首页 > 最新文献

Network-Computation in Neural Systems最新文献

英文 中文
A novel optimization-assisted multi-scale and dilated adaptive hybrid deep learning network with feature fusion for event detection from social media. 新型优化辅助多尺度和扩张自适应混合深度学习网络与特征融合,用于社交媒体事件检测。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-17 DOI: 10.1080/0954898X.2024.2376705
Ruhi Patankar, Albert Pravin

Social media networks become an active communication medium for connecting people and delivering new messages. Social media can perform as the primary channel, where the globalized events or instances can be explored. Earlier models are facing the pitfall of noticing the temporal and spatial resolution for enhancing the efficacy. Therefore, in this proposed model, a new event detection approach from social media data is presented. Firstly, the essential data is collected and undergone for pre-processing stage. Further, the Bidirectional Encoder Representations from Transformers (BERT) and Term Frequency Inverse Document Frequency (TF-IDF) are employed for extracting features. Subsequently, the two resultant features are given to the multi-scale and dilated layer present in the detection network of GRU and Res-Bi-LSTM, named as Multi-scale and Dilated Adaptive Hybrid Deep Learning (MDA-HDL) for event detection. Moreover, the MDA-HDL network's parameters are tuned by Improved Gannet Optimization Algorithm (IGOA) to enhance the performance. Finally, the execution of the system is done over the Python platform, where the system is validated and compared with baseline methodologies. The accuracy findings of model acquire as 94.96 for dataset 1 and 96.42 for dataset 2. Hence, the recommended model outperforms with the superior results while detecting the social events.

社交媒体网络已成为连接人们和传递新信息的活跃交流媒介。社交媒体可以作为主要渠道,在这里可以探索全球化的事件或实例。早期的模型面临着注意到时间和空间分辨率以提高效率的缺陷。因此,在本建议模型中,提出了一种从社交媒体数据中进行事件检测的新方法。首先,收集基本数据并进行预处理。然后,采用变换器双向编码器表示法(BERT)和术语频率反向文档频率法(TF-IDF)提取特征。随后,这两个结果特征被赋予到 GRU 和 Res-Bi-LSTM 检测网络中的多尺度和扩张层,命名为多尺度和扩张自适应混合深度学习(MDA-HDL),用于事件检测。此外,MDA-HDL 网络的参数通过改进的甘露优化算法(IGOA)进行调整,以提高性能。最后,该系统在 Python 平台上执行,并与基线方法进行了验证和比较。数据集 1 和数据集 2 的模型准确率分别为 94.96 和 96.42。因此,所推荐的模型在检测社会事件时表现出色,取得了优异的成绩。
{"title":"A novel optimization-assisted multi-scale and dilated adaptive hybrid deep learning network with feature fusion for event detection from social media.","authors":"Ruhi Patankar, Albert Pravin","doi":"10.1080/0954898X.2024.2376705","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2376705","url":null,"abstract":"<p><p>Social media networks become an active communication medium for connecting people and delivering new messages. Social media can perform as the primary channel, where the globalized events or instances can be explored. Earlier models are facing the pitfall of noticing the temporal and spatial resolution for enhancing the efficacy. Therefore, in this proposed model, a new event detection approach from social media data is presented. Firstly, the essential data is collected and undergone for pre-processing stage. Further, the Bidirectional Encoder Representations from Transformers (BERT) and Term Frequency Inverse Document Frequency (TF-IDF) are employed for extracting features. Subsequently, the two resultant features are given to the multi-scale and dilated layer present in the detection network of GRU and Res-Bi-LSTM, named as Multi-scale and Dilated Adaptive Hybrid Deep Learning (MDA-HDL) for event detection. Moreover, the MDA-HDL network's parameters are tuned by Improved Gannet Optimization Algorithm (IGOA) to enhance the performance. Finally, the execution of the system is done over the Python platform, where the system is validated and compared with baseline methodologies. The accuracy findings of model acquire as 94.96 for dataset 1 and 96.42 for dataset 2. Hence, the recommended model outperforms with the superior results while detecting the social events.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized multi-head self-attention and gated-dilated convolutional neural network for quantum key distribution and error rate reduction. 用于量子密钥分发和降低错误率的优化多头自注意和门控稀释卷积神经网络。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-16 DOI: 10.1080/0954898X.2024.2375391
R J Kavitha, D Ilakkiaselvan

