首页 > 最新文献

Network-Computation in Neural Systems最新文献

英文 中文
A novel optimization-assisted multi-scale and dilated adaptive hybrid deep learning network with feature fusion for event detection from social media. 新型优化辅助多尺度和扩张自适应混合深度学习网络与特征融合,用于社交媒体事件检测。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-01 Epub Date: 2024-07-17 DOI: 10.1080/0954898X.2024.2376705
Ruhi Patankar, Albert Pravin

Social media networks become an active communication medium for connecting people and delivering new messages. Social media can perform as the primary channel, where the globalized events or instances can be explored. Earlier models are facing the pitfall of noticing the temporal and spatial resolution for enhancing the efficacy. Therefore, in this proposed model, a new event detection approach from social media data is presented. Firstly, the essential data is collected and undergone for pre-processing stage. Further, the Bidirectional Encoder Representations from Transformers (BERT) and Term Frequency Inverse Document Frequency (TF-IDF) are employed for extracting features. Subsequently, the two resultant features are given to the multi-scale and dilated layer present in the detection network of GRU and Res-Bi-LSTM, named as Multi-scale and Dilated Adaptive Hybrid Deep Learning (MDA-HDL) for event detection. Moreover, the MDA-HDL network's parameters are tuned by Improved Gannet Optimization Algorithm (IGOA) to enhance the performance. Finally, the execution of the system is done over the Python platform, where the system is validated and compared with baseline methodologies. The accuracy findings of model acquire as 94.96 for dataset 1 and 96.42 for dataset 2. Hence, the recommended model outperforms with the superior results while detecting the social events.

社交媒体网络已成为连接人们和传递新信息的活跃交流媒介。社交媒体可以作为主要渠道,在这里可以探索全球化的事件或实例。早期的模型面临着注意到时间和空间分辨率以提高效率的缺陷。因此,在本建议模型中,提出了一种从社交媒体数据中进行事件检测的新方法。首先,收集基本数据并进行预处理。然后,采用变换器双向编码器表示法(BERT)和术语频率反向文档频率法(TF-IDF)提取特征。随后,这两个结果特征被赋予到 GRU 和 Res-Bi-LSTM 检测网络中的多尺度和扩张层,命名为多尺度和扩张自适应混合深度学习(MDA-HDL),用于事件检测。此外,MDA-HDL 网络的参数通过改进的甘露优化算法(IGOA)进行调整,以提高性能。最后,该系统在 Python 平台上执行,并与基线方法进行了验证和比较。数据集 1 和数据集 2 的模型准确率分别为 94.96 和 96.42。因此,所推荐的模型在检测社会事件时表现出色,取得了优异的成绩。
{"title":"A novel optimization-assisted multi-scale and dilated adaptive hybrid deep learning network with feature fusion for event detection from social media.","authors":"Ruhi Patankar, Albert Pravin","doi":"10.1080/0954898X.2024.2376705","DOIUrl":"10.1080/0954898X.2024.2376705","url":null,"abstract":"<p><p>Social media networks become an active communication medium for connecting people and delivering new messages. Social media can perform as the primary channel, where the globalized events or instances can be explored. Earlier models are facing the pitfall of noticing the temporal and spatial resolution for enhancing the efficacy. Therefore, in this proposed model, a new event detection approach from social media data is presented. Firstly, the essential data is collected and undergone for pre-processing stage. Further, the Bidirectional Encoder Representations from Transformers (BERT) and Term Frequency Inverse Document Frequency (TF-IDF) are employed for extracting features. Subsequently, the two resultant features are given to the multi-scale and dilated layer present in the detection network of GRU and Res-Bi-LSTM, named as Multi-scale and Dilated Adaptive Hybrid Deep Learning (MDA-HDL) for event detection. Moreover, the MDA-HDL network's parameters are tuned by Improved Gannet Optimization Algorithm (IGOA) to enhance the performance. Finally, the execution of the system is done over the Python platform, where the system is validated and compared with baseline methodologies. The accuracy findings of model acquire as 94.96 for dataset 1 and 96.42 for dataset 2. Hence, the recommended model outperforms with the superior results while detecting the social events.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"429-462"},"PeriodicalIF":1.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectrum occupancy prediction using LSTM models for cognitive radio applications. 利用 LSTM 模型为认知无线电应用预测频谱占用率。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-01 Epub Date: 2024-09-30 DOI: 10.1080/0954898X.2024.2393245
Tamizhelakkiya Kolangiyappan, Sabitha Gauni, Prabhu Chandhar

In recent days, mobile traffic prediction has become a prominent solution for spectrum management-related operations for the next-generation cellular networks in Cognitive Radio (CR) applications. To achieve this, the binary dataset has been created from the captured data by monitoring the spectrum activities of nine different Long Term Evolution (LTE) frequency channels. We propose a Long Short Term Memory (LSTM) based Spectrum Occupancy Prediction (SOP) approach for modelling infrastructure-based cellular traffic systems. The different types of LSTM models, such as Convolutional, Convolutional Neural Network (CNN), Stacked, and Bidirectional have been generated via offline training and tested for the created binary datasets. Moreover, the prediction performance evaluation of the generated LSTM models has been calculated using Mean Absolute Error (MAE). The pro- posed LSTM-based SOP model has achieved 2.5% higher prediction accuracy than the Auto-Regressive Integrated Moving Average (ARIMA) statistical model, accurately aligning the traffic trend with the actual samples.

