Pub Date : 2024-06-24DOI: 10.1080/0954898X.2024.2367481
Adil Baykasoğlu
The purpose of this paper is to test the performance of the recently proposed weighted superposition attraction-repulsion algorithms (WSA and WSAR) on unconstrained continuous optimization test problems and constrained optimization problems. WSAR is a successor of weighted superposition attraction algorithm (WSA). WSAR is established upon the superposition principle from physics and mimics attractive and repulsive movements of solution agents (vectors). Differently from the WSA, WSAR also considers repulsive movements with updated solution move equations. WSAR requires very few algorithm-specific parameters to be set and has good convergence and searching capability. Through extensive computational tests on many benchmark problems including CEC'2015 and CEC'2020 performance of the WSAR is compared against WSA and other metaheuristic algorithms. It is statistically shown that the WSAR algorithm is able to produce good and competitive results in comparison to its predecessor WSA and other metaheuristic algorithms.
{"title":"Performance analyses of weighted superposition attraction-repulsion algorithms in solving difficult optimization problems.","authors":"Adil Baykasoğlu","doi":"10.1080/0954898X.2024.2367481","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2367481","url":null,"abstract":"<p><p>The purpose of this paper is to test the performance of the recently proposed weighted superposition attraction-repulsion algorithms (WSA and WSAR) on unconstrained continuous optimization test problems and constrained optimization problems. WSAR is a successor of weighted superposition attraction algorithm (WSA). WSAR is established upon the superposition principle from physics and mimics attractive and repulsive movements of solution agents (vectors). Differently from the WSA, WSAR also considers repulsive movements with updated solution move equations. WSAR requires very few algorithm-specific parameters to be set and has good convergence and searching capability. Through extensive computational tests on many benchmark problems including CEC'2015 and CEC'2020 performance of the WSAR is compared against WSA and other metaheuristic algorithms. It is statistically shown that the WSAR algorithm is able to produce good and competitive results in comparison to its predecessor WSA and other metaheuristic algorithms.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-57"},"PeriodicalIF":1.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cloud computing (CC) is a future revolution in the Information technology (IT) and Communication field. Security and internet connectivity are the common major factors to slow down the proliferation of CC. Recently, a new kind of denial of service (DDoS) attacks, known as Economic Denial of Sustainability (EDoS) attack, has been emerging. Though EDoS attacks are smaller at a moment, it can be expected to develop in nearer prospective in tandem with progression in the cloud usage. Here, EfficientNet-B3-Attn-2 fused Deep Quantum Neural Network (EfficientNet-DQNN) is presented for EDoS detection. Initially, cloud is simulated and thereafter, considered input log file is fed to perform data pre-processing. Z-Score Normalization ;(ZSN) is employed to carry out pre-processing of data. Afterwards, feature fusion (FF) is accomplished based on Deep Neural Network (DNN) with Kulczynski similarity. Then, data augmentation (DA) is executed by oversampling based upon Synthetic Minority Over-sampling Technique (SMOTE). At last, attack detection is conducted utilizing EfficientNet-DQNN. Furthermore, EfficientNet-DQNN is formed by incorporation of EfficientNet-B3-Attn-2 with DQNN. In addition, EfficientNet-DQNN attained 89.8% of F1-score, 90.4% of accuracy, 91.1% of precision and 91.2% of recall using BOT-IOT dataset at K-Fold is 9.