Quantum key distribution (QKD) is a secure communication method that enables two parties to securely exchange a secret key. The secure key rate is a crucial metric for assessing the efficiency and practical viability of a QKD system. There are several approaches that are utilized in practice to calculate the secure key rate. In this manuscript, QKD and error rate optimization based on optimized multi-head self-attention and gated-dilated convolutional neural network (QKD-ERO-MSGCNN) is proposed. Initially, the input signals are gathered from 6G wireless networks which face obstacles to channel. For extending maximum transmission distances and improving secret key rates, the signals are fed to the variable velocity strategy particle swarm optimization algorithm, then the signals are fed to MSGCNN for analysing the quantum bit error rate reduction. The MSGCNN is optimized by intensified sand cat swarm optimization. The performance of the QKD-ERO-MSGCNN approach attains 15.57%, 23.89%, and 31.75% higher accuracy when analysed with existing techniques, like device-independent QKD utilizing random quantum states, practical continuous-variable QKD and feasible optimization parameters, entanglement and teleportation in QKD for secure wireless systems, and QKD for large scale networks methods, respectively.

量子密钥分发(QKD)是一种安全通信方法,可使双方安全地交换密钥。安全密钥率是评估 QKD 系统效率和实际可行性的关键指标。在实践中,有几种方法可用于计算安全密钥率。本文提出了基于优化多头自注意和门控稀释卷积神经网络(QKD-ERO-MSGCNN)的 QKD 和错误率优化方法。最初,输入信号来自面临信道障碍的 6G 无线网络。为了延长最大传输距离并提高密钥率,先将信号输入变速策略粒子群优化算法,然后将信号输入 MSGCNN,分析量子比特错误率的降低情况。MSGCNN 采用强化沙猫群优化算法进行优化。QKD-ERO-MSGCNN 方法的性能与现有技术(如利用随机量子态的设备无关 QKD、实用连续可变 QKD 和可行优化参数、用于安全无线系统的 QKD 中的纠缠和远距传输以及用于大规模网络的 QKD 方法)相比,分别提高了 15.57%、23.89% 和 31.75%。
{"title":"Optimized multi-head self-attention and gated-dilated convolutional neural network for quantum key distribution and error rate reduction.","authors":"R J Kavitha, D Ilakkiaselvan","doi":"10.1080/0954898X.2024.2375391","DOIUrl":"10.1080/0954898X.2024.2375391","url":null,"abstract":"<p><p>Quantum key distribution (QKD) is a secure communication method that enables two parties to securely exchange a secret key. The secure key rate is a crucial metric for assessing the efficiency and practical viability of a QKD system. There are several approaches that are utilized in practice to calculate the secure key rate. In this manuscript, QKD and error rate optimization based on optimized multi-head self-attention and gated-dilated convolutional neural network (QKD-ERO-MSGCNN) is proposed. Initially, the input signals are gathered from 6G wireless networks which face obstacles to channel. For extending maximum transmission distances and improving secret key rates, the signals are fed to the variable velocity strategy particle swarm optimization algorithm, then the signals are fed to MSGCNN for analysing the quantum bit error rate reduction. The MSGCNN is optimized by intensified sand cat swarm optimization. The performance of the QKD-ERO-MSGCNN approach attains 15.57%, 23.89%, and 31.75% higher accuracy when analysed with existing techniques, like device-independent QKD utilizing random quantum states, practical continuous-variable QKD and feasible optimization parameters, entanglement and teleportation in QKD for secure wireless systems, and QKD for large scale networks methods, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of cyber security in IoT based on ant colony optimized artificial neural adaptive Tensor flow. 基于蚁群优化的人工神经自适应张量流增强物联网网络安全
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-15 DOI: 10.1080/0954898X.2024.2336058
Vijaya Bhaskar Sadu, Kumar Abhishek, Omaia Mohammed Al-Omari, Sandhya Rani Nallola, Rajeev Kumar Sharma, Mohammad Shadab Khan

The Internet of Things (IoT) is a network that connects various hardware, software, data storage, and applications. These interconnected devices provide services to businesses and can potentially serve as entry points for cyber-attacks. The privacy of IoT devices is increasingly vulnerable, particularly to threats like viruses and illegal software distribution lead to the theft of critical information. Ant Colony-Optimized Artificial Neural-Adaptive Tensorflow (ACO-ANT) technique is proposed to detect malicious software illicitly disseminated through the IoT. To emphasize the significance of each token in source duplicate data, the noise data undergoes processing using tokenization and weighted attribute techniques. Deep learning (DL) methods are then employed to identify source code duplication. Also the Multi-Objective Recurrent Neural Network (M-RNN) is used to identify suspicious activities within an IoT environment. The performance of proposed technique is examined using Loss, accuracy, F measure, precision to identify its efficiency. The experimental outcomes demonstrate that the proposed method ACO-ANT on Malimg dataset provides 12.35%, 14.75%, 11.84% higher precision and 10.95%, 15.78%, 13.89% higher f-measure compared to the existing methods. Further, leveraging block chain for malware detection is a promising direction for future research the fact that could enhance the security of IoT and identify malware threats.