近年来,移动流量预测已成为认知无线电(CR)应用中下一代蜂窝网络频谱管理相关操作的一个重要解决方案。为此,我们通过监测九个不同的长期演进(LTE)频率信道的频谱活动,从捕获的数据中创建了二进制数据集。我们提出了一种基于长短期记忆(LSTM)的频谱占用预测(SOP)方法,用于模拟基于基础设施的蜂窝通信系统。通过离线训练生成了不同类型的 LSTM 模型,如卷积模型、卷积神经网络(CNN)模型、堆叠模型和双向模型,并对创建的二进制数据集进行了测试。此外,还使用平均绝对误差(MAE)计算了生成的 LSTM 模型的预测性能评估。所生成的基于 LSTM 的 SOP 模型的预测准确率比自回归整合移动平均(ARIMA)统计模型高出 2.5%,准确地将交通趋势与实际样本相一致。
{"title":"Spectrum occupancy prediction using LSTM models for cognitive radio applications.","authors":"Tamizhelakkiya Kolangiyappan, Sabitha Gauni, Prabhu Chandhar","doi":"10.1080/0954898X.2024.2393245","DOIUrl":"10.1080/0954898X.2024.2393245","url":null,"abstract":"<p><p>In recent days, mobile traffic prediction has become a prominent solution for spectrum management-related operations for the next-generation cellular networks in Cognitive Radio (CR) applications. To achieve this, the binary dataset has been created from the captured data by monitoring the spectrum activities of nine different Long Term Evolution (LTE) frequency channels. We propose a Long Short Term Memory (LSTM) based Spectrum Occupancy Prediction (SOP) approach for modelling infrastructure-based cellular traffic systems. The different types of LSTM models, such as Convolutional, Convolutional Neural Network (CNN), Stacked, and Bidirectional have been generated via offline training and tested for the created binary datasets. Moreover, the prediction performance evaluation of the generated LSTM models has been calculated using Mean Absolute Error (MAE). The pro- posed LSTM-based SOP model has achieved 2.5% higher prediction accuracy than the Auto-Regressive Integrated Moving Average (ARIMA) statistical model, accurately aligning the traffic trend with the actual samples.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"347-378"},"PeriodicalIF":1.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SJFO: Sail Jelly Fish Optimization enabled VM migration with DRNN-based prediction for load balancing in cloud computing. SJFO:Sail Jelly Fish Optimization enabled VM migration with DRNN-based prediction for load balancing in cloud computing.
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-01 Epub Date: 2024-06-03 DOI: 10.1080/0954898X.2024.2359609
Rajesh Rathinam, Premkumar Sivakumar, Sivakumar Sigamani, Ishwarya Kothandaraman

The dynamic workload is evenly distributed among all nodes using balancing methods like hosts or VMs. Load Balancing as a Service (LBaaS) is another name for load balancing in the cloud. In this research work, the load is balanced by the application of Virtual Machine (VM) migration carried out by proposed Sail Jelly Fish Optimization (SJFO). The SJFO is formed by combining Sail Fish Optimizer (SFO) and Jellyfish Search (JS) optimizer. In the Cloud model, many Physical Machines (PMs) are present, where these PMs are comprised of many VMs. Each VM has many tasks, and these tasks depend on various parameters like Central Processing Unit (CPU), memory, Million Instructions per Second (MIPS), capacity, total number of processing entities, as well as bandwidth. Here, the load is predicted by Deep Recurrent Neural Network (DRNN) and this predicted load is compared with a threshold value, where VM migration is done based on predicted values. Furthermore, the performance of SJFO-VM is analysed using the metrics like capacity, load, and resource utilization. The proposed method shows better performance with a superior capacity of 0.598, an inferior load of 0.089, and an inferior resource utilization of 0.257.

