Pub Date : 2024-07-21DOI: 10.1080/0954898X.2024.2376703
Manoj Ray Devadas, Philip Samuel
Effective project planning and management in the global software development landscape relies on addressing major issues like cost estimation and effort allocation. Timely estimation of software development is a critical focus in software engineering research. With the industry increasingly relying on diverse teams worldwide, accurate estimation becomes vital. Software size serves as a common measure for costs and schedules, but advanced estimation methods consider various variables, such as project purpose, personnel expertise, time and efficiency constraints, and technology requirements. Estimating software costs involve significant financial and strategic commitments, making it crucial to address complexity and versatility related to cost drivers. To achieve enhanced accuracy and convergence, we employ the cuckoo algorithm in our proposed NFDLNN (Neuro Fuzzy Logic and Deep Learning Neural Networks) model. Through extensive validation with industrial project data, using Function Point Analysis as the algorithmic models, our NFA model demonstrates high accuracy in software cost approximation, outperforming existing methods insights of MRE of 3.33, BRE of 0.13, and PI of 74.48. Our research contributes to improved project planning and decision-making processes in global software development endeavours.
{"title":"Enhancing effort estimation in global software development using a unique combination of Neuro Fuzzy Logic and Deep Learning Neural Networks (NFDLNN).","authors":"Manoj Ray Devadas, Philip Samuel","doi":"10.1080/0954898X.2024.2376703","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2376703","url":null,"abstract":"<p><p>Effective project planning and management in the global software development landscape relies on addressing major issues like cost estimation and effort allocation. Timely estimation of software development is a critical focus in software engineering research. With the industry increasingly relying on diverse teams worldwide, accurate estimation becomes vital. Software size serves as a common measure for costs and schedules, but advanced estimation methods consider various variables, such as project purpose, personnel expertise, time and efficiency constraints, and technology requirements. Estimating software costs involve significant financial and strategic commitments, making it crucial to address complexity and versatility related to cost drivers. To achieve enhanced accuracy and convergence, we employ the cuckoo algorithm in our proposed NFDLNN (Neuro Fuzzy Logic and Deep Learning Neural Networks) model. Through extensive validation with industrial project data, using Function Point Analysis as the algorithmic models, our NFA model demonstrates high accuracy in software cost approximation, outperforming existing methods insights of MRE of 3.33, BRE of 0.13, and PI of 74.48. Our research contributes to improved project planning and decision-making processes in global software development endeavours.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-21"},"PeriodicalIF":1.1,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1080/0954898X.2024.2336058
Vijaya Bhaskar Sadu, Kumar Abhishek, Omaia Mohammed Al-Omari, Sandhya Rani Nallola, Rajeev Kumar Sharma, Mohammad Shadab Khan
The Internet of Things (IoT) is a network that connects various hardware, software, data storage, and applications. These interconnected devices provide services to businesses and can potentially serve as entry points for cyber-attacks. The privacy of IoT devices is increasingly vulnerable, particularly to threats like viruses and illegal software distribution lead to the theft of critical information. Ant Colony-Optimized Artificial Neural-Adaptive Tensorflow (ACO-ANT) technique is proposed to detect malicious software illicitly disseminated through the IoT. To emphasize the significance of each token in source duplicate data, the noise data undergoes processing using tokenization and weighted attribute techniques. Deep learning (DL) methods are then employed to identify source code duplication. Also the Multi-Objective Recurrent Neural Network (M-RNN) is used to identify suspicious activities within an IoT environment. The performance of proposed technique is examined using Loss, accuracy, F measure, precision to identify its efficiency. The experimental outcomes demonstrate that the proposed method ACO-ANT on Malimg dataset provides 12.35%, 14.75%, 11.84% higher precision and 10.95%, 15.78%, 13.89% higher f-measure compared to the existing methods. Further, leveraging block chain for malware detection is a promising direction for future research the fact that could enhance the security of IoT and identify malware threats.