物联网(IoT)是一个连接各种硬件、软件、数据存储和应用程序的网络。这些互联设备为企业提供服务,也可能成为网络攻击的切入点。物联网设备的隐私越来越易受攻击,特别是病毒和非法软件分发等威胁,导致关键信息被盗。我们提出了蚁群优化人工神经网络-自适应张量流(ACO-ANT)技术来检测通过物联网非法传播的恶意软件。为了强调源重复数据中每个标记的重要性,噪声数据使用标记化和加权属性技术进行处理。然后采用深度学习(DL)方法来识别源代码重复。此外,还使用多目标循环神经网络(M-RNN)来识别物联网环境中的可疑活动。我们使用损失率、准确率、F 值、精确度来检测所提议技术的性能,以确定其效率。实验结果表明,与现有方法相比,在 Malimg 数据集上提出的 ACO-ANT 方法的精确度分别提高了 12.35%、14.75% 和 11.84%,F 值分别提高了 10.95%、15.78% 和 13.89%。此外,利用区块链进行恶意软件检测是未来研究的一个很有前景的方向,因为它可以增强物联网的安全性并识别恶意软件威胁。
{"title":"Enhancement of cyber security in IoT based on ant colony optimized artificial neural adaptive Tensor flow.","authors":"Vijaya Bhaskar Sadu, Kumar Abhishek, Omaia Mohammed Al-Omari, Sandhya Rani Nallola, Rajeev Kumar Sharma, Mohammad Shadab Khan","doi":"10.1080/0954898X.2024.2336058","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2336058","url":null,"abstract":"<p><p>The Internet of Things (IoT) is a network that connects various hardware, software, data storage, and applications. These interconnected devices provide services to businesses and can potentially serve as entry points for cyber-attacks. The privacy of IoT devices is increasingly vulnerable, particularly to threats like viruses and illegal software distribution lead to the theft of critical information. Ant Colony-Optimized Artificial Neural-Adaptive Tensorflow (ACO-ANT) technique is proposed to detect malicious software illicitly disseminated through the IoT. To emphasize the significance of each token in source duplicate data, the noise data undergoes processing using tokenization and weighted attribute techniques. Deep learning (DL) methods are then employed to identify source code duplication. Also the Multi-Objective Recurrent Neural Network (M-RNN) is used to identify suspicious activities within an IoT environment. The performance of proposed technique is examined using Loss, accuracy, F measure, precision to identify its efficiency. The experimental outcomes demonstrate that the proposed method ACO-ANT on Malimg dataset provides 12.35%, 14.75%, 11.84% higher precision and 10.95%, 15.78%, 13.89% higher f-measure compared to the existing methods. Further, leveraging block chain for malware detection is a promising direction for future research the fact that could enhance the security of IoT and identify malware threats.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MLNAS: Meta-learning based neural architecture search for automated generation of deep neural networks for plant disease detection tasks. MLNAS:基于元学习的神经架构搜索,用于自动生成植物病害检测任务的深度神经网络。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-12 DOI: 10.1080/0954898X.2024.2374852
Sahil Verma, Prabhat Kumar, Jyoti Prakash Singh

Plant diseases pose a significant threat to agricultural productivity worldwide. Convolutional neural networks (CNNs) have achieved state-of-the-art performances on several plant disease detection tasks. However, the manual development of CNN models using an exhaustive approach is a resource-intensive task. Neural Architecture Search (NAS) has emerged as an innovative paradigm that seeks to automate model generation procedures without human intervention. However, the application of NAS in plant disease detection has received limited attention. In this work, we propose a two-stage meta-learning-based neural architecture search system (ML NAS) to automate the generation of CNN models for unseen plant disease detection tasks. The first stage recommends the most suitable benchmark models for unseen plant disease detection tasks based on the prior evaluations of benchmark models on existing plant disease datasets. In the second stage, the proposed NAS operators are employed to optimize the recommended model for the target task. The experimental results showed that the MLNAS system's model outperformed state-of-the-art models on the fruit disease dataset, achieving an accuracy of 99.61%. Furthermore, the MLNAS-generated model outperformed the Progressive NAS model on the 8-class plant disease dataset, achieving an accuracy of 99.8%. Hence, the proposed MLNAS system facilitates faster model development with reduced computational costs.

