The purpose of this paper is to test the performance of the recently proposed weighted superposition attraction-repulsion algorithms (WSA and WSAR) on unconstrained continuous optimization test problems and constrained optimization problems. WSAR is a successor of weighted superposition attraction algorithm (WSA). WSAR is established upon the superposition principle from physics and mimics attractive and repulsive movements of solution agents (vectors). Differently from the WSA, WSAR also considers repulsive movements with updated solution move equations. WSAR requires very few algorithm-specific parameters to be set and has good convergence and searching capability. Through extensive computational tests on many benchmark problems including CEC'2015 and CEC'2020 performance of the WSAR is compared against WSA and other metaheuristic algorithms. It is statistically shown that the WSAR algorithm is able to produce good and competitive results in comparison to its predecessor WSA and other metaheuristic algorithms.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-57"},"PeriodicalIF":1.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EfficientNet-deep quantum neural network-based economic denial of sustainability attack detection to enhance network security in cloud. 基于 EfficientNet 深度量子神经网络的经济拒绝可持续性攻击检测,以增强云中的网络安全。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-21 DOI: 10.1080/0954898X.2024.2361093
Mariappan Navaneethakrishnan, Maharajan Robinson Joel, Sriram Kalavai Palani, Gandhi Jabakumar Gnanaprakasam

Cloud computing (CC) is a future revolution in the Information technology (IT) and Communication field. Security and internet connectivity are the common major factors to slow down the proliferation of CC. Recently, a new kind of denial of service (DDoS) attacks, known as Economic Denial of Sustainability (EDoS) attack, has been emerging. Though EDoS attacks are smaller at a moment, it can be expected to develop in nearer prospective in tandem with progression in the cloud usage. Here, EfficientNet-B3-Attn-2 fused Deep Quantum Neural Network (EfficientNet-DQNN) is presented for EDoS detection. Initially, cloud is simulated and thereafter, considered input log file is fed to perform data pre-processing. Z-Score Normalization ;(ZSN) is employed to carry out pre-processing of data. Afterwards, feature fusion (FF) is accomplished based on Deep Neural Network (DNN) with Kulczynski similarity. Then, data augmentation (DA) is executed by oversampling based upon Synthetic Minority Over-sampling Technique (SMOTE). At last, attack detection is conducted utilizing EfficientNet-DQNN. Furthermore, EfficientNet-DQNN is formed by incorporation of EfficientNet-B3-Attn-2 with DQNN. In addition, EfficientNet-DQNN attained 89.8% of F1-score, 90.4% of accuracy, 91.1% of precision and 91.2% of recall using BOT-IOT dataset at K-Fold is 9.

云计算(CC)是信息技术(IT)和通信领域未来的一场革命。安全和互联网连接是阻碍云计算普及的主要因素。最近,出现了一种新型的拒绝服务(DDoS)攻击,即经济拒绝可持续发展(EDoS)攻击。虽然目前 EDoS 攻击的规模较小,但随着云计算应用的不断发展,预计在不久的将来这种攻击也会发展起来。在此,介绍了用于 EDoS 检测的 EfficientNet-B3-Attn-2 融合深度量子神经网络(EfficientNet-DQNN)。首先,对云进行模拟,然后输入输入日志文件进行数据预处理。Z-Score Normalization ;(ZSN) 被用来进行数据预处理。然后,基于库尔钦斯基相似性的深度神经网络(DNN)完成特征融合(FF)。然后,通过基于合成少数群体过度采样技术(SMOTE)的过度采样来执行数据增强(DA)。最后,利用 EfficientNet-DQNN 进行攻击检测。此外,EfficientNet-DQNN 由 EfficientNet-B3-Attn-2 和 DQNN 组成。此外,EfficientNet-DQNN 在使用 BOT-IOT 数据集(K-Fold 为 9)时获得了 89.8% 的 F1 分数、90.4% 的准确率、91.1% 的精确率和 91.2% 的召回率。
{"title":"EfficientNet-deep quantum neural network-based economic denial of sustainability attack detection to enhance network security in cloud.","authors":"Mariappan Navaneethakrishnan, Maharajan Robinson Joel, Sriram Kalavai Palani, Gandhi Jabakumar Gnanaprakasam","doi":"10.1080/0954898X.2024.2361093","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2361093","url":null,"abstract":"<p><p>Cloud computing (CC) is a future revolution in the Information technology (IT) and Communication field. Security and internet connectivity are the common major factors to slow down the proliferation of CC. Recently, a new kind of denial of service (DDoS) attacks, known as Economic Denial of Sustainability (EDoS) attack, has been emerging. Though EDoS attacks are smaller at a moment, it can be expected to develop in nearer prospective in tandem with progression in the cloud usage. Here, EfficientNet-B3-Attn-2 fused Deep Quantum Neural Network (EfficientNet-DQNN) is presented for EDoS detection. Initially, cloud is simulated and thereafter, considered input log file is fed to perform data pre-processing. Z-Score Normalization ;(ZSN) is employed to carry out pre-processing of data. Afterwards, feature fusion (FF) is accomplished based on Deep Neural Network (DNN) with Kulczynski similarity. Then, data augmentation (DA) is executed by oversampling based upon Synthetic Minority Over-sampling Technique (SMOTE). At last, attack detection is conducted utilizing EfficientNet-DQNN. Furthermore, EfficientNet-DQNN is formed by incorporation of EfficientNet-B3-Attn-2 with DQNN. In addition, EfficientNet-DQNN attained 89.8% of F1-score, 90.4% of accuracy, 91.1% of precision and 91.2% of recall using BOT-IOT dataset at K-Fold is 9.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":1.1,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An optimized deep strategy for recognition and alleviation of DDoS attack in SD-IoT. 用于识别和缓解 SD-IoT 中 DDoS 攻击的优化深度策略。
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-17 DOI: 10.1080/0954898X.2024.2356852
Kalpana Kumbhar, Prachi Mukherji