{"title":"EfficientNet-deep quantum neural network-based economic denial of sustainability attack detection to enhance network security in cloud.","authors":"Mariappan Navaneethakrishnan, Maharajan Robinson Joel, Sriram Kalavai Palani, Gandhi Jabakumar Gnanaprakasam","doi":"10.1080/0954898X.2024.2361093","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2361093","url":null,"abstract":"<p><p>Cloud computing (CC) is a future revolution in the Information technology (IT) and Communication field. Security and internet connectivity are the common major factors to slow down the proliferation of CC. Recently, a new kind of denial of service (DDoS) attacks, known as Economic Denial of Sustainability (EDoS) attack, has been emerging. Though EDoS attacks are smaller at a moment, it can be expected to develop in nearer prospective in tandem with progression in the cloud usage. Here, EfficientNet-B3-Attn-2 fused Deep Quantum Neural Network (EfficientNet-DQNN) is presented for EDoS detection. Initially, cloud is simulated and thereafter, considered input log file is fed to perform data pre-processing. Z-Score Normalization ;(ZSN) is employed to carry out pre-processing of data. Afterwards, feature fusion (FF) is accomplished based on Deep Neural Network (DNN) with Kulczynski similarity. Then, data augmentation (DA) is executed by oversampling based upon Synthetic Minority Over-sampling Technique (SMOTE). At last, attack detection is conducted utilizing EfficientNet-DQNN. Furthermore, EfficientNet-DQNN is formed by incorporation of EfficientNet-B3-Attn-2 with DQNN. In addition, EfficientNet-DQNN attained 89.8% of F1-score, 90.4% of accuracy, 91.1% of precision and 91.2% of recall using BOT-IOT dataset at K-Fold is 9.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":1.1,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1080/0954898X.2024.2356852
Kalpana Kumbhar, Prachi Mukherji
The attacks like distributed denial-of-service (DDoS) are termed as severe defence issues in data centres, and are considered real network threat. These types of attacks can produce huge disturbances in information technologies. In addition, it is a complex task to determine and fully alleviate DDoS attacks. The new strategy is developed to identify and alleviate DDoS attacks in the Software-Defined Internet of Things (SD-IoT) model. SD-IoT simulation is executed to gather data. The data collected through nodes of SD-IoT are fed to the selection of feature phases. Here, the hybrid process is considered to select features, wherein features, like wrapper-based technique, cosine similarity-based technique, and entropy-based technique are utilized to choose the significant features. Thereafter, the attack discovery process is done with Elephant Water Cycle (EWC)-assisted deep neuro-fuzzy network (DNFN). The EWC is adapted to train DNFN, and here EWC is obtained by grouping Elephant Herd Optimization (EHO) and water cycle algorithm (WCA). Finally, attack mitigation is carried out to secure the SD-IoT. The EWC-assisted DNFN revealed the highest accuracy of 96.9%, TNR of 98%, TPR of 90%, precision of 93%, and F1-score of 91%, when compared with other related techniques.
{"title":"An optimized deep strategy for recognition and alleviation of DDoS attack in SD-IoT.","authors":"Kalpana Kumbhar, Prachi Mukherji","doi":"10.1080/0954898X.2024.2356852","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2356852","url":null,"abstract":"<p><p>The attacks like distributed denial-of-service (DDoS) are termed as severe defence issues in data centres, and are considered real network threat. These types of attacks can produce huge disturbances in information technologies. In addition, it is a complex task to determine and fully alleviate DDoS attacks. The new strategy is developed to identify and alleviate DDoS attacks in the Software-Defined Internet of Things (SD-IoT) model. SD-IoT simulation is executed to gather data. The data collected through nodes of SD-IoT are fed to the selection of feature phases. Here, the hybrid process is considered to select features, wherein features, like wrapper-based technique, cosine similarity-based technique, and entropy-based technique are utilized to choose the significant features. Thereafter, the attack discovery process is done with Elephant Water Cycle (EWC)-assisted deep neuro-fuzzy network (DNFN). The EWC is adapted to train DNFN, and here EWC is obtained by grouping Elephant Herd Optimization (EHO) and water cycle algorithm (WCA). Finally, attack mitigation is carried out to secure the SD-IoT. The EWC-assisted DNFN revealed the highest accuracy of 96.9%, TNR of 98%, TPR of 90%, precision of 93%, and F1-score of 91%, when compared with other related techniques.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":7.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1080/0954898X.2024.2358955
