首页 > 最新文献

Network-Computation in Neural Systems最新文献

英文 中文
Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System. 优化的 Wasserstein 深度卷积生成对抗网络促进了花生叶病识别系统。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-01 Epub Date: 2024-07-02 DOI: 10.1080/0954898X.2024.2351146
Anna Anbumozhi, Shanthini A

Groundnut is a noteworthy oilseed crop. Attacks by leaf diseases are one of the most important reasons causing low yield and loss of groundnut plant growth, which will directly diminish the yield and quality. Therefore, an Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System (GLDI-WDCGAN-AOA) is proposed in this paper. The pre-processed output is fed to Hesitant Fuzzy Linguistic Bi-objective Clustering (HFL-BOC) for segmentation. By using Wasserstein Deep Convolutional Generative Adversarial Network (WDCGAN), the input leaf images are classified into Healthy leaf, early leaf spot, late leaf spot, nutrition deficiency, and rust. Finally, the weight parameters of WDCGAN are optimized by Aquila Optimization Algorithm (AOA) to achieve high accuracy. The proposed GLDI-WDCGAN-AOA approach provides 23.51%, 22.01%, and 18.65% higher accuracy and 24.78%, 23.24%, and 28.98% lower error rate analysed with existing methods, such as Real-time automated identification and categorization of groundnut leaf disease utilizing hybrid machine learning methods (GLDI-DNN), Online identification of peanut leaf diseases utilizing the data balancing method along deep transfer learning (GLDI-LWCNN), and deep learning-driven method depending on progressive scaling method for the precise categorization of groundnut leaf infections (GLDI-CNN), respectively.

花生是一种值得注意的油籽作物。花生叶部病害是导致花生低产和植株生长受阻的最重要原因之一,会直接降低花生的产量和质量。因此,本文提出了一种优化的瓦瑟斯坦深度卷积生成对抗网络花生叶病识别系统(GLDI-WDCGAN-AOA)。预处理后的输出被送入犹豫模糊语言双目标聚类(HFL-BOC)进行分割。通过使用 Wasserstein 深度卷积生成对抗网络(WDCGAN),输入的叶片图像被分为健康叶片、早期叶斑、晚期叶斑、营养缺乏和锈病。最后,利用 Aquila 优化算法(AOA)对 WDCGAN 的权重参数进行优化,以达到较高的准确率。所提出的 GLDI-WDCGAN-AOA 方法的准确率分别提高了 23.51%、22.01% 和 18.65%,误差率分别降低了 24.78%、23.24% 和 28.98%。与现有方法(如利用混合机器学习方法对花生叶病进行实时自动识别和分类(GLDI-DNN)、利用数据平衡方法和深度迁移学习对花生叶病进行在线识别(GLDI-LWCNN),以及根据渐进缩放方法对花生叶感染进行精确分类的深度学习驱动方法(GLDI-CNN))相比,误差率分别降低了 98%。
{"title":"Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System.","authors":"Anna Anbumozhi, Shanthini A","doi":"10.1080/0954898X.2024.2351146","DOIUrl":"10.1080/0954898X.2024.2351146","url":null,"abstract":"<p><p>Groundnut is a noteworthy oilseed crop. Attacks by leaf diseases are one of the most important reasons causing low yield and loss of groundnut plant growth, which will directly diminish the yield and quality. Therefore, an Optimized Wasserstein Deep Convolutional Generative Adversarial Network fostered Groundnut Leaf Disease Identification System (GLDI-WDCGAN-AOA) is proposed in this paper. The pre-processed output is fed to Hesitant Fuzzy Linguistic Bi-objective Clustering (HFL-BOC) for segmentation. By using Wasserstein Deep Convolutional Generative Adversarial Network (WDCGAN), the input leaf images are classified into Healthy leaf, early leaf spot, late leaf spot, nutrition deficiency, and rust. Finally, the weight parameters of WDCGAN are optimized by Aquila Optimization Algorithm (AOA) to achieve high accuracy. The proposed GLDI-WDCGAN-AOA approach provides 23.51%, 22.01%, and 18.65% higher accuracy and 24.78%, 23.24%, and 28.98% lower error rate analysed with existing methods, such as Real-time automated identification and categorization of groundnut leaf disease utilizing hybrid machine learning methods (GLDI-DNN), Online identification of peanut leaf diseases utilizing the data balancing method along deep transfer learning (GLDI-LWCNN), and deep learning-driven method depending on progressive scaling method for the precise categorization of groundnut leaf infections (GLDI-CNN), respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"463-487"},"PeriodicalIF":1.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized multi-head self-attention and gated-dilated convolutional neural network for quantum key distribution and error rate reduction. 用于量子密钥分发和降低错误率的优化多头自注意和门控稀释卷积神经网络。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-01 Epub Date: 2024-07-16 DOI: 10.1080/0954898X.2024.2375391
R J Kavitha, D Ilakkiaselvan