The attacks like distributed denial-of-service (DDoS) are termed as severe defence issues in data centres, and are considered real network threat. These types of attacks can produce huge disturbances in information technologies. In addition, it is a complex task to determine and fully alleviate DDoS attacks. The new strategy is developed to identify and alleviate DDoS attacks in the Software-Defined Internet of Things (SD-IoT) model. SD-IoT simulation is executed to gather data. The data collected through nodes of SD-IoT are fed to the selection of feature phases. Here, the hybrid process is considered to select features, wherein features, like wrapper-based technique, cosine similarity-based technique, and entropy-based technique are utilized to choose the significant features. Thereafter, the attack discovery process is done with Elephant Water Cycle (EWC)-assisted deep neuro-fuzzy network (DNFN). The EWC is adapted to train DNFN, and here EWC is obtained by grouping Elephant Herd Optimization (EHO) and water cycle algorithm (WCA). Finally, attack mitigation is carried out to secure the SD-IoT. The EWC-assisted DNFN revealed the highest accuracy of 96.9%, TNR of 98%, TPR of 90%, precision of 93%, and F1-score of 91%, when compared with other related techniques.

分布式拒绝服务(DDoS)等攻击被称为数据中心的严重防御问题,是真正的网络威胁。这类攻击会对信息技术造成巨大干扰。此外,确定和完全缓解 DDoS 攻击是一项复杂的任务。我们开发了一种新策略来识别和缓解软件定义物联网(SD-IoT)模型中的 DDoS 攻击。执行 SD-IoT 模拟以收集数据。通过 SD-IoT 节点收集到的数据被输入到特征选择阶段。在此,考虑采用混合流程来选择特征,利用基于包装的技术、基于余弦相似性的技术和基于熵的技术等特征来选择重要特征。之后,利用大象水循环(EWC)辅助深度神经模糊网络(DNFN)完成攻击发现过程。EWC 适用于训练 DNFN,这里的 EWC 是通过象群优化(EHO)和水循环算法(WCA)分组获得的。最后,为确保 SD-IoT 的安全,进行了攻击缓解。与其他相关技术相比,EWC 辅助 DNFN 的准确率最高,达到 96.9%,TNR 为 98%,TPR 为 90%,精度为 93%,F1-score 为 91%。
{"title":"An optimized deep strategy for recognition and alleviation of DDoS attack in SD-IoT.","authors":"Kalpana Kumbhar, Prachi Mukherji","doi":"10.1080/0954898X.2024.2356852","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2356852","url":null,"abstract":"<p><p>The attacks like distributed denial-of-service (DDoS) are termed as severe defence issues in data centres, and are considered real network threat. These types of attacks can produce huge disturbances in information technologies. In addition, it is a complex task to determine and fully alleviate DDoS attacks. The new strategy is developed to identify and alleviate DDoS attacks in the Software-Defined Internet of Things (SD-IoT) model. SD-IoT simulation is executed to gather data. The data collected through nodes of SD-IoT are fed to the selection of feature phases. Here, the hybrid process is considered to select features, wherein features, like wrapper-based technique, cosine similarity-based technique, and entropy-based technique are utilized to choose the significant features. Thereafter, the attack discovery process is done with Elephant Water Cycle (EWC)-assisted deep neuro-fuzzy network (DNFN). The EWC is adapted to train DNFN, and here EWC is obtained by grouping Elephant Herd Optimization (EHO) and water cycle algorithm (WCA). Finally, attack mitigation is carried out to secure the SD-IoT. The EWC-assisted DNFN revealed the highest accuracy of 96.9%, TNR of 98%, TPR of 90%, precision of 93%, and F1-score of 91%, when compared with other related techniques.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":7.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-input robust diagnostics for railway point machines via audio signals. 通过音频信号为铁路点检机提供双输入稳健诊断。
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-11 DOI: 10.1080/0954898X.2024.2358955
Tao Wen, Jinke Li, Rong Fei, Xinhong Hei, Zhiming Chen, Zhurong Wang