Tao Wen, Jinke Li, Rong Fei, Xinhong Hei, Zhiming Chen, Zhurong Wang
Railway Point Machine (RPM) is a fundamental component of railway infrastructure and plays a crucial role in ensuring the safe operation of trains. Its primary function is to divert trains from one track to another, enabling connections between different lines and facilitating route selection. By judiciously deploying turnouts, railway systems can provide efficient transportation services while ensuring the safety of passengers and cargo. As signal processing technologies develop rapidly, taking the easy acquisition advantages of audio signals, a fault diagnosis method for RPMs is proposed by considering noise and multi-channel signals. The proposed method consists of several stages. Initially, the signal is subjected to pre-processing steps, including cropping and channel separation. Subsequently, the signal undergoes noise addition using the Random Length and Dynamic Position Noises Superposition (RDS) module, followed by conversion to a greyscale image. To enhance the data, Synthetic Minority Oversampling Technique (SMOTE) module is applied. Finally, the training data is fed into a Dual-input Attention Convolutional Neural Network (DIACNN). By employing various experimental techniques and designing diverse datasets, our proposed method demonstrates excellent robustness and achieves an outstanding classification accuracy of 99.73%.
{"title":"Dual-input robust diagnostics for railway point machines via audio signals.","authors":"Tao Wen, Jinke Li, Rong Fei, Xinhong Hei, Zhiming Chen, Zhurong Wang","doi":"10.1080/0954898X.2024.2358955","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2358955","url":null,"abstract":"<p><p>Railway Point Machine (RPM) is a fundamental component of railway infrastructure and plays a crucial role in ensuring the safe operation of trains. Its primary function is to divert trains from one track to another, enabling connections between different lines and facilitating route selection. By judiciously deploying turnouts, railway systems can provide efficient transportation services while ensuring the safety of passengers and cargo. As signal processing technologies develop rapidly, taking the easy acquisition advantages of audio signals, a fault diagnosis method for RPMs is proposed by considering noise and multi-channel signals. The proposed method consists of several stages. Initially, the signal is subjected to pre-processing steps, including cropping and channel separation. Subsequently, the signal undergoes noise addition using the Random Length and Dynamic Position Noises Superposition (RDS) module, followed by conversion to a greyscale image. To enhance the data, Synthetic Minority Oversampling Technique (SMOTE) module is applied. Finally, the training data is fed into a Dual-input Attention Convolutional Neural Network (DIACNN). By employing various experimental techniques and designing diverse datasets, our proposed method demonstrates excellent robustness and achieves an outstanding classification accuracy of 99.73%.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-22"},"PeriodicalIF":7.8,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1080/0954898X.2024.2354477
J Sulthan Alikhan, S Miruna Joe Amali, R Karthick
In this paper, Quaternion Fractional Order Meixner Moments-based Deep Siamese Domain Adaptation Convolutional Neural Network-based Big Data Analytical Technique is proposed for improving Cloud Data Security (DSDA-CNN-QFOMM-BD-CDS). The proposed methodology comprises six phases: data collection, transmission, pre-processing, storage, analysis, and security of data. Big data analysis methodologies start with the data collection phase. Deep Siamese domain adaptation convolutional Neural Network (DSDA-CNN) is applied to categorize the types of attacks in the cloud database during the data analysis process. During data security phase, Quaternion Fractional Order Meixner Moments (QFOMM) is employed to protect the cloud data for encryption with decryption. The proposed method is implemented in JAVA and assessed using performance metrics, including precision, sensitivity, accuracy, recall, specificity, f-measure, computational complexity information loss, compression ratio, throughput, encryption time, decryption time. The performance of the proposed method offers 23.31%, 15.64%, 18.89% better accuracy and 36.69%, 17.25%, 19.96% less information loss. When compared to existing methods like Fractional order discrete Tchebyshev encryption fostered big data analytical model to maximize the safety of cloud data depend on Enhanced Elman spike neural network (EESNN-FrDTM-BD-CDS), an innovative scheme architecture for safe authentication along data sharing in cloud enabled Big data Environment (LZMA-DBSCAN-BD-CDS).
