首页 > 最新文献

Network-Computation in Neural Systems最新文献

英文 中文
Automated glaucoma diagnosis: Optimized hybrid classification model with improved U-net segmentation. 青光眼自动诊断:改进U-net分割的优化混合分类模型。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2025-03-27 DOI: 10.1080/0954898X.2025.2481958
Krishnamoorthy Varadharajalu, Logeswari Shanmugam

Glaucoma is a leading cause of blindness, requiring early detection for effective management. Traditional diagnostic methods have challenges such as precise segmentation of small structures and accurate classification of disease stages remain. This research addresses these challenges by developing an optimized hybrid classification model for automated glaucoma diagnosis. At first, the preprocessing stage employs the histogram equalization technique known as Contrast Limited Adaptive Histogram Equalization (CLAHE) technique. Consequently, an improved U-Net segmentation process implemented with the proposed cross-entropy loss function is utilized. Then, features such as fractal features, cup-to-disc-based features, Inferior-Superior-Nasal-Temporal (ISNT) rule-based features and improved Pyramid Histogram of Orient Gradient (PHOG) based features are extracted. Further, a hybrid classification model, a combination of Improved Convolutional Neural Network (ICNN) and optimized Recurrent Neural Network (RNN) classifiers for diagnosing glaucoma disease. Also, to improve the performance of the diagnosis process, a new Opposition-based Learning-enabled Namib Beetle Optimization (OBL-NBO) approach is proposed to optimize the weights of the RNN classifier. Moreover, the ICNN classifier is employed for classifying the presence of glaucoma and non-glaucoma conditions. The proposed OBL-NBO scheme achieved an accuracy of 0.927 for dataset 1 and 0.945 for dataset 2 at an 80% training data.

青光眼是致盲的主要原因,需要早期发现才能有效治疗。传统的诊断方法仍然面临着小结构的精确分割和疾病分期的准确分类等挑战。本研究通过开发一种优化的青光眼自动诊断混合分类模型来解决这些挑战。首先,预处理阶段采用直方图均衡技术,即对比度有限自适应直方图均衡(CLAHE)技术。因此,利用所提出的交叉熵损失函数实现改进的U-Net分割过程。然后,提取分形特征、基于杯盘特征、基于下-上-鼻-颞(下-上-鼻-颞(下-上-鼻-颞)规则特征和基于改进的东方梯度金字塔直方图(PHOG)特征;进一步,将改进的卷积神经网络(ICNN)和优化的递归神经网络(RNN)分类器相结合的混合分类模型用于青光眼疾病的诊断。此外,为了提高诊断过程的性能,提出了一种新的基于对立学习的Namib甲虫优化(OBL-NBO)方法来优化RNN分类器的权重。此外,采用ICNN分类器对青光眼和非青光眼的存在进行分类。在80%的训练数据下,本文提出的OBL-NBO方案对数据集1和数据集2的准确率分别达到0.927和0.945。
{"title":"Automated glaucoma diagnosis: Optimized hybrid classification model with improved U-net segmentation.","authors":"Krishnamoorthy Varadharajalu, Logeswari Shanmugam","doi":"10.1080/0954898X.2025.2481958","DOIUrl":"10.1080/0954898X.2025.2481958","url":null,"abstract":"<p><p>Glaucoma is a leading cause of blindness, requiring early detection for effective management. Traditional diagnostic methods have challenges such as precise segmentation of small structures and accurate classification of disease stages remain. This research addresses these challenges by developing an optimized hybrid classification model for automated glaucoma diagnosis. At first, the preprocessing stage employs the histogram equalization technique known as Contrast Limited Adaptive Histogram Equalization (CLAHE) technique. Consequently, an improved U-Net segmentation process implemented with the proposed cross-entropy loss function is utilized. Then, features such as fractal features, cup-to-disc-based features, Inferior-Superior-Nasal-Temporal (ISNT) rule-based features and improved Pyramid Histogram of Orient Gradient (PHOG) based features are extracted. Further, a hybrid classification model, a combination of Improved Convolutional Neural Network (ICNN) and optimized Recurrent Neural Network (RNN) classifiers for diagnosing glaucoma disease. Also, to improve the performance of the diagnosis process, a new Opposition-based Learning-enabled Namib Beetle Optimization (OBL-NBO) approach is proposed to optimize the weights of the RNN classifier. Moreover, the ICNN classifier is employed for classifying the presence of glaucoma and non-glaucoma conditions. The proposed OBL-NBO scheme achieved an accuracy of 0.927 for dataset 1 and 0.945 for dataset 2 at an 80% training data.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"2148-2202"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143722665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiagent DDOS attack detection model: Optimal trained hybrid classifier and entropy-based mitigation process. 多代理DDOS攻击检测模型:最优训练混合分类器和基于熵的缓解过程。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-12-17 DOI: 10.1080/0954898X.2024.2412674
Thiruselvan Palusamy, Balasubramanian Chelliah