Quantum key distribution (QKD) is a secure communication method that enables two parties to securely exchange a secret key. The secure key rate is a crucial metric for assessing the efficiency and practical viability of a QKD system. There are several approaches that are utilized in practice to calculate the secure key rate. In this manuscript, QKD and error rate optimization based on optimized multi-head self-attention and gated-dilated convolutional neural network (QKD-ERO-MSGCNN) is proposed. Initially, the input signals are gathered from 6G wireless networks which face obstacles to channel. For extending maximum transmission distances and improving secret key rates, the signals are fed to the variable velocity strategy particle swarm optimization algorithm, then the signals are fed to MSGCNN for analysing the quantum bit error rate reduction. The MSGCNN is optimized by intensified sand cat swarm optimization. The performance of the QKD-ERO-MSGCNN approach attains 15.57%, 23.89%, and 31.75% higher accuracy when analysed with existing techniques, like device-independent QKD utilizing random quantum states, practical continuous-variable QKD and feasible optimization parameters, entanglement and teleportation in QKD for secure wireless systems, and QKD for large scale networks methods, respectively.

量子密钥分发(QKD)是一种安全通信方法,可使双方安全地交换密钥。安全密钥率是评估 QKD 系统效率和实际可行性的关键指标。在实践中,有几种方法可用于计算安全密钥率。本文提出了基于优化多头自注意和门控稀释卷积神经网络(QKD-ERO-MSGCNN)的 QKD 和错误率优化方法。最初,输入信号来自面临信道障碍的 6G 无线网络。为了延长最大传输距离并提高密钥率,先将信号输入变速策略粒子群优化算法,然后将信号输入 MSGCNN,分析量子比特错误率的降低情况。MSGCNN 采用强化沙猫群优化算法进行优化。QKD-ERO-MSGCNN 方法的性能与现有技术(如利用随机量子态的设备无关 QKD、实用连续可变 QKD 和可行优化参数、用于安全无线系统的 QKD 中的纠缠和远距传输以及用于大规模网络的 QKD 方法)相比,分别提高了 15.57%、23.89% 和 31.75%。
{"title":"Optimized multi-head self-attention and gated-dilated convolutional neural network for quantum key distribution and error rate reduction.","authors":"R J Kavitha, D Ilakkiaselvan","doi":"10.1080/0954898X.2024.2375391","DOIUrl":"10.1080/0954898X.2024.2375391","url":null,"abstract":"<p><p>Quantum key distribution (QKD) is a secure communication method that enables two parties to securely exchange a secret key. The secure key rate is a crucial metric for assessing the efficiency and practical viability of a QKD system. There are several approaches that are utilized in practice to calculate the secure key rate. In this manuscript, QKD and error rate optimization based on optimized multi-head self-attention and gated-dilated convolutional neural network (QKD-ERO-MSGCNN) is proposed. Initially, the input signals are gathered from 6G wireless networks which face obstacles to channel. For extending maximum transmission distances and improving secret key rates, the signals are fed to the variable velocity strategy particle swarm optimization algorithm, then the signals are fed to MSGCNN for analysing the quantum bit error rate reduction. The MSGCNN is optimized by intensified sand cat swarm optimization. The performance of the QKD-ERO-MSGCNN approach attains 15.57%, 23.89%, and 31.75% higher accuracy when analysed with existing techniques, like device-independent QKD utilizing random quantum states, practical continuous-variable QKD and feasible optimization parameters, entanglement and teleportation in QKD for secure wireless systems, and QKD for large scale networks methods, respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"379-402"},"PeriodicalIF":1.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized memory augmented graph neural network-based DoS attacks detection in wireless sensor network. 基于优化内存增强图神经网络的无线传感器网络 DoS 攻击检测。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-28 DOI: 10.1080/0954898X.2024.2392786
Ayyasamy Pushpalatha, Sunkari Pradeep, Matta Venkata Pullarao, Shanmuganathan Sankar