Railway Point Machine (RPM) is a fundamental component of railway infrastructure and plays a crucial role in ensuring the safe operation of trains. Its primary function is to divert trains from one track to another, enabling connections between different lines and facilitating route selection. By judiciously deploying turnouts, railway systems can provide efficient transportation services while ensuring the safety of passengers and cargo. As signal processing technologies develop rapidly, taking the easy acquisition advantages of audio signals, a fault diagnosis method for RPMs is proposed by considering noise and multi-channel signals. The proposed method consists of several stages. Initially, the signal is subjected to pre-processing steps, including cropping and channel separation. Subsequently, the signal undergoes noise addition using the Random Length and Dynamic Position Noises Superposition (RDS) module, followed by conversion to a greyscale image. To enhance the data, Synthetic Minority Oversampling Technique (SMOTE) module is applied. Finally, the training data is fed into a Dual-input Attention Convolutional Neural Network (DIACNN). By employing various experimental techniques and designing diverse datasets, our proposed method demonstrates excellent robustness and achieves an outstanding classification accuracy of 99.73%.

铁路点检机(RPM)是铁路基础设施的基本组成部分,在确保列车安全运行方面发挥着至关重要的作用。它的主要功能是将列车从一条轨道分流到另一条轨道,实现不同线路之间的连接,方便线路选择。通过合理部署道岔,铁路系统可以提供高效的运输服务,同时确保乘客和货物的安全。随着信号处理技术的飞速发展,利用音频信号易于采集的优势,提出了一种考虑噪声和多通道信号的转辙机故障诊断方法。所提出的方法包括几个阶段。首先,对信号进行预处理,包括裁剪和信道分离。随后,使用随机长度和动态位置噪声叠加(RDS)模块对信号进行噪声添加,然后转换为灰度图像。为了增强数据,应用了合成少数群体过度采样技术(SMOTE)模块。最后,将训练数据输入双输入注意卷积神经网络(DIACNN)。通过采用各种实验技术和设计不同的数据集,我们提出的方法表现出卓越的鲁棒性,分类准确率高达 99.73%。
{"title":"Dual-input robust diagnostics for railway point machines via audio signals.","authors":"Tao Wen, Jinke Li, Rong Fei, Xinhong Hei, Zhiming Chen, Zhurong Wang","doi":"10.1080/0954898X.2024.2358955","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2358955","url":null,"abstract":"<p><p>Railway Point Machine (RPM) is a fundamental component of railway infrastructure and plays a crucial role in ensuring the safe operation of trains. Its primary function is to divert trains from one track to another, enabling connections between different lines and facilitating route selection. By judiciously deploying turnouts, railway systems can provide efficient transportation services while ensuring the safety of passengers and cargo. As signal processing technologies develop rapidly, taking the easy acquisition advantages of audio signals, a fault diagnosis method for RPMs is proposed by considering noise and multi-channel signals. The proposed method consists of several stages. Initially, the signal is subjected to pre-processing steps, including cropping and channel separation. Subsequently, the signal undergoes noise addition using the Random Length and Dynamic Position Noises Superposition (RDS) module, followed by conversion to a greyscale image. To enhance the data, Synthetic Minority Oversampling Technique (SMOTE) module is applied. Finally, the training data is fed into a Dual-input Attention Convolutional Neural Network (DIACNN). By employing various experimental techniques and designing diverse datasets, our proposed method demonstrates excellent robustness and achieves an outstanding classification accuracy of 99.73%.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-22"},"PeriodicalIF":7.8,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Network-Computation in Neural Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1