This study proposes a novel multi-agent system designed to detect Distributed Denial of Service (DDoS) attacks, addressing the increasing need for robust cybersecurity measures. The hypothesis posits that a structured multi-agent approach can enhance detection accuracy and response efficiency in DDoS attack scenarios. The methodology involves a five-stage detection model: (1) Preprocessing using a modified double sigmoid normalization technique to eliminate duplicate data; (2) Feature Extraction where raw data and improved correlation-based features, mutual information, and statistical features are identified; (3) Dimensionality Reduction conducted by a reducer agent to streamline the feature set; (4) Classification utilizing Deep Belief Networks (DBN), Bi-LSTM, and Deep Maxout models, with their weights optimally tuned using the hybrid optimization algorithm, WUJSO; and (5) Decision Making by the decision agent to ascertain the presence of attacks, followed by mitigation through modified entropy-based techniques. The results demonstrate that the proposed method achieves a detection accuracy of 0.953 at a learning rate of 90%, significantly outperforming other methods, including Bi-GRU (0.857), DEEP-MAXOUT (0.910), Bi-LSTM (0.865), RNN (0.814), NN (0.894), and DBN (0.761). This research underscores the effectiveness of the multi-agent approach in enhancing DDoS attack detection and mitigation.

本研究提出了一种新型多代理系统,旨在检测分布式拒绝服务(DDoS)攻击,满足对稳健网络安全措施日益增长的需求。假设认为,结构化的多代理方法可以提高 DDoS 攻击场景中的检测准确性和响应效率。该方法包括一个五阶段检测模型:(1) 使用改进的双sigmoid归一化技术进行预处理,以消除重复数据;(2) 特征提取,确定原始数据和改进的基于相关性的特征、互信息和统计特征;(3) 由降维代理进行降维,以精简特征集;(4) 利用深度信念网络 (DBN)、Bi-LSTM 和深度 Maxout 模型进行分类,并使用混合优化算法 WUJSO 对其权重进行优化调整;以及 (5) 由决策代理做出决策,以确定是否存在攻击,然后通过修改后的基于熵的技术进行缓解。结果表明,在学习率为 90% 的情况下,所提出的方法达到了 0.953 的检测准确率,明显优于其他方法,包括 Bi-GRU (0.857)、DEEP-MAXOUT (0.910)、Bi-LSTM (0.865)、RNN (0.814)、NNN (0.894) 和 DBN (0.761)。这项研究强调了多代理方法在增强 DDoS 攻击检测和缓解方面的有效性。
{"title":"Multiagent DDOS attack detection model: Optimal trained hybrid classifier and entropy-based mitigation process.","authors":"Thiruselvan Palusamy, Balasubramanian Chelliah","doi":"10.1080/0954898X.2024.2412674","DOIUrl":"10.1080/0954898X.2024.2412674","url":null,"abstract":"<p><p>This study proposes a novel multi-agent system designed to detect Distributed Denial of Service (DDoS) attacks, addressing the increasing need for robust cybersecurity measures. The hypothesis posits that a structured multi-agent approach can enhance detection accuracy and response efficiency in DDoS attack scenarios. The methodology involves a five-stage detection model: (1) Preprocessing using a modified double sigmoid normalization technique to eliminate duplicate data; (2) Feature Extraction where raw data and improved correlation-based features, mutual information, and statistical features are identified; (3) Dimensionality Reduction conducted by a reducer agent to streamline the feature set; (4) Classification utilizing Deep Belief Networks (DBN), Bi-LSTM, and Deep Maxout models, with their weights optimally tuned using the hybrid optimization algorithm, WUJSO; and (5) Decision Making by the decision agent to ascertain the presence of attacks, followed by mitigation through modified entropy-based techniques. The results demonstrate that the proposed method achieves a detection accuracy of 0.953 at a learning rate of 90%, significantly outperforming other methods, including Bi-GRU (0.857), DEEP-MAXOUT (0.910), Bi-LSTM (0.865), RNN (0.814), NN (0.894), and DBN (0.761). This research underscores the effectiveness of the multi-agent approach in enhancing DDoS attack detection and mitigation.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"2042-2074"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142840253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Internet-of-Things for smart irrigation control and crop recommendation using interactive guide-deep model in Agriculture 4.0 applications. 在农业 4.0 应用中使用交互式深度引导模型进行智能灌溉控制和作物推荐的物联网。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-07-31 DOI: 10.1080/0954898X.2024.2383893
Smita Sandeep Mane, Vaibhav E Narawade