Wireless Sensor Networks (WSNs) are mainly used for data monitoring and collection purposes. Usually, they are made up of numerous sensor nodes that are utilized to gather data remotely. Each sensor node is small and inexpensive. Due to the increasing intelligence, frequency, and complexity of these malicious attacks, traditional attack detection is less effective. In this manuscript, Optimized Memory Augmented Graph Neural Network-based DoS Attacks Detection in Wireless Sensor Network (DoS-AD-MAGNN-WSN) is proposed. Here, the input data is amassed from WSN-DS dataset. The input data is pre-processing by secure adaptive event-triggered filter for handling negation and stemming. Then, the output is fed to nested patch-based feature extraction to extract the optimal features. The extracted features are given to MAGNN for the effective classification of blackhole, flooding, grayhole, scheduling, and normal. The weight parameter of MAGNN is optimized by gradient-based optimizers for better accuracy. The proposed method is activated in Python, and it attains 31.20%, 23.30%, and 26.43% higher accuracy analyzed with existing techniques, such as CNN-LSTM-based method for Denial of Service attacks detection in WSNs (CNN-DoS-AD-WSN), Trust-based DoS attack detection in WSNs for reliable data transmission (TB-DoS-AD-WSN-RDT), and FBDR-Fuzzy-based DoS attack detection with recovery mechanism for WSNs (FBDR-DoS-AD-RM-WSN), respectively.