植物病害对全球农业生产力构成了重大威胁。卷积神经网络(CNN)在多项植物病害检测任务中取得了最先进的性能。然而,使用穷举法手动开发 CNN 模型是一项资源密集型任务。神经架构搜索(NAS)作为一种创新范式应运而生,旨在无需人工干预即可自动生成模型。然而,NAS 在植物病害检测中的应用受到的关注有限。在这项工作中,我们提出了一种基于元学习的两阶段神经架构搜索系统(ML NAS),以自动生成用于未见植物病害检测任务的 CNN 模型。第一阶段根据先前在现有植物病害数据集上对基准模型的评估,为未知植物病害检测任务推荐最合适的基准模型。在第二阶段,利用提出的 NAS 算子针对目标任务优化推荐模型。实验结果表明,MLNAS 系统的模型在水果病害数据集上的表现优于最先进的模型,准确率达到 99.61%。此外,在 8 类植物疾病数据集上,MLNAS 生成的模型的准确率达到了 99.8%,优于 Progressive NAS 模型。因此,所提出的 MLNAS 系统有助于更快地开发模型,同时降低计算成本。
{"title":"MLNAS: Meta-learning based neural architecture search for automated generation of deep neural networks for plant disease detection tasks.","authors":"Sahil Verma, Prabhat Kumar, Jyoti Prakash Singh","doi":"10.1080/0954898X.2024.2374852","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2374852","url":null,"abstract":"<p><p>Plant diseases pose a significant threat to agricultural productivity worldwide. Convolutional neural networks (CNNs) have achieved state-of-the-art performances on several plant disease detection tasks. However, the manual development of CNN models using an exhaustive approach is a resource-intensive task. Neural Architecture Search (NAS) has emerged as an innovative paradigm that seeks to automate model generation procedures without human intervention. However, the application of NAS in plant disease detection has received limited attention. In this work, we propose a two-stage meta-learning-based neural architecture search system (ML NAS) to automate the generation of CNN models for unseen plant disease detection tasks. The first stage recommends the most suitable benchmark models for unseen plant disease detection tasks based on the prior evaluations of benchmark models on existing plant disease datasets. In the second stage, the proposed NAS operators are employed to optimize the recommended model for the target task. The experimental results showed that the MLNAS system's model outperformed state-of-the-art models on the fruit disease dataset, achieving an accuracy of 99.61%. Furthermore, the MLNAS-generated model outperformed the Progressive NAS model on the 8-class plant disease dataset, achieving an accuracy of 99.8%. Hence, the proposed MLNAS system facilitates faster model development with reduced computational costs.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep demosaicking convolution neural network and quantum wavelet transform-based image denoising. 基于深度去马赛克卷积神经网络和量子小波变换的图像去噪。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-11 DOI: 10.1080/0954898X.2024.2358950
Anitha Mary Chinnaiyan, Boyed Wesley Alfred Sylam

Demosaicking is a popular scientific area that is being explored by a vast number of scientists. Current digital imaging technologies capture colour images with a single monochrome sensor. In addition, the colour images were captured using a sensor coupled with a Colour Filter Array (CFA). Furthermore, the demosaicking procedure is required to obtain a full-colour image. Image denoising and image demosaicking are the two important image restoration techniques, which have increased popularity in recent years. Finding a suitable strategy for multiple image restoration is critical for researchers. Hence, a deep learning (DL) based image denoising and image demosaicking is developed in this research. Moreover, the Autoregressive Circle Wave Optimization (ACWO) based Demosaicking Convolutional Neural Network (DMCNN) is designed for image demosaicking. The Quantum Wavelet Transform (QWT) is used in the image denoising process. Similarly, Quantum Wavelet Transform (QWT) is used to analyse the abrupt changes in the input image with noise. The transformed image is then subjected to a thresholding technique, which determines an appropriate threshold range. Once the threshold range has been determined, soft thresholding is applied to the resulting wavelet coefficients. After that, the extraction and reconstruction of the original image is carried out using the Inverse Quantum Wavelet Transform (IQWT). Finally, the fused image is created by combining the results of both processes using a weighted average. The denoised and demosaicked images are combined using the weighted average technique. Furthermore, the proposed QWT+DMCNN-ACWO model provided the ideal values of Peak signal-to-noise ratio (PSNR), Second derivative like measure of enhancement (SDME), Structural Similarity Index (SSIM), Figure of Merit (FOM) of 0.890, and computational time of 49.549 dB, 59.53 dB, 0.963, 0.890, and 0.571, respectively.