The rapid advancements in Agriculture 4.0 have led to the development of the continuous monitoring of the soil parameters and recommend crops based on soil fertility to improve crop yield. Accordingly, the soil parameters, such as pH, nitrogen, phosphorous, potassium, and soil moisture are exploited for irrigation control, followed by the crop recommendation of the agricultural field. The smart irrigation control is performed utilizing the Interactive guide optimizer-Deep Convolutional Neural Network (Interactive guide optimizer-DCNN), which supports the decision-making regarding the soil nutrients. Specifically, the Interactive guide optimizer-DCNN classifier is designed to replace the standard ADAM algorithm through the modeled interactive guide optimizer, which exhibits alertness and guiding characters from the nature-inspired dog and cat population. In addition, the data is down-sampled to reduce redundancy and preserve important information to improve computing performance. The designed model attains an accuracy of 93.11 % in predicting the minerals, pH value, and soil moisture thereby, exhibiting a higher recommendation accuracy of 97.12% when the model training is fixed at 90%. Further, the developed model attained the F-score, specificity, sensitivity, and accuracy values of 90.30%, 92.12%, 89.56%, and 86.36% with k-fold 10 in predicting the minerals that revealed the efficacy of the model.

农业 4.0 的飞速发展促使人们开始持续监测土壤参数,并根据土壤肥力推荐作物,以提高作物产量。因此,利用 pH 值、氮、磷、钾和土壤水分等土壤参数进行灌溉控制,然后推荐农田作物。智能灌溉控制是利用交互式向导优化器-深度卷积神经网络(交互式向导优化器-DCNN)进行的,该网络支持有关土壤养分的决策。具体来说,交互式向导优化器-DCNN 分类器旨在通过建模的交互式向导优化器取代标准的 ADAM 算法。此外,还对数据进行了下采样,以减少冗余并保留重要信息,从而提高计算性能。所设计的模型在预测矿物质、pH 值和土壤湿度方面的准确率为 93.11%,因此,当模型训练固定为 90% 时,推荐准确率更高达 97.12%。此外,在预测矿物质方面,所开发模型的 F-score、特异性、灵敏度和准确度值分别为 90.30%、92.12%、89.56% 和 86.36%(k-fold 10),显示了模型的有效性。
{"title":"Internet-of-Things for smart irrigation control and crop recommendation using interactive guide-deep model in Agriculture 4.0 applications.","authors":"Smita Sandeep Mane, Vaibhav E Narawade","doi":"10.1080/0954898X.2024.2383893","DOIUrl":"10.1080/0954898X.2024.2383893","url":null,"abstract":"<p><p>The rapid advancements in Agriculture 4.0 have led to the development of the continuous monitoring of the soil parameters and recommend crops based on soil fertility to improve crop yield. Accordingly, the soil parameters, such as pH, nitrogen, phosphorous, potassium, and soil moisture are exploited for irrigation control, followed by the crop recommendation of the agricultural field. The smart irrigation control is performed utilizing the Interactive guide optimizer-Deep Convolutional Neural Network (Interactive guide optimizer-DCNN), which supports the decision-making regarding the soil nutrients. Specifically, the Interactive guide optimizer-DCNN classifier is designed to replace the standard ADAM algorithm through the modeled interactive guide optimizer, which exhibits alertness and guiding characters from the nature-inspired dog and cat population. In addition, the data is down-sampled to reduce redundancy and preserve important information to improve computing performance. The designed model attains an accuracy of 93.11 % in predicting the minerals, pH value, and soil moisture thereby, exhibiting a higher recommendation accuracy of 97.12% when the model training is fixed at 90%. Further, the developed model attained the <i>F</i>-score, specificity, sensitivity, and accuracy values of 90.30%, 92.12%, 89.56%, and 86.36% with <i>k</i>-fold 10 in predicting the minerals that revealed the efficacy of the model.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1663-1695"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Key point trajectory prediction method of human stochastic posture falls. 人体随机姿势跌倒的关键点轨迹预测方法。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-01 Epub Date: 2024-11-04 DOI: 10.1080/0954898X.2024.2412673
Yafei Ding, Gaomin Zhang