{"title":"Enhancement of cyber security in IoT based on ant colony optimized artificial neural adaptive Tensor flow.","authors":"Vijaya Bhaskar Sadu, Kumar Abhishek, Omaia Mohammed Al-Omari, Sandhya Rani Nallola, Rajeev Kumar Sharma, Mohammad Shadab Khan","doi":"10.1080/0954898X.2024.2336058","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2336058","url":null,"abstract":"<p><p>The Internet of Things (IoT) is a network that connects various hardware, software, data storage, and applications. These interconnected devices provide services to businesses and can potentially serve as entry points for cyber-attacks. The privacy of IoT devices is increasingly vulnerable, particularly to threats like viruses and illegal software distribution lead to the theft of critical information. Ant Colony-Optimized Artificial Neural-Adaptive Tensorflow (ACO-ANT) technique is proposed to detect malicious software illicitly disseminated through the IoT. To emphasize the significance of each token in source duplicate data, the noise data undergoes processing using tokenization and weighted attribute techniques. Deep learning (DL) methods are then employed to identify source code duplication. Also the Multi-Objective Recurrent Neural Network (M-RNN) is used to identify suspicious activities within an IoT environment. The performance of proposed technique is examined using Loss, accuracy, F measure, precision to identify its efficiency. The experimental outcomes demonstrate that the proposed method ACO-ANT on Malimg dataset provides 12.35%, 14.75%, 11.84% higher precision and 10.95%, 15.78%, 13.89% higher f-measure compared to the existing methods. Further, leveraging block chain for malware detection is a promising direction for future research the fact that could enhance the security of IoT and identify malware threats.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-17"},"PeriodicalIF":1.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1080/0954898X.2024.2374852
Sahil Verma, Prabhat Kumar, Jyoti Prakash Singh
Plant diseases pose a significant threat to agricultural productivity worldwide. Convolutional neural networks (CNNs) have achieved state-of-the-art performances on several plant disease detection tasks. However, the manual development of CNN models using an exhaustive approach is a resource-intensive task. Neural Architecture Search (NAS) has emerged as an innovative paradigm that seeks to automate model generation procedures without human intervention. However, the application of NAS in plant disease detection has received limited attention. In this work, we propose a two-stage meta-learning-based neural architecture search system (ML NAS) to automate the generation of CNN models for unseen plant disease detection tasks. The first stage recommends the most suitable benchmark models for unseen plant disease detection tasks based on the prior evaluations of benchmark models on existing plant disease datasets. In the second stage, the proposed NAS operators are employed to optimize the recommended model for the target task. The experimental results showed that the MLNAS system's model outperformed state-of-the-art models on the fruit disease dataset, achieving an accuracy of 99.61%. Furthermore, the MLNAS-generated model outperformed the Progressive NAS model on the 8-class plant disease dataset, achieving an accuracy of 99.8%. Hence, the proposed MLNAS system facilitates faster model development with reduced computational costs.
植物病害对全球农业生产力构成了重大威胁。卷积神经网络(CNN)在多项植物病害检测任务中取得了最先进的性能。然而,使用穷举法手动开发 CNN 模型是一项资源密集型任务。神经架构搜索(NAS)作为一种创新范式应运而生,旨在无需人工干预即可自动生成模型。然而,NAS 在植物病害检测中的应用受到的关注有限。在这项工作中,我们提出了一种基于元学习的两阶段神经架构搜索系统(ML NAS),以自动生成用于未见植物病害检测任务的 CNN 模型。第一阶段根据先前在现有植物病害数据集上对基准模型的评估,为未知植物病害检测任务推荐最合适的基准模型。在第二阶段,利用提出的 NAS 算子针对目标任务优化推荐模型。实验结果表明,MLNAS 系统的模型在水果病害数据集上的表现优于最先进的模型,准确率达到 99.61%。此外,在 8 类植物疾病数据集上,MLNAS 生成的模型的准确率达到了 99.8%,优于 Progressive NAS 模型。因此,所提出的 MLNAS 系统有助于更快地开发模型,同时降低计算成本。