去马赛克是一个热门科学领域,许多科学家都在对其进行探索。目前的数字成像技术使用单色传感器捕捉彩色图像。此外,彩色图像的捕捉还使用了一个与彩色滤光片阵列(CFA)耦合的传感器。此外,要获得全彩色图像,还需要进行去马赛克处理。图像去噪和图像去马赛克是近年来日益流行的两种重要图像复原技术。对于研究人员来说,找到合适的多重图像复原策略至关重要。因此,本研究开发了一种基于深度学习(DL)的图像去噪和图像去马赛克技术。此外,还为图像去马赛克设计了基于自回归圆波优化(ACWO)的去马赛克卷积神经网络(DMCNN)。量子小波变换(QWT)被用于图像去噪过程。同样,量子小波变换 (QWT) 也用于分析输入图像中的突变噪声。然后,对变换后的图像进行阈值处理,以确定适当的阈值范围。一旦确定了阈值范围,就会对得到的小波系数进行软阈值处理。之后,使用反量子小波变换 (IQWT) 对原始图像进行提取和重建。最后,使用加权平均法将两个过程的结果合并,生成融合图像。使用加权平均技术将去噪和去马赛克图像合并。此外,所提出的 QWT+DMCNN-ACWO 模型在峰值信噪比 (PSNR)、二阶导数增强度量 (SDME)、结构相似性指数 (SSIM)、功绩值 (FOM) 和计算时间方面分别达到了 49.549 dB、59.53 dB、0.963、0.890 和 0.571 的理想值。
{"title":"Deep demosaicking convolution neural network and quantum wavelet transform-based image denoising.","authors":"Anitha Mary Chinnaiyan, Boyed Wesley Alfred Sylam","doi":"10.1080/0954898X.2024.2358950","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2358950","url":null,"abstract":"<p><p>Demosaicking is a popular scientific area that is being explored by a vast number of scientists. Current digital imaging technologies capture colour images with a single monochrome sensor. In addition, the colour images were captured using a sensor coupled with a Colour Filter Array (CFA). Furthermore, the demosaicking procedure is required to obtain a full-colour image. Image denoising and image demosaicking are the two important image restoration techniques, which have increased popularity in recent years. Finding a suitable strategy for multiple image restoration is critical for researchers. Hence, a deep learning (DL) based image denoising and image demosaicking is developed in this research. Moreover, the Autoregressive Circle Wave Optimization (ACWO) based Demosaicking Convolutional Neural Network (DMCNN) is designed for image demosaicking. The Quantum Wavelet Transform (QWT) is used in the image denoising process. Similarly, Quantum Wavelet Transform (QWT) is used to analyse the abrupt changes in the input image with noise. The transformed image is then subjected to a thresholding technique, which determines an appropriate threshold range. Once the threshold range has been determined, soft thresholding is applied to the resulting wavelet coefficients. After that, the extraction and reconstruction of the original image is carried out using the Inverse Quantum Wavelet Transform (IQWT). Finally, the fused image is created by combining the results of both processes using a weighted average. The denoised and demosaicked images are combined using the weighted average technique. Furthermore, the proposed QWT+DMCNN-ACWO model provided the ideal values of Peak signal-to-noise ratio (PSNR), Second derivative like measure of enhancement (SDME), Structural Similarity Index (SSIM), Figure of Merit (FOM) of 0.890, and computational time of 49.549 dB, 59.53 dB, 0.963, 0.890, and 0.571, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images. 改进的阿基米德优化辅助多尺度深度学习分割与扩张集合 CNN 分类法,用于利用 CT 图像检测肺癌。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-08 DOI: 10.1080/0954898X.2024.2373127
Shalini Chowdary, Shyamala Bharathi Purushotaman

Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.