The human body will show very complex and diversified posture changes in the process of falling, including body posture, limb position, angle and movement trajectory, etc. The coordinates of the key points of the model are mapped to the three-dimensional space to form a three-dimensional model and obtain the three-dimensional coordinates of the key points; The construction decomposition method is used to calculate the rotation matrix of each key point, and the rotation matrix is solved to obtain the angular displacement data of the key points on different degrees of freedom. The method of curve fitting combined with the weight distribution kernel function based on self-organizing mapping theory is used to obtain the motion trajectory prediction equation of the human body falling in different degrees of freedom at random positions in three-dimensional space, determine the key point trajectory of human random fall behaviour. The experimental results show that the mapped 3D model is consistent with the real human body structure. This method can accurately determine whether the human body falls or squats randomly, and the prediction results of the key points of the human fall are consistent with the actions of the human body after the fall.

人体在下落过程中会表现出非常复杂多样的姿态变化,包括身体姿态、肢体位置、角度和运动轨迹等。将模型关键点的坐标映射到三维空间形成三维模型,得到关键点的三维坐标;采用构造分解法计算每个关键点的旋转矩阵,求解旋转矩阵得到关键点在不同自由度上的角位移数据。利用基于自组织映射理论的曲线拟合方法结合权重分布核函数,得到人体在三维空间不同自由度随机位置下落的运动轨迹预测方程,确定人体随机下落行为的关键点轨迹。实验结果表明,绘制的三维模型与真实人体结构一致。该方法能准确判断人体是随机坠落还是下蹲,人体坠落关键点的预测结果与人体坠落后的动作一致。
{"title":"Key point trajectory prediction method of human stochastic posture falls.","authors":"Yafei Ding, Gaomin Zhang","doi":"10.1080/0954898X.2024.2412673","DOIUrl":"10.1080/0954898X.2024.2412673","url":null,"abstract":"<p><p>The human body will show very complex and diversified posture changes in the process of falling, including body posture, limb position, angle and movement trajectory, etc. The coordinates of the key points of the model are mapped to the three-dimensional space to form a three-dimensional model and obtain the three-dimensional coordinates of the key points; The construction decomposition method is used to calculate the rotation matrix of each key point, and the rotation matrix is solved to obtain the angular displacement data of the key points on different degrees of freedom. The method of curve fitting combined with the weight distribution kernel function based on self-organizing mapping theory is used to obtain the motion trajectory prediction equation of the human body falling in different degrees of freedom at random positions in three-dimensional space, determine the key point trajectory of human random fall behaviour. The experimental results show that the mapped 3D model is consistent with the real human body structure. This method can accurately determine whether the human body falls or squats randomly, and the prediction results of the key points of the human fall are consistent with the actions of the human body after the fall.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"2019-2041"},"PeriodicalIF":1.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Support vector machine-based stock market prediction using long short-term memory and convolutional neural network with aquila circle inspired optimization. 基于支持向量机的股票市场预测,使用长短期记忆和卷积神经网络,以及受奎拉圆圈启发的优化。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-01 Epub Date: 2024-06-10 DOI: 10.1080/0954898X.2024.2358957
J Karthick Myilvahanan, N Mohana Sundaram

Predicting the stock market is one of the significant chores and has a successful prediction of stock rates, and it helps in making correct decisions. The prediction of the stock market is the main challenge due to blaring, chaotic data as well as non-stationary data. In this research, the support vector machine (SVM) is devised for performing an effective stock market prediction. At first, the input time series data is considered and the pre-processing of data is done by employing a standard scalar. Then, the time intrinsic features are extracted and the suitable features are selected in the feature selection stage by eliminating other features using recursive feature elimination. Afterwards, the Long Short-Term Memory (LSTM) based prediction is done, wherein LSTM is trained to employ Aquila circle-inspired optimization (ACIO) that is newly introduced by merging Aquila optimizer (AO) with circle-inspired optimization algorithm (CIOA). On the other hand, delay-based matrix formation is conducted by considering input time series data. After that, convolutional neural network (CNN)-based prediction is performed, where CNN is tuned by the same ACIO. Finally, stock market prediction is executed utilizing SVM by fusing the predicted outputs attained from LSTM-based prediction and CNN-based prediction. Furthermore, the SVM attains better outcomes of minimum mean absolute percentage error; (MAPE) and normalized root-mean-square error (RMSE) with values about 0.378 and 0.294.