{"title":"MLNAS: Meta-learning based neural architecture search for automated generation of deep neural networks for plant disease detection tasks.","authors":"Sahil Verma, Prabhat Kumar, Jyoti Prakash Singh","doi":"10.1080/0954898X.2024.2374852","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2374852","url":null,"abstract":"<p><p>Plant diseases pose a significant threat to agricultural productivity worldwide. Convolutional neural networks (CNNs) have achieved state-of-the-art performances on several plant disease detection tasks. However, the manual development of CNN models using an exhaustive approach is a resource-intensive task. Neural Architecture Search (NAS) has emerged as an innovative paradigm that seeks to automate model generation procedures without human intervention. However, the application of NAS in plant disease detection has received limited attention. In this work, we propose a two-stage meta-learning-based neural architecture search system (ML NAS) to automate the generation of CNN models for unseen plant disease detection tasks. The first stage recommends the most suitable benchmark models for unseen plant disease detection tasks based on the prior evaluations of benchmark models on existing plant disease datasets. In the second stage, the proposed NAS operators are employed to optimize the recommended model for the target task. The experimental results showed that the MLNAS system's model outperformed state-of-the-art models on the fruit disease dataset, achieving an accuracy of 99.61%. Furthermore, the MLNAS-generated model outperformed the Progressive NAS model on the 8-class plant disease dataset, achieving an accuracy of 99.8%. Hence, the proposed MLNAS system facilitates faster model development with reduced computational costs.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-24"},"PeriodicalIF":1.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1080/0954898X.2024.2358950
Anitha Mary Chinnaiyan, Boyed Wesley Alfred Sylam
Demosaicking is a popular scientific area that is being explored by a vast number of scientists. Current digital imaging technologies capture colour images with a single monochrome sensor. In addition, the colour images were captured using a sensor coupled with a Colour Filter Array (CFA). Furthermore, the demosaicking procedure is required to obtain a full-colour image. Image denoising and image demosaicking are the two important image restoration techniques, which have increased popularity in recent years. Finding a suitable strategy for multiple image restoration is critical for researchers. Hence, a deep learning (DL) based image denoising and image demosaicking is developed in this research. Moreover, the Autoregressive Circle Wave Optimization (ACWO) based Demosaicking Convolutional Neural Network (DMCNN) is designed for image demosaicking. The Quantum Wavelet Transform (QWT) is used in the image denoising process. Similarly, Quantum Wavelet Transform (QWT) is used to analyse the abrupt changes in the input image with noise. The transformed image is then subjected to a thresholding technique, which determines an appropriate threshold range. Once the threshold range has been determined, soft thresholding is applied to the resulting wavelet coefficients. After that, the extraction and reconstruction of the original image is carried out using the Inverse Quantum Wavelet Transform (IQWT). Finally, the fused image is created by combining the results of both processes using a weighted average. The denoised and demosaicked images are combined using the weighted average technique. Furthermore, the proposed QWT+DMCNN-ACWO model provided the ideal values of Peak signal-to-noise ratio (PSNR), Second derivative like measure of enhancement (SDME), Structural Similarity Index (SSIM), Figure of Merit (FOM) of 0.890, and computational time of 49.549 dB, 59.53 dB, 0.963, 0.890, and 0.571, respectively.