要防止肺癌导致的死亡,就必须及早发现肺癌。但是,基于一些深度学习算法的计算机断层扫描(CT)对肺癌的识别并不能提供准确的结果。我们开发了一种新的自适应深度学习,并进行了启发式改进。所提出的框架包括三个部分:(a)图像采集;(b)肺结节分割;(c)肺癌分类。原始 CT 图像通过标准数据源采集。然后通过 Adaptive Multi-Scale Dilated Trans-Unet3+ 进行结节分割。为提高分割精度,该模型的参数通过基于阿基米德优化的修正转移算子(MTO-AO)进行优化。最后,对分割后的图像进行分类程序,即高级稀释集合卷积神经网络(ADECNN),其中它由 Inception、ResNet 和 MobileNet 构建,超参数由 MTO-AO 调整。从这三个网络中,通过基于高排名的分类估算出最终结果。因此,使用多种测量方法对性能进行了研究,并对不同方法进行了比较。因此,模型的研究结果证明了系统检测癌症的效率,并帮助病人获得适当的治疗。
{"title":"An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images.","authors":"Shalini Chowdary, Shyamala Bharathi Purushotaman","doi":"10.1080/0954898X.2024.2373127","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2373127","url":null,"abstract":"<p><p>Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-level authentication for security in cloud using improved quantum key distribution. 利用改进的量子密钥分配实现云安全的多级认证。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-08 DOI: 10.1080/0954898X.2024.2367480
Ashutosh Kumar, Garima Verma

Cloud computing is an on-demand virtual-based technology to develop, configure, and modify applications online through the internet. It enables the users to handle various operations such as storage, back-up, and recovery of data, data analysis, delivery of software applications, implementation of new services and applications, hosting websites and blogs, and streaming of audio and video files. Thereby, it provides us many benefits although it is backlashed due to problems related to cloud security like data leakage, data loss, cyber attacks, etc. To address the security concerns, researchers have developed a variety of authentication mechanisms. This means that the authentication procedure used in the suggested method is multi-levelled. As a result, a better QKD method is offered to strengthen cloud security against different types of security risks. Key generation for enhanced QKD is based on the ABE public key cryptography approach. Here, an approach named CPABE is used in improved QKD. The Improved QKD scored the reduced KCA attack ratings of 0.3193, this is superior to CMMLA (0.7915), CPABE (0.8916), AES (0.5277), Blowfish (0.6144), and ECC (0.4287), accordingly. Finally, this multi-level authentication using an improved QKD approach is analysed under various measures and validates the enhancement over the state-of-the-art models.

云计算是一种通过互联网在线开发、配置和修改应用程序的按需虚拟技术。它使用户能够处理各种操作,如数据的存储、备份和恢复、数据分析、软件应用程序的交付、新服务和应用程序的实施、网站和博客的托管以及音频和视频文件的流式传输。因此,云计算为我们带来了许多好处,尽管由于数据泄露、数据丢失、网络攻击等与云计算安全相关的问题,云计算也受到了质疑。为了解决安全问题,研究人员开发了各种认证机制。这意味着建议方法中使用的认证程序是多层次的。因此,我们提供了一种更好的 QKD 方法,以加强云安全,抵御不同类型的安全风险。增强型 QKD 的密钥生成基于 ABE 公钥加密方法。这里,一种名为 CPABE 的方法被用于改进型 QKD。改进型 QKD 的 KCA 攻击评分为 0.3193,优于 CMMLA (0.7915)、CPABE (0.8916)、AES (0.5277)、Blowfish (0.6144) 和 ECC (0.4287)。最后,使用改进的 QKD 方法对这种多层次身份验证进行了各种分析,并验证了与最先进的模型相比所取得的进步。
{"title":"Multi-level authentication for security in cloud using improved quantum key distribution.","authors":"Ashutosh Kumar, Garima Verma","doi":"10.1080/0954898X.2024.2367480","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2367480","url":null,"abstract":"<p><p>Cloud computing is an on-demand virtual-based technology to develop, configure, and modify applications online through the internet. It enables the users to handle various operations such as storage, back-up, and recovery of data, data analysis, delivery of software applications, implementation of new services and applications, hosting websites and blogs, and streaming of audio and video files. Thereby, it provides us many benefits although it is backlashed due to problems related to cloud security like data leakage, data loss, cyber attacks, etc. To address the security concerns, researchers have developed a variety of authentication mechanisms. This means that the authentication procedure used in the suggested method is multi-levelled. As a result, a better QKD method is offered to strengthen cloud security against different types of security risks. Key generation for enhanced QKD is based on the ABE public key cryptography approach. Here, an approach named CPABE is used in improved QKD. The Improved QKD scored the reduced KCA attack ratings of 0.3193, this is superior to CMMLA (0.7915), CPABE (0.8916), AES (0.5277), Blowfish (0.6144), and ECC (0.4287), accordingly. Finally, this multi-level authentication using an improved QKD approach is analysed under various measures and validates the enhancement over the state-of-the-art models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System. 优化的 Wasserstein 深度卷积生成对抗网络促进了花生叶病识别系统。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-07-02 DOI: 10.1080/0954898X.2024.2351146
Anna Anbumozhi, Shanthini A