预测股市是一项重要任务,成功预测股票价格有助于做出正确决策。股票市场的预测是一项重大挑战,因为它面临着爆炸性、混沌数据和非稳态数据。本研究设计了支持向量机(SVM)来进行有效的股市预测。首先,考虑输入的时间序列数据,并采用标准标量对数据进行预处理。然后,提取时间内在特征,并在特征选择阶段使用递归特征消除法消除其他特征,从而选出合适的特征。然后,进行基于长短期记忆(LSTM)的预测,其中 LSTM 的训练采用了 Aquila 圆圈启发优化算法(ACIO),该算法是通过将 Aquila 优化器(AO)与圆圈启发优化算法(CIOA)合并而新引入的。另一方面,通过考虑输入的时间序列数据,进行基于延迟的矩阵形成。然后,执行基于卷积神经网络(CNN)的预测,其中 CNN 由相同的 ACIO 进行调整。最后,通过融合基于 LSTM 的预测和基于 CNN 的预测所获得的预测输出,利用 SVM 进行股市预测。此外,SVM 在最小平均绝对百分比误差 (MAPE) 和归一化均方根误差 (RMSE) 值约为 0.378 和 0.294 方面取得了更好的结果。
{"title":"Support vector machine-based stock market prediction using long short-term memory and convolutional neural network with aquila circle inspired optimization.","authors":"J Karthick Myilvahanan, N Mohana Sundaram","doi":"10.1080/0954898X.2024.2358957","DOIUrl":"10.1080/0954898X.2024.2358957","url":null,"abstract":"<p><p>Predicting the stock market is one of the significant chores and has a successful prediction of stock rates, and it helps in making correct decisions. The prediction of the stock market is the main challenge due to blaring, chaotic data as well as non-stationary data. In this research, the support vector machine (SVM) is devised for performing an effective stock market prediction. At first, the input time series data is considered and the pre-processing of data is done by employing a standard scalar. Then, the time intrinsic features are extracted and the suitable features are selected in the feature selection stage by eliminating other features using recursive feature elimination. Afterwards, the Long Short-Term Memory (LSTM) based prediction is done, wherein LSTM is trained to employ Aquila circle-inspired optimization (ACIO) that is newly introduced by merging Aquila optimizer (AO) with circle-inspired optimization algorithm (CIOA). On the other hand, delay-based matrix formation is conducted by considering input time series data. After that, convolutional neural network (CNN)-based prediction is performed, where CNN is tuned by the same ACIO. Finally, stock market prediction is executed utilizing SVM by fusing the predicted outputs attained from LSTM-based prediction and CNN-based prediction. Furthermore, the SVM attains better outcomes of minimum mean absolute percentage error; (MAPE) and normalized root-mean-square error (RMSE) with values about 0.378 and 0.294.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1185-1220"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statement of Retraction. 撤回。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-01 Epub Date: 2024-08-03 DOI: 10.1080/0954898X.2024.2385540
{"title":"Statement of Retraction.","authors":"","doi":"10.1080/0954898X.2024.2385540","DOIUrl":"10.1080/0954898X.2024.2385540","url":null,"abstract":"","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"iv"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An intelligent wireless channel corrupted image-denoising framework using symmetric convolution-based heuristic assisted residual attention network. 使用基于对称卷积的启发式辅助残差注意网络的智能无线信道损坏图像去噪框架。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-01 Epub Date: 2024-05-14 DOI: 10.1080/0954898X.2024.2350578
Sreedhar Mala, Aparna Kukunuri

Image denoising is one of the significant approaches for extracting valuable information in the required images without any errors. During the process of image transmission in the wireless medium, a wide variety of noise is presented to affect the image quality. For efficient analysis, an effective denoising approach is needed to enhance the quality of the images. The main scope of this research paper is to correct errors and remove the effects of channel degradation. A corrupted image denoising approach is developed in wireless channels to eliminate the bugs. The required images are gathered from wireless channels at the receiver end. Initially, the collected images are decomposed into several regions using Adaptive Lifting Wavelet Transform (ALWT) and then the "Symmetric Convolution-based Residual Attention Network (SC-RAN)" is employed, where the residual images are obtained by separating the clean image from the noisy images. The parameters present are optimized using Hybrid Energy Golden Tortoise Beetle Optimizer (HEGTBO) to maximize efficiency. The image denoising is performed over the obtained residual images and noisy images to get the final denoised images. The numerical findings of the developed model attain 31.69% regarding PSNR metrics. Thus, the analysis of the developed model shows significant improvement.