使用主机或虚拟机等平衡方法将动态工作负载平均分配给所有节点。负载平衡即服务(LBaaS)是云计算中负载平衡的另一个名称。在这项研究工作中,负载平衡是通过应用拟议的 "风帆水母优化"(SJFO)进行的虚拟机(VM)迁移来实现的。SJFO 由 Sail Fish Optimizer(SFO)和 Jellyfish Search(JS)优化器组合而成。在云模型中,存在许多物理机(PM),这些物理机由许多虚拟机组成。每个虚拟机都有许多任务,这些任务取决于各种参数,如中央处理器(CPU)、内存、每秒百万指令数(MIPS)、容量、处理实体总数以及带宽。在这里,负载由深度递归神经网络(DRNN)预测,并将预测负载与阈值进行比较,然后根据预测值进行虚拟机迁移。此外,还使用容量、负载和资源利用率等指标分析了 SJFO-VM 的性能。建议的方法显示出更好的性能,容量为 0.598,负载为 0.089,资源利用率为 0.257。
{"title":"SJFO: Sail Jelly Fish Optimization enabled VM migration with DRNN-based prediction for load balancing in cloud computing.","authors":"Rajesh Rathinam, Premkumar Sivakumar, Sivakumar Sigamani, Ishwarya Kothandaraman","doi":"10.1080/0954898X.2024.2359609","DOIUrl":"10.1080/0954898X.2024.2359609","url":null,"abstract":"<p><p>The dynamic workload is evenly distributed among all nodes using balancing methods like hosts or VMs. Load Balancing as a Service (LBaaS) is another name for load balancing in the cloud. In this research work, the load is balanced by the application of Virtual Machine (VM) migration carried out by proposed Sail Jelly Fish Optimization (SJFO). The SJFO is formed by combining Sail Fish Optimizer (SFO) and Jellyfish Search (JS) optimizer. In the Cloud model, many Physical Machines (PMs) are present, where these PMs are comprised of many VMs. Each VM has many tasks, and these tasks depend on various parameters like <i>C</i>entral Processing Unit (CPU), memory, Million Instructions per Second (MIPS), capacity, total number of processing entities, as well as bandwidth. Here, the load is predicted by Deep Recurrent Neural Network (DRNN) and this predicted load is compared with a threshold value, where VM migration is done based on predicted values. Furthermore, the performance of SJFO-VM is analysed using the metrics like capacity, load, and resource utilization. The proposed method shows better performance with a superior capacity of 0.598, an inferior load of 0.089, and an inferior resource utilization of 0.257.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"403-428"},"PeriodicalIF":1.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System. 优化的 Wasserstein 深度卷积生成对抗网络促进了花生叶病识别系统。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-01 Epub Date: 2024-07-02 DOI: 10.1080/0954898X.2024.2351146
Anna Anbumozhi, Shanthini A

Groundnut is a noteworthy oilseed crop. Attacks by leaf diseases are one of the most important reasons causing low yield and loss of groundnut plant growth, which will directly diminish the yield and quality. Therefore, an Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System (GLDI-WDCGAN-AOA) is proposed in this paper. The pre-processed output is fed to Hesitant Fuzzy Linguistic Bi-objective Clustering (HFL-BOC) for segmentation. By using Wasserstein Deep Convolutional Generative Adversarial Network (WDCGAN), the input leaf images are classified into Healthy leaf, early leaf spot, late leaf spot, nutrition deficiency, and rust. Finally, the weight parameters of WDCGAN are optimized by Aquila Optimization Algorithm (AOA) to achieve high accuracy. The proposed GLDI-WDCGAN-AOA approach provides 23.51%, 22.01%, and 18.65% higher accuracy and 24.78%, 23.24%, and 28.98% lower error rate analysed with existing methods, such as Real-time automated identification and categorization of groundnut leaf disease utilizing hybrid machine learning methods (GLDI-DNN), Online identification of peanut leaf diseases utilizing the data balancing method along deep transfer learning (GLDI-LWCNN), and deep learning-driven method depending on progressive scaling method for the precise categorization of groundnut leaf infections (GLDI-CNN), respectively.

花生是一种值得注意的油籽作物。花生叶部病害是导致花生低产和植株生长受阻的最重要原因之一,会直接降低花生的产量和质量。因此,本文提出了一种优化的瓦瑟斯坦深度卷积生成对抗网络花生叶病识别系统(GLDI-WDCGAN-AOA)。预处理后的输出被送入犹豫模糊语言双目标聚类(HFL-BOC)进行分割。通过使用 Wasserstein 深度卷积生成对抗网络(WDCGAN),输入的叶片图像被分为健康叶片、早期叶斑、晚期叶斑、营养缺乏和锈病。最后,利用 Aquila 优化算法(AOA)对 WDCGAN 的权重参数进行优化,以达到较高的准确率。所提出的 GLDI-WDCGAN-AOA 方法的准确率分别提高了 23.51%、22.01% 和 18.65%,误差率分别降低了 24.78%、23.24% 和 28.98%。与现有方法(如利用混合机器学习方法对花生叶病进行实时自动识别和分类(GLDI-DNN)、利用数据平衡方法和深度迁移学习对花生叶病进行在线识别(GLDI-LWCNN),以及根据渐进缩放方法对花生叶感染进行精确分类的深度学习驱动方法(GLDI-CNN))相比,误差率分别降低了 98%。
{"title":"Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System.","authors":"Anna Anbumozhi, Shanthini A","doi":"10.1080/0954898X.2024.2351146","DOIUrl":"10.1080/0954898X.2024.2351146","url":null,"abstract":"<p><p>Groundnut is a noteworthy oilseed crop. Attacks by leaf diseases are one of the most important reasons causing low yield and loss of groundnut plant growth, which will directly diminish the yield and quality. Therefore, an Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System (GLDI-WDCGAN-AOA) is proposed in this paper. The pre-processed output is fed to Hesitant Fuzzy Linguistic Bi-objective Clustering (HFL-BOC) for segmentation. By using Wasserstein Deep Convolutional Generative Adversarial Network (WDCGAN), the input leaf images are classified into Healthy leaf, early leaf spot, late leaf spot, nutrition deficiency, and rust. Finally, the weight parameters of WDCGAN are optimized by Aquila Optimization Algorithm (AOA) to achieve high accuracy. The proposed GLDI-WDCGAN-AOA approach provides 23.51%, 22.01%, and 18.65% higher accuracy and 24.78%, 23.24%, and 28.98% lower error rate analysed with existing methods, such as Real-time automated identification and categorization of groundnut leaf disease utilizing hybrid machine learning methods (GLDI-DNN), Online identification of peanut leaf diseases utilizing the data balancing method along deep transfer learning (GLDI-LWCNN), and deep learning-driven method depending on progressive scaling method for the precise categorization of groundnut leaf infections (GLDI-CNN), respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"463-487"},"PeriodicalIF":1.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized multi-head self-attention and gated-dilated convolutional neural network for quantum key distribution and error rate reduction. 用于量子密钥分发和降低错误率的优化多头自注意和门控稀释卷积神经网络。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-01 Epub Date: 2024-07-16 DOI: 10.1080/0954898X.2024.2375391
R J Kavitha, D Ilakkiaselvan