{"title":"Deep Siamese domain adaptation convolutional neural network-based quaternion fractional order Meixner moments fostered big data analytical method for enhancing cloud data security.","authors":"J Sulthan Alikhan, S Miruna Joe Amali, R Karthick","doi":"10.1080/0954898X.2024.2354477","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2354477","url":null,"abstract":"<p><p>In this paper, Quaternion Fractional Order Meixner Moments-based Deep Siamese Domain Adaptation Convolutional Neural Network-based Big Data Analytical Technique is proposed for improving Cloud Data Security (DSDA-CNN-QFOMM-BD-CDS). The proposed methodology comprises six phases: data collection, transmission, pre-processing, storage, analysis, and security of data. Big data analysis methodologies start with the data collection phase. Deep Siamese domain adaptation convolutional Neural Network (DSDA-CNN) is applied to categorize the types of attacks in the cloud database during the data analysis process. During data security phase, Quaternion Fractional Order Meixner Moments (QFOMM) is employed to protect the cloud data for encryption with decryption. The proposed method is implemented in JAVA and assessed using performance metrics, including precision, sensitivity, accuracy, recall, specificity, f-measure, computational complexity information loss, compression ratio, throughput, encryption time, decryption time. The performance of the proposed method offers 23.31%, 15.64%, 18.89% better accuracy and 36.69%, 17.25%, 19.96% less information loss. When compared to existing methods like Fractional order discrete Tchebyshev encryption fostered big data analytical model to maximize the safety of cloud data depend on Enhanced Elman spike neural network (EESNN-FrDTM-BD-CDS), an innovative scheme architecture for safe authentication along data sharing in cloud enabled Big data Environment (LZMA-DBSCAN-BD-CDS).</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-28"},"PeriodicalIF":7.8,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1080/0954898X.2024.2358957
J Karthick Myilvahanan, N Mohana Sundaram
Predicting the stock market is one of the significant chores and has a successful prediction of stock rates, and it helps in making correct decisions. The prediction of the stock market is the main challenge due to blaring, chaotic data as well as non-stationary data. In this research, the support vector machine (SVM) is devised for performing an effective stock market prediction. At first, the input time series data is considered and the pre-processing of data is done by employing a standard scalar. Then, the time intrinsic features are extracted and the suitable features are selected in the feature selection stage by eliminating other features using recursive feature elimination. Afterwards, the Long Short-Term Memory (LSTM) based prediction is done, wherein LSTM is trained to employ Aquila circle-inspired optimization (ACIO) that is newly introduced by merging Aquila optimizer (AO) with circle-inspired optimization algorithm (CIOA). On the other hand, delay-based matrix formation is conducted by considering input time series data. After that, convolutional neural network (CNN)-based prediction is performed, where CNN is tuned by the same ACIO. Finally, stock market prediction is executed utilizing SVM by fusing the predicted outputs attained from LSTM-based prediction and CNN-based prediction. Furthermore, the SVM attains better outcomes of minimum mean absolute percentage error; (MAPE) and normalized root-mean-square error (RMSE) with values about 0.378 and 0.294.