图像去噪是在所需图像中无误提取有价值信息的重要方法之一。在无线介质中传输图像的过程中,会出现各种各样的噪声来影响图像质量。为了进行有效分析,需要一种有效的去噪方法来提高图像质量。本文研究的主要范围是纠正错误和消除信道劣化的影响。本文开发了一种在无线信道中消除错误的损坏图像去噪方法。接收端从无线信道收集所需的图像。首先,使用自适应提升小波变换(ALWT)将收集到的图像分解成多个区域,然后采用 "基于对称卷积的残差注意网络(SC-RAN)",通过从噪声图像中分离出干净图像来获得残差图像。使用混合能量金龟甲虫优化器(HEGTBO)对存在的参数进行优化,以最大限度地提高效率。对获得的残留图像和噪声图像进行图像去噪,以获得最终的去噪图像。所开发模型的 PSNR 指标达到 31.69%。因此,对所开发模型的分析表明该模型有显著的改进。
{"title":"An intelligent wireless channel corrupted image-denoising framework using symmetric convolution-based heuristic assisted residual attention network.","authors":"Sreedhar Mala, Aparna Kukunuri","doi":"10.1080/0954898X.2024.2350578","DOIUrl":"10.1080/0954898X.2024.2350578","url":null,"abstract":"<p><p>Image denoising is one of the significant approaches for extracting valuable information in the required images without any errors. During the process of image transmission in the wireless medium, a wide variety of noise is presented to affect the image quality. For efficient analysis, an effective denoising approach is needed to enhance the quality of the images. The main scope of this research paper is to correct errors and remove the effects of channel degradation. A corrupted image denoising approach is developed in wireless channels to eliminate the bugs. The required images are gathered from wireless channels at the receiver end. Initially, the collected images are decomposed into several regions using Adaptive Lifting Wavelet Transform (ALWT) and then the \"Symmetric Convolution-based Residual Attention Network (SC-RAN)\" is employed, where the residual images are obtained by separating the clean image from the noisy images. The parameters present are optimized using Hybrid Energy Golden Tortoise Beetle Optimizer (HEGTBO) to maximize efficiency. The image denoising is performed over the obtained residual images and noisy images to get the final denoised images. The numerical findings of the developed model attain 31.69% regarding PSNR metrics. Thus, the analysis of the developed model shows significant improvement.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"953-986"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing multi-class lung disease classification in chest x-ray images: A hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach. 增强胸部X光图像中的多类肺病分类:混合蝠鲼觅食火山爆发算法增强多层感知器神经网络方法。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-01 Epub Date: 2024-05-16 DOI: 10.1080/0954898X.2024.2350579
Rajendran Thavasimuthu, Sudheer Hanumanthakari, Sridhar Sekar, Sakthivel Kirubakaran

One of the most used diagnostic imaging techniques for identifying a variety of lung and bone-related conditions is the chest X-ray. Recent developments in deep learning have demonstrated several successful cases of illness diagnosis from chest X-rays. However, issues of stability and class imbalance still need to be resolved. Hence in this manuscript, multi-class lung disease classification in chest x-ray images using a hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach is proposed (MPNN-Hyb-MRF-VEA). Initially, the input chest X-ray images are taken from the Covid-Chest X-ray dataset. Anisotropic diffusion Kuwahara filtering (ADKF) is used to enhance the quality of these images and lower noise. To capture significant discriminative features, the Term frequency-inverse document frequency (TF-IDF) based feature extraction method is utilized in this case. The Multilayer Perceptron Neural Network (MPNN) serves as the classification model for multi-class lung disorders classification as COVID-19, pneumonia, tuberculosis (TB), and normal. A Hybrid Manta-Ray Foraging and Volcano Eruption Algorithm (Hyb-MRF-VEA) is introduced to further optimize and fine-tune the MPNN's parameters. The Python platform is used to accurately evaluate the proposed methodology. The performance of the proposed method provides 23.21%, 12.09%, and 5.66% higher accuracy compared with existing methods like NFM, SVM, and CNN respectively.