{"title":"Deep demosaicking convolution neural network and quantum wavelet transform-based image denoising.","authors":"Anitha Mary Chinnaiyan, Boyed Wesley Alfred Sylam","doi":"10.1080/0954898X.2024.2358950","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2358950","url":null,"abstract":"<p><p>Demosaicking is a popular scientific area that is being explored by a vast number of scientists. Current digital imaging technologies capture colour images with a single monochrome sensor. In addition, the colour images were captured using a sensor coupled with a Colour Filter Array (CFA). Furthermore, the demosaicking procedure is required to obtain a full-colour image. Image denoising and image demosaicking are the two important image restoration techniques, which have increased popularity in recent years. Finding a suitable strategy for multiple image restoration is critical for researchers. Hence, a deep learning (DL) based image denoising and image demosaicking is developed in this research. Moreover, the Autoregressive Circle Wave Optimization (ACWO) based Demosaicking Convolutional Neural Network (DMCNN) is designed for image demosaicking. The Quantum Wavelet Transform (QWT) is used in the image denoising process. Similarly, Quantum Wavelet Transform (QWT) is used to analyse the abrupt changes in the input image with noise. The transformed image is then subjected to a thresholding technique, which determines an appropriate threshold range. Once the threshold range has been determined, soft thresholding is applied to the resulting wavelet coefficients. After that, the extraction and reconstruction of the original image is carried out using the Inverse Quantum Wavelet Transform (IQWT). Finally, the fused image is created by combining the results of both processes using a weighted average. The denoised and demosaicked images are combined using the weighted average technique. Furthermore, the proposed QWT+DMCNN-ACWO model provided the ideal values of Peak signal-to-noise ratio (PSNR), Second derivative like measure of enhancement (SDME), Structural Similarity Index (SSIM), Figure of Merit (FOM) of 0.890, and computational time of 49.549 dB, 59.53 dB, 0.963, 0.890, and 0.571, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":1.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1080/0954898X.2024.2373127
Shalini Chowdary, Shyamala Bharathi Purushotaman
Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.
{"title":"An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images.","authors":"Shalini Chowdary, Shyamala Bharathi Purushotaman","doi":"10.1080/0954898X.2024.2373127","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2373127","url":null,"abstract":"<p><p>Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-39"},"PeriodicalIF":1.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1080/0954898X.2024.2367480
Ashutosh Kumar, Garima Verma
Cloud computing is an on-demand virtual-based technology to develop, configure, and modify applications online through the internet. It enables the users to handle various operations such as storage, back-up, and recovery of data, data analysis, delivery of software applications, implementation of new services and applications, hosting websites and blogs, and streaming of audio and video files. Thereby, it provides us many benefits although it is backlashed due to problems related to cloud security like data leakage, data loss, cyber attacks, etc. To address the security concerns, researchers have developed a variety of authentication mechanisms. This means that the authentication procedure used in the suggested method is multi-levelled. As a result, a better QKD method is offered to strengthen cloud security against different types of security risks. Key generation for enhanced QKD is based on the ABE public key cryptography approach. Here, an approach named CPABE is used in improved QKD. The Improved QKD scored the reduced KCA attack ratings of 0.3193, this is superior to CMMLA (0.7915), CPABE (0.8916), AES (0.5277), Blowfish (0.6144), and ECC (0.4287), accordingly. Finally, this multi-level authentication using an improved QKD approach is analysed under various measures and validates the enhancement over the state-of-the-art models.
{"title":"Multi-level authentication for security in cloud using improved quantum key distribution.","authors":"Ashutosh Kumar, Garima Verma","doi":"10.1080/0954898X.2024.2367480","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2367480","url":null,"abstract":"<p><p>Cloud computing is an on-demand virtual-based technology to develop, configure, and modify applications online through the internet. It enables the users to handle various operations such as storage, back-up, and recovery of data, data analysis, delivery of software applications, implementation of new services and applications, hosting websites and blogs, and streaming of audio and video files. Thereby, it provides us many benefits although it is backlashed due to problems related to cloud security like data leakage, data loss, cyber attacks, etc. To address the security concerns, researchers have developed a variety of authentication mechanisms. This means that the authentication procedure used in the suggested method is multi-levelled. As a result, a better QKD method is offered to strengthen cloud security against different types of security risks. Key generation for enhanced QKD is based on the ABE public key cryptography approach. Here, an approach named CPABE is used in improved QKD. The Improved QKD scored the reduced KCA attack ratings of 0.3193, this is superior to CMMLA (0.7915), CPABE (0.8916), AES (0.5277), Blowfish (0.6144), and ECC (0.4287), accordingly. Finally, this multi-level authentication using an improved QKD approach is analysed under various measures and validates the enhancement over the state-of-the-art models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-21"},"PeriodicalIF":1.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1080/0954898X.2024.2369137
Vahini Siruvoru, Shivampeta Aparna
Cloud services are one of the most quickly developing technologies. Furthermore, load balancing is recognized as a fundamental challenge for achieving energy efficiency. The primary function of load balancing is to deliver optimal services by releasing the load over multiple resources. Fault tolerance is being used to improve the reliability and accessibility of the network. In this paper, a hybrid Deep Learning-based load balancing algorithm is developed. Initially, tasks are allocated to all VMs in a round-robin method. Furthermore, the Deep Embedding Cluster (DEC) utilizes the Central Processing Unit (CPU), bandwidth, memory, processing elements, and frequency scaling factors while determining if a VM is overloaded or underloaded. The task performed on the overloaded VM is valued and the tasks accomplished on the overloaded VM are assigned to the underloaded VM for cloud load balancing. In addition, the Deep Q Recurrent Neural Network (DQRNN) is proposed to balance the load based on numerous factors such as supply, demand, capacity, load, resource utilization, and fault tolerance. Furthermore, the effectiveness of this model is assessed by load, capacity, resource consumption, and success rate, with ideal values of 0.147, 0.726, 0.527, and 0.895 are achieved.