无线传感器网络(WSN)主要用于监测和收集数据。通常,它们由许多传感器节点组成,用于远程收集数据。每个传感器节点体积小、成本低。由于这些恶意攻击的智能性、频率和复杂性不断提高,传统的攻击检测方法已不再有效。本文提出了基于优化内存增强图神经网络的无线传感器网络 DoS 攻击检测(DoS-AD-MAGNN-WSN)。输入数据来自 WSN-DS 数据集。输入数据通过安全自适应事件触发滤波器进行预处理,以处理否定和词干。然后,将输出输入基于嵌套补丁的特征提取,以提取最佳特征。提取的特征将交给 MAGNN,以便对黑洞、洪水、灰洞、调度和正常进行有效分类。MAGNN 的权重参数通过基于梯度的优化器进行优化,以提高准确性。提出的方法在 Python 中被激活,与基于 CNN-LSTM 的 WSN 中拒绝服务攻击检测方法(CNN-DoS-AD-WSN)、基于信任的 WSN 中 DoS 攻击检测方法(TB-DoS-AD-WSN-RDT)和基于 FBDR-Fuzzy 的 WSN DoS 攻击检测与恢复机制(FBDR-DoS-AD-RM-WSN)等现有技术相比,准确率分别提高了 31.20%、23.30% 和 26.43%。
{"title":"Optimized memory augmented graph neural network-based DoS attacks detection in wireless sensor network.","authors":"Ayyasamy Pushpalatha, Sunkari Pradeep, Matta Venkata Pullarao, Shanmuganathan Sankar","doi":"10.1080/0954898X.2024.2392786","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2392786","url":null,"abstract":"<p><p>Wireless Sensor Networks (WSNs) are mainly used for data monitoring and collection purposes. Usually, they are made up of numerous sensor nodes that are utilized to gather data remotely. Each sensor node is small and inexpensive. Due to the increasing intelligence, frequency, and complexity of these malicious attacks, traditional attack detection is less effective. In this manuscript, Optimized Memory Augmented Graph Neural Network-based DoS Attacks Detection in Wireless Sensor Network (DoS-AD-MAGNN-WSN) is proposed. Here, the input data is amassed from WSN-DS dataset. The input data is pre-processing by secure adaptive event-triggered filter for handling negation and stemming. Then, the output is fed to nested patch-based feature extraction to extract the optimal features. The extracted features are given to MAGNN for the effective classification of blackhole, flooding, grayhole, scheduling, and normal. The weight parameter of MAGNN is optimized by gradient-based optimizers for better accuracy. The proposed method is activated in Python, and it attains 31.20%, 23.30%, and 26.43% higher accuracy analyzed with existing techniques, such as CNN-LSTM-based method for Denial of Service attacks detection in WSNs (CNN-DoS-AD-WSN), Trust-based DoS attack detection in WSNs for reliable data transmission (TB-DoS-AD-WSN-RDT), and FBDR-Fuzzy-based DoS attack detection with recovery mechanism for WSNs (FBDR-DoS-AD-RM-WSN), respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-27"},"PeriodicalIF":1.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree hierarchical deep convolutional neural network optimized with sheep flock optimization algorithm for sentiment classification of Twitter data. 采用羊群优化算法优化的树状分层深度卷积神经网络,用于 Twitter 数据的情感分类。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-21 DOI: 10.1080/0954898X.2024.2388109
Lakshmanaprakash Sanmugaraja, Pandiaraj Annamalai

The increasing volume of online reviews and tweets poses significant challenges for sentiment classification because of the difficulty in obtaining annotated training data. This paper aims to enhance sentiment classification of Twitter data by developing a robust model that improves classification accuracy and computational efficiency. The proposed method named Tree Hierarchical Deep Convolutional Neural Network optimized with Sheep Flock Optimization Algorithm for Sentiment Classification of Twitter Data (SCTD-THDCNN-SFOA) utilizes the Stanford Sentiment Treebank dataset. The process begins with pre-processing steps including Tokenization, Stop words Elimination, Filtering, Hashtag Removal, and Multiword Grouping. The Gray Level Co-occurrence Matrix Window Adaptive Algorithm is employed to extract features, such as emoticon counts, punctuation counts, gazetteer word existence, n-grams, and part of speech tags. These features are selected using Entropy-Kurtosis-based Feature Selection approach. Finally, the Tree Hierarchical Deep Convolutional Neural Network enhanced by the Sheep Flock Optimization Algorithm is used to categorize the Twitter data as positive, negative, and neutral sentiments. The proposed SCTD-THDCNN-SFOA method demonstrates superior performance, achieving higher accuracy and lesser computation time than the existing models, respectively. The SCTD-THDCNN-SFOA framework significantly improves the accuracy and efficiency of sentiment classification for Twitter data.