{"title":"Support vector machine-based stock market prediction using long short-term memory and convolutional neural network with aquila circle inspired optimization.","authors":"J Karthick Myilvahanan, N Mohana Sundaram","doi":"10.1080/0954898X.2024.2358957","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2358957","url":null,"abstract":"<p><p>Predicting the stock market is one of the significant chores and has a successful prediction of stock rates, and it helps in making correct decisions. The prediction of the stock market is the main challenge due to blaring, chaotic data as well as non-stationary data. In this research, the support vector machine (SVM) is devised for performing an effective stock market prediction. At first, the input time series data is considered and the pre-processing of data is done by employing a standard scalar. Then, the time intrinsic features are extracted and the suitable features are selected in the feature selection stage by eliminating other features using recursive feature elimination. Afterwards, the Long Short-Term Memory (LSTM) based prediction is done, wherein LSTM is trained to employ Aquila circle-inspired optimization (ACIO) that is newly introduced by merging Aquila optimizer (AO) with circle-inspired optimization algorithm (CIOA). On the other hand, delay-based matrix formation is conducted by considering input time series data. After that, convolutional neural network (CNN)-based prediction is performed, where CNN is tuned by the same ACIO. Finally, stock market prediction is executed utilizing SVM by fusing the predicted outputs attained from LSTM-based prediction and CNN-based prediction. Furthermore, the SVM attains better outcomes of minimum mean absolute percentage error; (MAPE) and normalized root-mean-square error (RMSE) with values about 0.378 and 0.294.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-36"},"PeriodicalIF":7.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.1080/0954898X.2024.2363353
Mandeep Kumar, Jahid Ali
The Wireless Sensor Network (WSN) is susceptible to two kinds of attacks, namely active attack and passive attack. In an active attack, the attacker directly communicates with the target system or network. In contrast, in passive attack, the attacker is in indirect contact with the network. To preserve the functionality and dependability of wireless sensor networks, this research has been conducted recently to detect and mitigate the black hole attacks. In this research, a Deep learning (DL) based black hole attack detection model is designed. The WSN simulation is the beginning stage of this process. Moreover, routing is the key process, where the data is passed to the base station (BS) via the shortest and finest route. The proposed Worst Elite Sailfish Optimization (WESFO) is utilized for routing. Moreover, black hole attack detection is performed in the BS. The Auto Encoder (AE) is employed in attack detection, which is trained with the use of the proposed WESFO algorithm. Additionally, the proposed model is validated in terms of delay, Packet Delivery Rate (PDR), throughput, False-Negative Rate (FNR), and False-Positive Rate (FPR) parameters with the corresponding outcomes like 25.64 s, 94.83%, 119.3, 0.084, and 0.135 are obtained.
{"title":"A secure worst elite sailfish optimizer based routing and deep learning for black hole attack detection.","authors":"Mandeep Kumar, Jahid Ali","doi":"10.1080/0954898X.2024.2363353","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2363353","url":null,"abstract":"<p><p>The Wireless Sensor Network (WSN) is susceptible to two kinds of attacks, namely active attack and passive attack. In an active attack, the attacker directly communicates with the target system or network. In contrast, in passive attack, the attacker is in indirect contact with the network. To preserve the functionality and dependability of wireless sensor networks, this research has been conducted recently to detect and mitigate the black hole attacks. In this research, a Deep learning (DL) based black hole attack detection model is designed. The WSN simulation is the beginning stage of this process. Moreover, routing is the key process, where the data is passed to the base station (BS) via the shortest and finest route. The proposed Worst Elite Sailfish Optimization (WESFO) is utilized for routing. Moreover, black hole attack detection is performed in the BS. The Auto Encoder (AE) is employed in attack detection, which is trained with the use of the proposed WESFO algorithm. Additionally, the proposed model is validated in terms of delay, Packet Delivery Rate (PDR), throughput, False-Negative Rate (FNR), and False-Positive Rate (FPR) parameters with the corresponding outcomes like 25.64 s, 94.83%, 119.3, 0.084, and 0.135 are obtained.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-26"},"PeriodicalIF":7.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natural language is frequently employed for information exchange between humans and computers in modern digital environments. Natural Language Processing (NLP) is a basic requirement for technological advancement in the field of speech recognition. For additional NLP activities like speech-to-text translation, speech-to-speech translation, speaker recognition, and speech information retrieval, language identification (LID) is a prerequisite. In this paper, we developed a Language Identification (LID) model for Ethio-Semitic languages. We used a hybrid approach (a convolutional recurrent neural network (CRNN)), in addition to a mixed (Mel frequency cepstral coefficient (MFCC) and mel-spectrogram) approach, to build our LID model. The study focused on four Ethio-Semitic languages: Amharic, Ge'ez, Guragigna, and Tigrinya. By using data augmentation for the selected languages, we were able to expand our original dataset of 8 h of audio data to 24 h and 40 min. The proposed selected features, when evaluated, achieved an average performance accuracy of 98.1%, 98.6%, and 99.9% for testing, validation, and training, respectively. The results show that the CRNN model with (Mel-Spectrogram + MFCC) combination feature achieved the best results when compared to other existing models.