{"title":"Hybrid deep learning and optimized clustering mechanism for load balancing and fault tolerance in cloud computing.","authors":"Vahini Siruvoru, Shivampeta Aparna","doi":"10.1080/0954898X.2024.2369137","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2369137","url":null,"abstract":"<p><p>Cloud services are one of the most quickly developing technologies. Furthermore, load balancing is recognized as a fundamental challenge for achieving energy efficiency. The primary function of load balancing is to deliver optimal services by releasing the load over multiple resources. Fault tolerance is being used to improve the reliability and accessibility of the network. In this paper, a hybrid Deep Learning-based load balancing algorithm is developed. Initially, tasks are allocated to all VMs in a round-robin method. Furthermore, the Deep Embedding Cluster (DEC) utilizes the Central Processing Unit (CPU), bandwidth, memory, processing elements, and frequency scaling factors while determining if a VM is overloaded or underloaded. The task performed on the overloaded VM is valued and the tasks accomplished on the overloaded VM are assigned to the underloaded VM for cloud load balancing. In addition, the Deep Q Recurrent Neural Network (DQRNN) is proposed to balance the load based on numerous factors such as supply, demand, capacity, load, resource utilization, and fault tolerance. Furthermore, the effectiveness of this model is assessed by load, capacity, resource consumption, and success rate, with ideal values of 0.147, 0.726, 0.527, and 0.895 are achieved.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-22"},"PeriodicalIF":1.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1080/0954898X.2024.2361799
Yongtong Wu, Kejia Hu, Shenquan Liu
Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.
{"title":"Computational models advance deep brain stimulation for Parkinson's disease.","authors":"Yongtong Wu, Kejia Hu, Shenquan Liu","doi":"10.1080/0954898X.2024.2361799","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2361799","url":null,"abstract":"<p><p>Deep brain stimulation(DBS) has become an effective intervention for advanced Parkinson's disease(PD), but the exact mechanism of DBS is still unclear. In this review, we discuss the history of DBS, the anatomy and internal architecture of the basal ganglia (BG), the abnormal pathological changes of the BG in PD, and how computational models can help understand and advance DBS. We also describe two types of models: mathematical theoretical models and clinical predictive models. Mathematical theoretical models simulate neurons or neural networks of BG to shed light on the mechanistic principle underlying DBS, while clinical predictive models focus more on patients' outcomes, helping to adapt treatment plans for each patient and advance novel electrode designs. Finally, we provide insights and an outlook on future technologies.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":1.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The early diagnosis of tumour is significant in biomedical research field to lower the severity level and restrict the process extension from cancer. Moreover, the detection of early sign of cancer is undertaken with extensive research efforts that dedicated to the disclosure and recognition of tumours. However, the limited data size as well as diverse appearance of images lowered the detection performance and failed to detect complex stage of tumour. So to solve these issues, a Weighted Adaptive Random Ensemble Support Vector-based Partial Reinforcement Search (WARES-PRS) algorithm is proposed that detected bone lesions accurately and also predicted the severity level stage efficiently. Further, the detection is performed with varied stages to diminish the presence of noise and undertaken effective classification. The performance is validated with CNUH dataset that enhanced image pre-processing tasks. Despite the proposed method uncover the mutual relationships between each pixel's local texture and the overall image's global context. The detection and classification efficiency is validated with various measures and the experimental results revealed that the detection accuracy is enhanced for the proposed approach by 98.5%. The outcomes of our study have exhibited a substantial contribution to assisting physicians in the detection of knee bone tumours.