Groundnut is a noteworthy oilseed crop. Attacks by leaf diseases are one of the most important reasons causing low yield and loss of groundnut plant growth, which will directly diminish the yield and quality. Therefore, an Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System (GLDI-WDCGAN-AOA) is proposed in this paper. The pre-processed output is fed to Hesitant Fuzzy Linguistic Bi-objective Clustering (HFL-BOC) for segmentation. By using Wasserstein Deep Convolutional Generative Adversarial Network (WDCGAN), the input leaf images are classified into Healthy leaf, early leaf spot, late leaf spot, nutrition deficiency, and rust. Finally, the weight parameters of WDCGAN are optimized by Aquila Optimization Algorithm (AOA) to achieve high accuracy. The proposed GLDI-WDCGAN-AOA approach provides 23.51%, 22.01%, and 18.65% higher accuracy and 24.78%, 23.24%, and 28.98% lower error rate analysed with existing methods, such as Real-time automated identification and categorization of groundnut leaf disease utilizing hybrid machine learning methods (GLDI-DNN), Online identification of peanut leaf diseases utilizing the data balancing method along deep transfer learning (GLDI-LWCNN), and deep learning-driven method depending on progressive scaling method for the precise categorization of groundnut leaf infections (GLDI-CNN), respectively.

花生是一种值得注意的油籽作物。花生叶部病害是导致花生低产和植株生长受阻的最重要原因之一,会直接降低花生的产量和质量。因此,本文提出了一种优化的瓦瑟斯坦深度卷积生成对抗网络花生叶病识别系统(GLDI-WDCGAN-AOA)。预处理后的输出被送入犹豫模糊语言双目标聚类(HFL-BOC)进行分割。通过使用 Wasserstein 深度卷积生成对抗网络(WDCGAN),输入的叶片图像被分为健康叶片、早期叶斑、晚期叶斑、营养缺乏和锈病。最后,利用 Aquila 优化算法(AOA)对 WDCGAN 的权重参数进行优化,以达到较高的准确率。所提出的 GLDI-WDCGAN-AOA 方法的准确率分别提高了 23.51%、22.01% 和 18.65%,误差率分别降低了 24.78%、23.24% 和 28.98%。与现有方法(如利用混合机器学习方法对花生叶病进行实时自动识别和分类(GLDI-DNN)、利用数据平衡方法和深度迁移学习对花生叶病进行在线识别(GLDI-LWCNN),以及根据渐进缩放方法对花生叶感染进行精确分类的深度学习驱动方法(GLDI-CNN))相比,误差率分别降低了 98%。
{"title":"Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System.","authors":"Anna Anbumozhi, Shanthini A","doi":"10.1080/0954898X.2024.2351146","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2351146","url":null,"abstract":"<p><p>Groundnut is a noteworthy oilseed crop. Attacks by leaf diseases are one of the most important reasons causing low yield and loss of groundnut plant growth, which will directly diminish the yield and quality. Therefore, an Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System (GLDI-WDCGAN-AOA) is proposed in this paper. The pre-processed output is fed to Hesitant Fuzzy Linguistic Bi-objective Clustering (HFL-BOC) for segmentation. By using Wasserstein Deep Convolutional Generative Adversarial Network (WDCGAN), the input leaf images are classified into Healthy leaf, early leaf spot, late leaf spot, nutrition deficiency, and rust. Finally, the weight parameters of WDCGAN are optimized by Aquila Optimization Algorithm (AOA) to achieve high accuracy. The proposed GLDI-WDCGAN-AOA approach provides 23.51%, 22.01%, and 18.65% higher accuracy and 24.78%, 23.24%, and 28.98% lower error rate analysed with existing methods, such as Real-time automated identification and categorization of groundnut leaf disease utilizing hybrid machine learning methods (GLDI-DNN), Online identification of peanut leaf diseases utilizing the data balancing method along deep transfer learning (GLDI-LWCNN), and deep learning-driven method depending on progressive scaling method for the precise categorization of groundnut leaf infections (GLDI-CNN), respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid deep learning and optimized clustering mechanism for load balancing and fault tolerance in cloud computing. 用于云计算负载平衡和容错的混合深度学习和优化聚类机制。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-27 DOI: 10.1080/0954898X.2024.2369137
Vahini Siruvoru, Shivampeta Aparna