Quantum key distribution (QKD) is a secure communication method that enables two parties to securely exchange a secret key. The secure key rate is a crucial metric for assessing the efficiency and practical viability of a QKD system. There are several approaches that are utilized in practice to calculate the secure key rate. In this manuscript, QKD and error rate optimization based on optimized multi-head self-attention and gated-dilated convolutional neural network (QKD-ERO-MSGCNN) is proposed. Initially, the input signals are gathered from 6G wireless networks which face obstacles to channel. For extending maximum transmission distances and improving secret key rates, the signals are fed to the variable velocity strategy particle swarm optimization algorithm, then the signals are fed to MSGCNN for analysing the quantum bit error rate reduction. The MSGCNN is optimized by intensified sand cat swarm optimization. The performance of the QKD-ERO-MSGCNN approach attains 15.57%, 23.89%, and 31.75% higher accuracy when analysed with existing techniques, like device-independent QKD utilizing random quantum states, practical continuous-variable QKD and feasible optimization parameters, entanglement and teleportation in QKD for secure wireless systems, and QKD for large scale networks methods, respectively.

量子密钥分发(QKD)是一种安全通信方法,可使双方安全地交换密钥。安全密钥率是评估 QKD 系统效率和实际可行性的关键指标。在实践中,有几种方法可用于计算安全密钥率。本文提出了基于优化多头自注意和门控稀释卷积神经网络(QKD-ERO-MSGCNN)的 QKD 和错误率优化方法。最初,输入信号来自面临信道障碍的 6G 无线网络。为了延长最大传输距离并提高密钥率,先将信号输入变速策略粒子群优化算法,然后将信号输入 MSGCNN,分析量子比特错误率的降低情况。MSGCNN 采用强化沙猫群优化算法进行优化。QKD-ERO-MSGCNN 方法的性能与现有技术(如利用随机量子态的设备无关 QKD、实用连续可变 QKD 和可行优化参数、用于安全无线系统的 QKD 中的纠缠和远距传输以及用于大规模网络的 QKD 方法)相比,分别提高了 15.57%、23.89% 和 31.75%。
{"title":"Optimized multi-head self-attention and gated-dilated convolutional neural network for quantum key distribution and error rate reduction.","authors":"R J Kavitha, D Ilakkiaselvan","doi":"10.1080/0954898X.2024.2375391","DOIUrl":"10.1080/0954898X.2024.2375391","url":null,"abstract":"<p><p>Quantum key distribution (QKD) is a secure communication method that enables two parties to securely exchange a secret key. The secure key rate is a crucial metric for assessing the efficiency and practical viability of a QKD system. There are several approaches that are utilized in practice to calculate the secure key rate. In this manuscript, QKD and error rate optimization based on optimized multi-head self-attention and gated-dilated convolutional neural network (QKD-ERO-MSGCNN) is proposed. Initially, the input signals are gathered from 6G wireless networks which face obstacles to channel. For extending maximum transmission distances and improving secret key rates, the signals are fed to the variable velocity strategy particle swarm optimization algorithm, then the signals are fed to MSGCNN for analysing the quantum bit error rate reduction. The MSGCNN is optimized by intensified sand cat swarm optimization. The performance of the QKD-ERO-MSGCNN approach attains 15.57%, 23.89%, and 31.75% higher accuracy when analysed with existing techniques, like device-independent QKD utilizing random quantum states, practical continuous-variable QKD and feasible optimization parameters, entanglement and teleportation in QKD for secure wireless systems, and QKD for large scale networks methods, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"379-402"},"PeriodicalIF":1.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized memory augmented graph neural network-based DoS attacks detection in wireless sensor network. 基于优化内存增强图神经网络的无线传感器网络 DoS 攻击检测。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-28 DOI: 10.1080/0954898X.2024.2392786
Ayyasamy Pushpalatha, Sunkari Pradeep, Matta Venkata Pullarao, Shanmuganathan Sankar