{"title":"Enhancing radiographic image interpretation: WARES-PRS model for knee bone tumour detection.","authors":"Rahamathunnisa Usuff, Sudhakar Kothandapani, Rajesh Rangan, Saravanan Dhatchnamurthy","doi":"10.1080/0954898X.2024.2357660","DOIUrl":"10.1080/0954898X.2024.2357660","url":null,"abstract":"<p><p>The early diagnosis of tumour is significant in biomedical research field to lower the severity level and restrict the process extension from cancer. Moreover, the detection of early sign of cancer is undertaken with extensive research efforts that dedicated to the disclosure and recognition of tumours. However, the limited data size as well as diverse appearance of images lowered the detection performance and failed to detect complex stage of tumour. So to solve these issues, a Weighted Adaptive Random Ensemble Support Vector-based Partial Reinforcement Search (WARES-PRS) algorithm is proposed that detected bone lesions accurately and also predicted the severity level stage efficiently. Further, the detection is performed with varied stages to diminish the presence of noise and undertaken effective classification. The performance is validated with CNUH dataset that enhanced image pre-processing tasks. Despite the proposed method uncover the mutual relationships between each pixel's local texture and the overall image's global context. The detection and classification efficiency is validated with various measures and the experimental results revealed that the detection accuracy is enhanced for the proposed approach by 98.5%. The outcomes of our study have exhibited a substantial contribution to assisting physicians in the detection of knee bone tumours.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-31"},"PeriodicalIF":1.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1080/0954898X.2024.2367481
Adil Baykasoğlu
The purpose of this paper is to test the performance of the recently proposed weighted superposition attraction-repulsion algorithms (WSA and WSAR) on unconstrained continuous optimization test problems and constrained optimization problems. WSAR is a successor of weighted superposition attraction algorithm (WSA). WSAR is established upon the superposition principle from physics and mimics attractive and repulsive movements of solution agents (vectors). Differently from the WSA, WSAR also considers repulsive movements with updated solution move equations. WSAR requires very few algorithm-specific parameters to be set and has good convergence and searching capability. Through extensive computational tests on many benchmark problems including CEC'2015 and CEC'2020 performance of the WSAR is compared against WSA and other metaheuristic algorithms. It is statistically shown that the WSAR algorithm is able to produce good and competitive results in comparison to its predecessor WSA and other metaheuristic algorithms.
{"title":"Performance analyses of weighted superposition attraction-repulsion algorithms in solving difficult optimization problems.","authors":"Adil Baykasoğlu","doi":"10.1080/0954898X.2024.2367481","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2367481","url":null,"abstract":"<p><p>The purpose of this paper is to test the performance of the recently proposed weighted superposition attraction-repulsion algorithms (WSA and WSAR) on unconstrained continuous optimization test problems and constrained optimization problems. WSAR is a successor of weighted superposition attraction algorithm (WSA). WSAR is established upon the superposition principle from physics and mimics attractive and repulsive movements of solution agents (vectors). Differently from the WSA, WSAR also considers repulsive movements with updated solution move equations. WSAR requires very few algorithm-specific parameters to be set and has good convergence and searching capability. Through extensive computational tests on many benchmark problems including CEC'2015 and CEC'2020 performance of the WSAR is compared against WSA and other metaheuristic algorithms. It is statistically shown that the WSAR algorithm is able to produce good and competitive results in comparison to its predecessor WSA and other metaheuristic algorithms.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-57"},"PeriodicalIF":1.1,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141447639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}