胸部 X 射线是最常用的诊断成像技术之一,可用于识别各种肺部和骨骼相关疾病。深度学习的最新发展已经展示了几个通过胸部 X 光片诊断疾病的成功案例。然而,稳定性和类不平衡问题仍有待解决。因此,本手稿提出了使用混合蝠鲼觅食火山喷发算法增强多层感知器神经网络方法(MPNN-Hyb-MRF-VEA)对胸部X光图像进行多类肺部疾病分类。最初,输入的胸部 X 光图像来自 Covid-Chest X 光数据集。使用各向异性扩散桑原滤波(ADKF)来提高这些图像的质量并降低噪声。为了捕捉重要的鉴别特征,本例采用了基于词频-反文档频率(TF-IDF)的特征提取方法。多层感知器神经网络(MPNN)作为多类肺部疾病分类模型,可将肺部疾病分为 COVID-19、肺炎、肺结核(TB)和正常。为了进一步优化和微调 MPNN 的参数,引入了蝠鲼觅食和火山喷发混合算法(Hyb-MRF-VEA)。Python 平台用于精确评估所提出的方法。与 NFM、SVM 和 CNN 等现有方法相比,拟议方法的准确率分别提高了 23.21%、12.09% 和 5.66%。
{"title":"Enhancing multi-class lung disease classification in chest x-ray images: A hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach.","authors":"Rajendran Thavasimuthu, Sudheer Hanumanthakari, Sridhar Sekar, Sakthivel Kirubakaran","doi":"10.1080/0954898X.2024.2350579","DOIUrl":"10.1080/0954898X.2024.2350579","url":null,"abstract":"<p><p>One of the most used diagnostic imaging techniques for identifying a variety of lung and bone-related conditions is the chest X-ray. Recent developments in deep learning have demonstrated several successful cases of illness diagnosis from chest X-rays. However, issues of stability and class imbalance still need to be resolved. Hence in this manuscript, multi-class lung disease classification in chest x-ray images using a hybrid manta-ray foraging volcano eruption algorithm boosted multilayer perceptron neural network approach is proposed (MPNN-Hyb-MRF-VEA). Initially, the input chest X-ray images are taken from the Covid-Chest X-ray dataset. Anisotropic diffusion Kuwahara filtering (ADKF) is used to enhance the quality of these images and lower noise. To capture significant discriminative features, the Term frequency-inverse document frequency (TF-IDF) based feature extraction method is utilized in this case. The Multilayer Perceptron Neural Network (MPNN) serves as the classification model for multi-class lung disorders classification as COVID-19, pneumonia, tuberculosis (TB), and normal. A Hybrid Manta-Ray Foraging and Volcano Eruption Algorithm (Hyb-MRF-VEA) is introduced to further optimize and fine-tune the MPNN's parameters. The Python platform is used to accurately evaluate the proposed methodology. The performance of the proposed method provides 23.21%, 12.09%, and 5.66% higher accuracy compared with existing methods like NFM, SVM, and CNN respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"987-1018"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140946455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTED ARTICLE: A clustering approach for attack detection and data transmission in vehicular ad-hoc networks. 车辆自组织网络中攻击检测和数据传输的聚类方法。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-01 Epub Date: 2023-11-18 DOI: 10.1080/0954898X.2023.2279973
Atul Barve, Pushpinder Singh Patheja
{"title":"RETRACTED ARTICLE: A clustering approach for attack detection and data transmission in vehicular ad-hoc networks.","authors":"Atul Barve, Pushpinder Singh Patheja","doi":"10.1080/0954898X.2023.2279973","DOIUrl":"10.1080/0954898X.2023.2279973","url":null,"abstract":"","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"iii"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138048829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant leaf infected spot segmentation using robust encoder-decoder cascaded deep learning model. 基于鲁棒编码器-解码器级联深度学习模型的植物叶片侵染斑分割。
IF 1.6 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-08-01 Epub Date: 2023-11-21 DOI: 10.1080/0954898X.2023.2286002
David Femi, Manapakkam Anandan Mukunthan

Leaf infection detection and diagnosis at an earlier stage can improve agricultural output and reduce monetary costs. An inaccurate segmentation may degrade the accuracy of disease classification due to some different and complex leaf diseases. Also, the disease's adhesion and dimension can overlap, causing partial under-segmentation. Therefore, a novel robust Deep Encoder-Decoder Cascaded Network (DEDCNet) model is proposed in this manuscript for leaf image segmentation that precisely segments the diseased leaf spots and differentiates similar diseases. This model is comprised of an Infected Spot Recognition Network and an Infected Spot Segmentation Network. Initially, ISRN is designed by integrating cascaded CNN with a Feature Pyramid Pooling layer to identify the infected leaf spot and avoid an impact of background details. After that, the ISSN developed using an encoder-decoder network, which uses a multi-scale dilated convolution kernel to precisely segment the infected leaf spot. Moreover, the resultant leaf segments are provided to the pre-learned CNN models to learn texture features followed by the SVM algorithm to categorize leaf disease classes. The ODEDCNet delivers exceptional performance on both the Betel Leaf Image and PlantVillage datasets. On the Betel Leaf Image dataset, it achieves an accuracy of 94.89%, with high precision (94.35%), recall (94.77%), and F-score (94.56%), while maintaining low under-segmentation (6.2%) and over-segmentation rates (2.8%). It also achieves a remarkable Dice coefficient of 0.9822, all in just 0.10 seconds. On the PlantVillage dataset, the ODEDCNet outperforms other existing models with an accuracy of 96.5%, demonstrating high precision (96.61%), recall (96.5%), and F-score (96.56%). It excels in reducing under-segmentation to just 3.12% and over-segmentation to 2.56%. Furthermore, it achieves a Dice coefficient of 0.9834 in a mere 0.09 seconds. It evident for the greater efficiency on both segmentation and categorization of leaf diseases contrasted with the existing models.