Wireless Sensor Networks (WSNs) are mainly used for data monitoring and collection purposes. Usually, they are made up of numerous sensor nodes that are utilized to gather data remotely. Each sensor node is small and inexpensive. Due to the increasing intelligence, frequency, and complexity of these malicious attacks, traditional attack detection is less effective. In this manuscript, Optimized Memory Augmented Graph Neural Network-based DoS Attacks Detection in Wireless Sensor Network (DoS-AD-MAGNN-WSN) is proposed. Here, the input data is amassed from WSN-DS dataset. The input data is pre-processing by secure adaptive event-triggered filter for handling negation and stemming. Then, the output is fed to nested patch-based feature extraction to extract the optimal features. The extracted features are given to MAGNN for the effective classification of blackhole, flooding, grayhole, scheduling, and normal. The weight parameter of MAGNN is optimized by gradient-based optimizers for better accuracy. The proposed method is activated in Python, and it attains 31.20%, 23.30%, and 26.43% higher accuracy analyzed with existing techniques, such as CNN-LSTM-based method for Denial of Service attacks detection in WSNs (CNN-DoS-AD-WSN), Trust-based DoS attack detection in WSNs for reliable data transmission (TB-DoS-AD-WSN-RDT), and FBDR-Fuzzy-based DoS attack detection with recovery mechanism for WSNs (FBDR-DoS-AD-RM-WSN), respectively.

无线传感器网络(WSN)主要用于监测和收集数据。通常,它们由许多传感器节点组成,用于远程收集数据。每个传感器节点体积小、成本低。由于这些恶意攻击的智能性、频率和复杂性不断提高,传统的攻击检测方法已不再有效。本文提出了基于优化内存增强图神经网络的无线传感器网络 DoS 攻击检测(DoS-AD-MAGNN-WSN)。输入数据来自 WSN-DS 数据集。输入数据通过安全自适应事件触发滤波器进行预处理,以处理否定和词干。然后,将输出输入基于嵌套补丁的特征提取,以提取最佳特征。提取的特征将交给 MAGNN,以便对黑洞、洪水、灰洞、调度和正常进行有效分类。MAGNN 的权重参数通过基于梯度的优化器进行优化,以提高准确性。提出的方法在 Python 中被激活,与基于 CNN-LSTM 的 WSN 中拒绝服务攻击检测方法(CNN-DoS-AD-WSN)、基于信任的 WSN 中 DoS 攻击检测方法(TB-DoS-AD-WSN-RDT)和基于 FBDR-Fuzzy 的 WSN DoS 攻击检测与恢复机制(FBDR-DoS-AD-RM-WSN)等现有技术相比,准确率分别提高了 31.20%、23.30% 和 26.43%。
{"title":"Optimized memory augmented graph neural network-based DoS attacks detection in wireless sensor network.","authors":"Ayyasamy Pushpalatha, Sunkari Pradeep, Matta Venkata Pullarao, Shanmuganathan Sankar","doi":"10.1080/0954898X.2024.2392786","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2392786","url":null,"abstract":"<p><p>Wireless Sensor Networks (WSNs) are mainly used for data monitoring and collection purposes. Usually, they are made up of numerous sensor nodes that are utilized to gather data remotely. Each sensor node is small and inexpensive. Due to the increasing intelligence, frequency, and complexity of these malicious attacks, traditional attack detection is less effective. In this manuscript, Optimized Memory Augmented Graph Neural Network-based DoS Attacks Detection in Wireless Sensor Network (DoS-AD-MAGNN-WSN) is proposed. Here, the input data is amassed from WSN-DS dataset. The input data is pre-processing by secure adaptive event-triggered filter for handling negation and stemming. Then, the output is fed to nested patch-based feature extraction to extract the optimal features. The extracted features are given to MAGNN for the effective classification of blackhole, flooding, grayhole, scheduling, and normal. The weight parameter of MAGNN is optimized by gradient-based optimizers for better accuracy. The proposed method is activated in Python, and it attains 31.20%, 23.30%, and 26.43% higher accuracy analyzed with existing techniques, such as CNN-LSTM-based method for Denial of Service attacks detection in WSNs (CNN-DoS-AD-WSN), Trust-based DoS attack detection in WSNs for reliable data transmission (TB-DoS-AD-WSN-RDT), and FBDR-Fuzzy-based DoS attack detection with recovery mechanism for WSNs (FBDR-DoS-AD-RM-WSN), respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-27"},"PeriodicalIF":1.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree hierarchical deep convolutional neural network optimized with sheep flock optimization algorithm for sentiment classification of Twitter data. 采用羊群优化算法优化的树状分层深度卷积神经网络,用于 Twitter 数据的情感分类。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-21 DOI: 10.1080/0954898X.2024.2388109
Lakshmanaprakash Sanmugaraja, Pandiaraj Annamalai