Cloud services are one of the most quickly developing technologies. Furthermore, load balancing is recognized as a fundamental challenge for achieving energy efficiency. The primary function of load balancing is to deliver optimal services by releasing the load over multiple resources. Fault tolerance is being used to improve the reliability and accessibility of the network. In this paper, a hybrid Deep Learning-based load balancing algorithm is developed. Initially, tasks are allocated to all VMs in a round-robin method. Furthermore, the Deep Embedding Cluster (DEC) utilizes the Central Processing Unit (CPU), bandwidth, memory, processing elements, and frequency scaling factors while determining if a VM is overloaded or underloaded. The task performed on the overloaded VM is valued and the tasks accomplished on the overloaded VM are assigned to the underloaded VM for cloud load balancing. In addition, the Deep Q Recurrent Neural Network (DQRNN) is proposed to balance the load based on numerous factors such as supply, demand, capacity, load, resource utilization, and fault tolerance. Furthermore, the effectiveness of this model is assessed by load, capacity, resource consumption, and success rate, with ideal values of 0.147, 0.726, 0.527, and 0.895 are achieved.

云服务是发展最迅速的技术之一。此外,负载平衡被认为是实现能源效率的基本挑战。负载平衡的主要功能是通过在多个资源上释放负载来提供最佳服务。容错被用来提高网络的可靠性和可访问性。本文开发了一种基于深度学习的混合负载平衡算法。最初,任务以轮循方式分配给所有虚拟机。此外,深度嵌入集群(DEC)会利用中央处理器(CPU)、带宽、内存、处理元件和频率缩放因子,同时确定虚拟机是否超载或欠载。对超载虚拟机上执行的任务进行估值,并将超载虚拟机上完成的任务分配给负载不足的虚拟机,以实现云负载平衡。此外,还提出了深度 Q 循环神经网络(DQRNN),以根据供应、需求、容量、负载、资源利用率和容错等众多因素来平衡负载。此外,还通过负载、容量、资源消耗和成功率评估了该模型的有效性,其理想值分别为 0.147、0.726、0.527 和 0.895。
{"title":"Hybrid deep learning and optimized clustering mechanism for load balancing and fault tolerance in cloud computing.","authors":"Vahini Siruvoru, Shivampeta Aparna","doi":"10.1080/0954898X.2024.2369137","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2369137","url":null,"abstract":"<p><p>Cloud services are one of the most quickly developing technologies. Furthermore, load balancing is recognized as a fundamental challenge for achieving energy efficiency. The primary function of load balancing is to deliver optimal services by releasing the load over multiple resources. Fault tolerance is being used to improve the reliability and accessibility of the network. In this paper, a hybrid Deep Learning-based load balancing algorithm is developed. Initially, tasks are allocated to all VMs in a round-robin method. Furthermore, the Deep Embedding Cluster (DEC) utilizes the Central Processing Unit (CPU), bandwidth, memory, processing elements, and frequency scaling factors while determining if a VM is overloaded or underloaded. The task performed on the overloaded VM is valued and the tasks accomplished on the overloaded VM are assigned to the underloaded VM for cloud load balancing. In addition, the Deep Q Recurrent Neural Network (DQRNN) is proposed to balance the load based on numerous factors such as supply, demand, capacity, load, resource utilization, and fault tolerance. Furthermore, the effectiveness of this model is assessed by load, capacity, resource consumption, and success rate, with ideal values of 0.147, 0.726, 0.527, and 0.895 are achieved.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational models advance deep brain stimulation for Parkinson's disease. 计算模型推动了治疗帕金森病的深部脑刺激疗法。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-26 DOI: 10.1080/0954898X.2024.2361799
Yongtong Wu, Kejia Hu, Shenquan Liu

Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.

脑深部刺激(DBS)已成为治疗晚期帕金森病(PD)的有效干预手段,但DBS的确切机制仍不清楚。在这篇综述中,我们将讨论 DBS 的历史、基底节(BG)的解剖和内部结构、帕金森病基底节的异常病理变化以及计算模型如何帮助理解和推进 DBS。我们还介绍了两类模型:数学理论模型和临床预测模型。数学理论模型模拟 BG 的神经元或神经网络,以揭示 DBS 的机理原理;而临床预测模型则更关注患者的预后,帮助调整适合每位患者的治疗方案并推进新型电极设计。最后,我们对未来技术提出了见解和展望。
{"title":"Computational models advance deep brain stimulation for Parkinson's disease.","authors":"Yongtong Wu, Kejia Hu, Shenquan Liu","doi":"10.1080/0954898X.2024.2361799","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2361799","url":null,"abstract":"<p><p>Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Network-Computation in Neural Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1