叶片侵染的早期检测和诊断可以提高农业产量,降低经济成本。由于一些不同且复杂的叶片病害,不准确的分割可能会降低病害分类的准确性。此外,疾病的粘附和尺寸可能重叠,导致部分分割不足。因此,本文提出了一种新的鲁棒深度编码器-解码器级联网络(DEDCNet)模型用于叶片图像分割,该模型可以精确分割患病的叶片斑点并区分相似的疾病。该模型由侵染点识别网络和侵染点分割网络组成。最初,ISRN通过将级联CNN与特征金字塔池层相结合来识别感染的叶斑病,并避免背景细节的影响。之后,ISSN使用编码器-解码器网络开发,该网络使用多尺度扩展卷积核来精确分割感染的叶斑病。然后将得到的叶段提供给预学习的CNN模型学习纹理特征,再通过SVM算法对叶病类进行分类。ODEDCNet在槟榔叶图像和PlantVillage数据集上提供了卓越的性能。在槟榔叶图像数据集上,达到了94.89%的准确率,具有较高的精度(94.35%)、召回率(94.77%)和f分数(94.56%),同时保持了较低的欠分割率(6.2%)和过分割率(2.8%)。它还在0.10秒内实现了0.9822的骰子系数。在PlantVillage数据集上,ODEDCNet以96.5%的准确率优于其他现有模型,显示出高精度(96.61%)、召回率(96.5%)和f分数(96.56%)。它擅长将分割不足减少到3.12%,过度分割减少到2.56%。此外,它在0.09秒内实现了0.9834的Dice系数。与现有模型相比,该模型在叶片病害的分割和分类上具有更高的效率。
{"title":"Plant leaf infected spot segmentation using robust encoder-decoder cascaded deep learning model.","authors":"David Femi, Manapakkam Anandan Mukunthan","doi":"10.1080/0954898X.2023.2286002","DOIUrl":"10.1080/0954898X.2023.2286002","url":null,"abstract":"<p><p>Leaf infection detection and diagnosis at an earlier stage can improve agricultural output and reduce monetary costs. An inaccurate segmentation may degrade the accuracy of disease classification due to some different and complex leaf diseases. Also, the disease's adhesion and dimension can overlap, causing partial under-segmentation. Therefore, a novel robust Deep Encoder-Decoder Cascaded Network (DEDCNet) model is proposed in this manuscript for leaf image segmentation that precisely segments the diseased leaf spots and differentiates similar diseases. This model is comprised of an Infected Spot Recognition Network and an Infected Spot Segmentation Network. Initially, ISRN is designed by integrating cascaded CNN with a Feature Pyramid Pooling layer to identify the infected leaf spot and avoid an impact of background details. After that, the ISSN developed using an encoder-decoder network, which uses a multi-scale dilated convolution kernel to precisely segment the infected leaf spot. Moreover, the resultant leaf segments are provided to the pre-learned CNN models to learn texture features followed by the SVM algorithm to categorize leaf disease classes. The ODEDCNet delivers exceptional performance on both the Betel Leaf Image and PlantVillage datasets. On the Betel Leaf Image dataset, it achieves an accuracy of 94.89%, with high precision (94.35%), recall (94.77%), and F-score (94.56%), while maintaining low under-segmentation (6.2%) and over-segmentation rates (2.8%). It also achieves a remarkable Dice coefficient of 0.9822, all in just 0.10 seconds. On the PlantVillage dataset, the ODEDCNet outperforms other existing models with an accuracy of 96.5%, demonstrating high precision (96.61%), recall (96.5%), and F-score (96.56%). It excels in reducing under-segmentation to just 3.12% and over-segmentation to 2.56%. Furthermore, it achieves a Dice coefficient of 0.9834 in a mere 0.09 seconds. It evident for the greater efficiency on both segmentation and categorization of leaf diseases contrasted with the existing models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"407-425"},"PeriodicalIF":1.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Network-Computation in Neural Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1