The increasing volume of online reviews and tweets poses significant challenges for sentiment classification because of the difficulty in obtaining annotated training data. This paper aims to enhance sentiment classification of Twitter data by developing a robust model that improves classification accuracy and computational efficiency. The proposed method named Tree Hierarchical Deep Convolutional Neural Network optimized with Sheep Flock Optimization Algorithm for Sentiment Classification of Twitter Data (SCTD-THDCNN-SFOA) utilizes the Stanford Sentiment Treebank dataset. The process begins with pre-processing steps including Tokenization, Stop words Elimination, Filtering, Hashtag Removal, and Multiword Grouping. The Gray Level Co-occurrence Matrix Window Adaptive Algorithm is employed to extract features, such as emoticon counts, punctuation counts, gazetteer word existence, n-grams, and part of speech tags. These features are selected using Entropy-Kurtosis-based Feature Selection approach. Finally, the Tree Hierarchical Deep Convolutional Neural Network enhanced by the Sheep Flock Optimization Algorithm is used to categorize the Twitter data as positive, negative, and neutral sentiments. The proposed SCTD-THDCNN-SFOA method demonstrates superior performance, achieving higher accuracy and lesser computation time than the existing models, respectively. The SCTD-THDCNN-SFOA framework significantly improves the accuracy and efficiency of sentiment classification for Twitter data.

由于难以获得有注释的训练数据,在线评论和推文数量的不断增加给情感分类带来了巨大挑战。本文旨在通过开发一种能提高分类准确性和计算效率的稳健模型来增强 Twitter 数据的情感分类。本文提出的方法名为 "利用羊群优化算法对 Twitter 数据进行情感分类的树状分层深度卷积神经网络"(SCTD-THDCNN-SFOA),利用的是斯坦福大学情感树库数据集。该过程从预处理步骤开始,包括标记化、消除停顿词、过滤、去除标签和多词分组。采用灰度共现矩阵窗口自适应算法提取特征,如表情符号计数、标点符号计数、地名词典单词存在性、n-grams 和语篇标签。这些特征采用基于熵-峰度的特征选择方法进行选择。最后,使用羊群优化算法增强的树状分层深度卷积神经网络将 Twitter 数据分为积极情绪、消极情绪和中性情绪。所提出的 SCTD-THDCNN-SFOA 方法性能优越,与现有模型相比,准确率更高,计算时间更短。SCTD-THDCNN-SFOA 框架显著提高了 Twitter 数据情感分类的准确性和效率。
{"title":"Tree hierarchical deep convolutional neural network optimized with sheep flock optimization algorithm for sentiment classification of Twitter data.","authors":"Lakshmanaprakash Sanmugaraja, Pandiaraj Annamalai","doi":"10.1080/0954898X.2024.2388109","DOIUrl":"10.1080/0954898X.2024.2388109","url":null,"abstract":"<p><p>The increasing volume of online reviews and tweets poses significant challenges for sentiment classification because of the difficulty in obtaining annotated training data. This paper aims to enhance sentiment classification of Twitter data by developing a robust model that improves classification accuracy and computational efficiency. The proposed method named Tree Hierarchical Deep Convolutional Neural Network optimized with Sheep Flock Optimization Algorithm for Sentiment Classification of Twitter Data (SCTD-THDCNN-SFOA) utilizes the Stanford Sentiment Treebank dataset. The process begins with pre-processing steps including Tokenization, Stop words Elimination, Filtering, Hashtag Removal, and Multiword Grouping. The Gray Level Co-occurrence Matrix Window Adaptive Algorithm is employed to extract features, such as emoticon counts, punctuation counts, gazetteer word existence, n-grams, and part of speech tags. These features are selected using Entropy-Kurtosis-based Feature Selection approach. Finally, the Tree Hierarchical Deep Convolutional Neural Network enhanced by the Sheep Flock Optimization Algorithm is used to categorize the Twitter data as positive, negative, and neutral sentiments. The proposed SCTD-THDCNN-SFOA method demonstrates superior performance, achieving higher accuracy and lesser computation time than the existing models, respectively. The SCTD-THDCNN-SFOA framework significantly improves the accuracy and efficiency of sentiment classification for Twitter data.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":1.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sentiment analysis using graph-based Quickprop method for product quality enhancement. 利用基于图的 Quickprop 方法进行情感分析,以提高产品质量。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-14 DOI: 10.1080/0954898X.2024.2410777
Raj Kumar Veerasamy Subramani, Thirumoorthy Kumaresan

The degree to which customers express satisfaction with a product on Twitter and other social media platforms is increasingly used to evaluate product quality. However, the volume and variety of textual data make traditional sentiment analysis methods challenging. The nuanced and context-dependent nature of product-related opinions presents a challenge for existing tools. This research addresses this gap by utilizing complex graph-based modelling strategies to capture the intricacies of real-world data. The Graph-based Quickprop Method constructs a graph model using the Sentiment140 dataset with 1.6 million tweets, where individuals are nodes and interactions are edges. Experimental results show a significant increase in sentiment classification accuracy, demonstrating the method's efficacy. This contribution underscores the importance of relational structures in sentiment analysis and provides a robust framework for extracting actionable insights from user-generated content, leading to improved product quality evaluations. The GQP-PQE method advances sentiment analysis and offers practical implications for businesses seeking to enhance product quality through a better understanding of consumer feedback on social media.