{"title":"Speaker-based language identification for Ethio-Semitic languages using CRNN and hybrid features.","authors":"Malefia Demilie Melese, Amlakie Aschale Alemu, Ayodeji Olalekan Salau, Ibrahim Gashaw Kasa","doi":"10.1080/0954898X.2024.2359610","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2359610","url":null,"abstract":"<p><p>Natural language is frequently employed for information exchange between humans and computers in modern digital environments. Natural Language Processing (NLP) is a basic requirement for technological advancement in the field of speech recognition. For additional NLP activities like speech-to-text translation, speech-to-speech translation, speaker recognition, and speech information retrieval, language identification (LID) is a prerequisite. In this paper, we developed a Language Identification (LID) model for Ethio-Semitic languages. We used a hybrid approach (a convolutional recurrent neural network (CRNN)), in addition to a mixed (Mel frequency cepstral coefficient (MFCC) and mel-spectrogram) approach, to build our LID model. The study focused on four Ethio-Semitic languages: Amharic, Ge'ez, Guragigna, and Tigrinya. By using data augmentation for the selected languages, we were able to expand our original dataset of 8 h of audio data to 24 h and 40 min. The proposed selected features, when evaluated, achieved an average performance accuracy of 98.1%, 98.6%, and 99.9% for testing, validation, and training, respectively. The results show that the CRNN model with (Mel-Spectrogram + MFCC) combination feature achieved the best results when compared to other existing models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-23"},"PeriodicalIF":7.8,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1080/0954898X.2024.2360157
Yunfei Yin, Caihao Huang, Xianjian Bao
The imputation of missing values in multivariate time-series data is a basic and popular data processing technology. Recently, some studies have exploited Recurrent Neural Networks (RNNs) and Generative Adversarial Networks (GANs) to impute/fill the missing values in multivariate time-series data. However, when faced with datasets with high missing rates, the imputation error of these methods increases dramatically. To this end, we propose a neural network model based on dynamic contribution and attention, denoted as ContrAttNet. ContrAttNet consists of three novel modules: feature attention module, iLSTM (imputation Long Short-Term Memory) module, and 1D-CNN (1-Dimensional Convolutional Neural Network) module. ContrAttNet exploits temporal information and spatial feature information to predict missing values, where iLSTM attenuates the memory of LSTM according to the characteristics of the missing values, to learn the contributions of different features. Moreover, the feature attention module introduces an attention mechanism based on contributions, to calculate supervised weights. Furthermore, under the influence of these supervised weights, 1D-CNN processes the time-series data by treating them as spatial features. Experimental results show that ContrAttNet outperforms other state-of-the-art models in the missing value imputation of multivariate time-series data, with average 6% MAPE and 9% MAE on the benchmark datasets.