客户在 Twitter 和其他社交媒体平台上对产品表示满意的程度越来越多地被用来评估产品质量。然而,文本数据的数量和多样性使得传统的情感分析方法面临挑战。产品相关意见的细微差别和上下文依赖性给现有工具带来了挑战。本研究利用复杂的基于图的建模策略来捕捉真实世界中错综复杂的数据,从而弥补了这一不足。基于图的 Quickprop 方法利用包含 160 万条推文的 Sentiment140 数据集构建了一个图模型,其中个人是节点,互动是边。实验结果表明,情感分类的准确率显著提高,证明了该方法的有效性。这一贡献强调了情感分析中关系结构的重要性,并为从用户生成的内容中提取可操作的洞察力提供了一个强大的框架,从而改进了产品质量评估。GQP-PQE 方法推动了情感分析的发展,并为企业通过更好地了解消费者在社交媒体上的反馈来提高产品质量提供了实际意义。
{"title":"Sentiment analysis using graph-based Quickprop method for product quality enhancement.","authors":"Raj Kumar Veerasamy Subramani, Thirumoorthy Kumaresan","doi":"10.1080/0954898X.2024.2410777","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2410777","url":null,"abstract":"<p><p>The degree to which customers express satisfaction with a product on Twitter and other social media platforms is increasingly used to evaluate product quality. However, the volume and variety of textual data make traditional sentiment analysis methods challenging. The nuanced and context-dependent nature of product-related opinions presents a challenge for existing tools. This research addresses this gap by utilizing complex graph-based modelling strategies to capture the intricacies of real-world data. The Graph-based Quickprop Method constructs a graph model using the Sentiment140 dataset with 1.6 million tweets, where individuals are nodes and interactions are edges. Experimental results show a significant increase in sentiment classification accuracy, demonstrating the method's efficacy. This contribution underscores the importance of relational structures in sentiment analysis and provides a robust framework for extracting actionable insights from user-generated content, leading to improved product quality evaluations. The GQP-PQE method advances sentiment analysis and offers practical implications for businesses seeking to enhance product quality through a better understanding of consumer feedback on social media.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-23"},"PeriodicalIF":1.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep self-organizing map neural networks improve the segmentation for inadequate plantar pressure imaging data set. 深度自组织图神经网络改进了对不足的足底压力成像数据集的分割。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-14 DOI: 10.1080/0954898X.2024.2413849
Dan Wang, Zairan Li, Nilanjan Dey, Adam Slowik, R Simon Sherratt, Fuqian Shi

This study introduces a deep self-organizing map neural network based on level-set (LS-SOM) for the customization of a shoe-last defined from plantar pressure imaging data. To alleviate the over-segmentation problem of images, which refers to segmenting images into more subcomponents, a domain-based segmentation model of plantar pressure images was constructed. The domain growth algorithm was subsequently modified by optimizing its parameters. A SOM with 10, 15, 20, and 30 hidden layers was compared and validated according to domain growth characteristics by using merging and splitting algorithms. Furthermore, we incorporated a level set segmentation method into the plantar pressure image algorithm to enhance its efficiency. Compared to the literature, this proposed method has significantly improved pixel accuracy, average cross-combination ratio, frequency-weighted cross-combination ratio, and boundary F1 index comparison. Using the proposed methods, shoe lasts can be designed optimally, and wearing comfort is enhanced, particularly for people with high blood pressure.

本研究介绍了一种基于水平集(LS-SOM)的深度自组织图神经网络,用于根据足底压力成像数据定制鞋楦。为了缓解图像的过度分割问题,即把图像分割成更多的子组件,我们构建了一个基于域的足底压力图像分割模型。随后,通过优化参数对域增长算法进行了修改。通过使用合并和拆分算法,根据域增长特征对具有 10、15、20 和 30 个隐藏层的 SOM 进行了比较和验证。此外,我们还在足底压力图像算法中加入了水平集分割方法,以提高其效率。与文献相比,本文提出的方法在像素精度、平均交叉组合率、频率加权交叉组合率和边界 F1 指数比较等方面都有显著提高。利用所提出的方法,可以优化鞋楦设计,提高穿着舒适度,尤其适合高血压患者。
{"title":"Deep self-organizing map neural networks improve the segmentation for inadequate plantar pressure imaging data set.","authors":"Dan Wang, Zairan Li, Nilanjan Dey, Adam Slowik, R Simon Sherratt, Fuqian Shi","doi":"10.1080/0954898X.2024.2413849","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2413849","url":null,"abstract":"<p><p>This study introduces a deep self-organizing map neural network based on level-set (LS-SOM) for the customization of a shoe-last defined from plantar pressure imaging data. To alleviate the over-segmentation problem of images, which refers to segmenting images into more subcomponents, a domain-based segmentation model of plantar pressure images was constructed. The domain growth algorithm was subsequently modified by optimizing its parameters. A SOM with 10, 15, 20, and 30 hidden layers was compared and validated according to domain growth characteristics by using merging and splitting algorithms. Furthermore, we incorporated a level set segmentation method into the plantar pressure image algorithm to enhance its efficiency. Compared to the literature, this proposed method has significantly improved pixel accuracy, average cross-combination ratio, frequency-weighted cross-combination ratio, and boundary F1 index comparison. Using the proposed methods, shoe lasts can be designed optimally, and wearing comfort is enhanced, particularly for people with high blood pressure.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-21"},"PeriodicalIF":1.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuro connect: Integrating data-driven and BiGRU classification for enhanced autism prediction from fMRI data. 神经连接:整合数据驱动和 BiGRU 分类,从 fMRI 数据中增强自闭症预测。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-13 DOI: 10.1080/0954898X.2024.2412679
Pavithra Rajaram, Mohanapriya Marimuthu

Autism Spectrum Disorder (ASD) poses a significant challenge in early diagnosis and intervention due to its multifaceted clinical presentation and lack of objective biomarkers. This research presents a novel approach, termed Neuro Connect, which integrates data-driven techniques with Bidirectional Gated Recurrent Unit (BiGRU) classification to enhance the prediction of ASD using functional Magnetic Resonance Imaging (fMRI) data. This study uses both structural and functional neuroimaging data to investigate the complex brain underpinnings of autism spectrum disorder (ASD). They use an Auto-Encoder (AE) to efficiently reduce dimensionality while retaining critical information by learning and compressing important characteristics from high-dimensional data. We treat the feature-extracted data using a BiGRU model for the classification task of predicting ASD. They provide a new optimization strategy, the Horse Herd Algorithm (HHA), and show that it outperforms other established optimizers, such SGD and Adam, in order to improve classification accuracy. The model's performance is greatly enhanced by the HHA's novel optimization technique, which more precisely refines weight modifications made during training. The proposed ASD and EEG dataset accuracy value is 99.5%, and 99.3 compared to the existing method the proposed has a high accuracy value.

自闭症谱系障碍(ASD)的临床表现多种多样,且缺乏客观的生物标志物,这给早期诊断和干预带来了巨大挑战。这项研究提出了一种名为 "神经连接"(Neuro Connect)的新方法,它将数据驱动技术与双向门控递归单元(BiGRU)分类相结合,利用功能性磁共振成像(fMRI)数据加强对自闭症谱系障碍的预测。这项研究利用结构和功能神经成像数据来研究自闭症谱系障碍(ASD)复杂的大脑基础。他们使用自动编码器(AE)通过学习和压缩高维数据中的重要特征,在保留关键信息的同时有效地降低了维度。我们使用 BiGRU 模型处理提取的特征数据,以完成预测 ASD 的分类任务。他们提供了一种新的优化策略--马群算法(Horse Herd Algorithm,HHA),并证明它在提高分类准确性方面优于 SGD 和 Adam 等其他成熟的优化器。HHA 的新优化技术能更精确地完善训练过程中的权重修改,从而大大提高了模型的性能。所提出的 ASD 和脑电图数据集准确率值为 99.5%,与现有方法的 99.3 相比,所提出的方法具有较高的准确率值。
{"title":"Neuro connect: Integrating data-driven and BiGRU classification for enhanced autism prediction from fMRI data.","authors":"Pavithra Rajaram, Mohanapriya Marimuthu","doi":"10.1080/0954898X.2024.2412679","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2412679","url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) poses a significant challenge in early diagnosis and intervention due to its multifaceted clinical presentation and lack of objective biomarkers. This research presents a novel approach, termed Neuro Connect, which integrates data-driven techniques with Bidirectional Gated Recurrent Unit (BiGRU) classification to enhance the prediction of ASD using functional Magnetic Resonance Imaging (fMRI) data. This study uses both structural and functional neuroimaging data to investigate the complex brain underpinnings of autism spectrum disorder (ASD). They use an Auto-Encoder (AE) to efficiently reduce dimensionality while retaining critical information by learning and compressing important characteristics from high-dimensional data. We treat the feature-extracted data using a BiGRU model for the classification task of predicting ASD. They provide a new optimization strategy, the Horse Herd Algorithm (HHA), and show that it outperforms other established optimizers, such SGD and Adam, in order to improve classification accuracy. The model's performance is greatly enhanced by the HHA's novel optimization technique, which more precisely refines weight modifications made during training. The proposed ASD and EEG dataset accuracy value is 99.5%, and 99.3 compared to the existing method the proposed has a high accuracy value.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":1.1,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Network-Computation in Neural Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1