{"title":"ContrAttNet: Contribution and attention approach to multivariate time-series data imputation.","authors":"Yunfei Yin, Caihao Huang, Xianjian Bao","doi":"10.1080/0954898X.2024.2360157","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2360157","url":null,"abstract":"<p><p>The imputation of missing values in multivariate time-series data is a basic and popular data processing technology. Recently, some studies have exploited Recurrent Neural Networks (RNNs) and Generative Adversarial Networks (GANs) to impute/fill the missing values in multivariate time-series data. However, when faced with datasets with high missing rates, the imputation error of these methods increases dramatically. To this end, we propose a neural network model based on dynamic contribution and attention, denoted as <b>ContrAttNet</b>. <b>ContrAttNet</b> consists of three novel modules: feature attention module, iLSTM (imputation Long Short-Term Memory) module, and 1D-CNN (1-Dimensional Convolutional Neural Network) module. <b>ContrAttNet</b> exploits temporal information and spatial feature information to predict missing values, where iLSTM attenuates the memory of LSTM according to the characteristics of the missing values, to learn the contributions of different features. Moreover, the feature attention module introduces an attention mechanism based on contributions, to calculate supervised weights. Furthermore, under the influence of these supervised weights, 1D-CNN processes the time-series data by treating them as spatial features. Experimental results show that <b>ContrAttNet</b> outperforms other state-of-the-art models in the missing value imputation of multivariate time-series data, with average 6% MAPE and 9% MAE on the benchmark datasets.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-24"},"PeriodicalIF":7.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1080/0954898X.2024.2349275
Arjun Kuruva, C Nagaraju Chiluka
Sentiment Analysis (SA) is a technique for categorizing texts based on the sentimental polarity of people's opinions. This paper introduces a sentiment analysis (SA) model with text and emojis. The two preprocessed data's are data with text and emojis and text without emojis. Feature extraction consists text features and text with emojis features. The text features are features like N-grams, modified Term Frequency-Inverse Document Frequency (TF-IDF), and Bag-of-Words (BoW) features extracted from the text. In classification, CNN (Conventional Neural Network) and MLP (Multi-Layer Perception) use emojis and text-based SA. The CNN weight is optimized by a new Electric fish Customized Shark Smell Optimization (ECSSO) Algorithm. Similarly, the text-based SA is carried out by hybrid Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) classifiers. The bagged data are given as input to the classification process via RNN and LSTM. Here, the weight of LSTM is optimized by the suggested ECSSO algorithm. Then, the mean of LSTM and RNN determines the final output. The specificity of the developed scheme is 29.01%, 42.75%, 23.88%,22.07%, 25.31%, 18.42%, 5.68%, 10.34%, 6.20%, 6.64%, and 6.84% better for 70% than other models. The efficiency of the proposed scheme is computed and evaluated.
{"title":"Hybrid deep learning approach for sentiment analysis using text and emojis.","authors":"Arjun Kuruva, C Nagaraju Chiluka","doi":"10.1080/0954898X.2024.2349275","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2349275","url":null,"abstract":"<p><p>Sentiment Analysis (SA) is a technique for categorizing texts based on the sentimental polarity of people's opinions. This paper introduces a sentiment analysis (SA) model with text and emojis. The two preprocessed data's are data with text and emojis and text without emojis. Feature extraction consists text features and text with emojis features. The text features are features like N-grams, modified Term Frequency-Inverse Document Frequency (TF-IDF), and Bag-of-Words (BoW) features extracted from the text. In classification, CNN (Conventional Neural Network) and MLP (Multi-Layer Perception) use emojis and text-based SA. The CNN weight is optimized by a new Electric fish Customized Shark Smell Optimization (ECSSO) Algorithm. Similarly, the text-based SA is carried out by hybrid Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) classifiers. The bagged data are given as input to the classification process via RNN and LSTM. Here, the weight of LSTM is optimized by the suggested ECSSO algorithm. Then, the mean of LSTM and RNN determines the final output. The specificity of the developed scheme is 29.01%, 42.75%, 23.88%,22.07%, 25.31%, 18.42%, 5.68%, 10.34%, 6.20%, 6.64%, and 6.84% better for 70% than other models. The efficiency of the proposed scheme is computed and evaluated.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-30"},"PeriodicalIF":7.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}