由于难以获得有注释的训练数据,在线评论和推文数量的不断增加给情感分类带来了巨大挑战。本文旨在通过开发一种能提高分类准确性和计算效率的稳健模型来增强 Twitter 数据的情感分类。本文提出的方法名为 "利用羊群优化算法对 Twitter 数据进行情感分类的树状分层深度卷积神经网络"(SCTD-THDCNN-SFOA),利用的是斯坦福大学情感树库数据集。该过程从预处理步骤开始,包括标记化、消除停顿词、过滤、去除标签和多词分组。采用灰度共现矩阵窗口自适应算法提取特征,如表情符号计数、标点符号计数、地名词典单词存在性、n-grams 和语篇标签。这些特征采用基于熵-峰度的特征选择方法进行选择。最后,使用羊群优化算法增强的树状分层深度卷积神经网络将 Twitter 数据分为积极情绪、消极情绪和中性情绪。所提出的 SCTD-THDCNN-SFOA 方法性能优越,与现有模型相比,准确率更高,计算时间更短。SCTD-THDCNN-SFOA 框架显著提高了 Twitter 数据情感分类的准确性和效率。
{"title":"Tree hierarchical deep convolutional neural network optimized with sheep flock optimization algorithm for sentiment classification of Twitter data.","authors":"Lakshmanaprakash Sanmugaraja, Pandiaraj Annamalai","doi":"10.1080/0954898X.2024.2388109","DOIUrl":"10.1080/0954898X.2024.2388109","url":null,"abstract":"<p><p>The increasing volume of online reviews and tweets poses significant challenges for sentiment classification because of the difficulty in obtaining annotated training data. This paper aims to enhance sentiment classification of Twitter data by developing a robust model that improves classification accuracy and computational efficiency. The proposed method named Tree Hierarchical Deep Convolutional Neural Network optimized with Sheep Flock Optimization Algorithm for Sentiment Classification of Twitter Data (SCTD-THDCNN-SFOA) utilizes the Stanford Sentiment Treebank dataset. The process begins with pre-processing steps including Tokenization, Stop words Elimination, Filtering, Hashtag Removal, and Multiword Grouping. The Gray Level Co-occurrence Matrix Window Adaptive Algorithm is employed to extract features, such as emoticon counts, punctuation counts, gazetteer word existence, n-grams, and part of speech tags. These features are selected using Entropy-Kurtosis-based Feature Selection approach. Finally, the Tree Hierarchical Deep Convolutional Neural Network enhanced by the Sheep Flock Optimization Algorithm is used to categorize the Twitter data as positive, negative, and neutral sentiments. The proposed SCTD-THDCNN-SFOA method demonstrates superior performance, achieving higher accuracy and lesser computation time than the existing models, respectively. The SCTD-THDCNN-SFOA framework significantly improves the accuracy and efficiency of sentiment classification for Twitter data.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-25"},"PeriodicalIF":1.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sentiment analysis using graph-based Quickprop method for product quality enhancement. 利用基于图的 Quickprop 方法进行情感分析,以提高产品质量。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-14 DOI: 10.1080/0954898X.2024.2410777
Raj Kumar Veerasamy Subramani, Thirumoorthy Kumaresan

The degree to which customers express satisfaction with a product on Twitter and other social media platforms is increasingly used to evaluate product quality. However, the volume and variety of textual data make traditional sentiment analysis methods challenging. The nuanced and context-dependent nature of product-related opinions presents a challenge for existing tools. This research addresses this gap by utilizing complex graph-based modelling strategies to capture the intricacies of real-world data. The Graph-based Quickprop Method constructs a graph model using the Sentiment140 dataset with 1.6 million tweets, where individuals are nodes and interactions are edges. Experimental results show a significant increase in sentiment classification accuracy, demonstrating the method's efficacy. This contribution underscores the importance of relational structures in sentiment analysis and provides a robust framework for extracting actionable insights from user-generated content, leading to improved product quality evaluations. The GQP-PQE method advances sentiment analysis and offers practical implications for businesses seeking to enhance product quality through a better understanding of consumer feedback on social media.

客户在 Twitter 和其他社交媒体平台上对产品表示满意的程度越来越多地被用来评估产品质量。然而,文本数据的数量和多样性使得传统的情感分析方法面临挑战。产品相关意见的细微差别和上下文依赖性给现有工具带来了挑战。本研究利用复杂的基于图的建模策略来捕捉真实世界中错综复杂的数据,从而弥补了这一不足。基于图的 Quickprop 方法利用包含 160 万条推文的 Sentiment140 数据集构建了一个图模型,其中个人是节点,互动是边。实验结果表明,情感分类的准确率显著提高,证明了该方法的有效性。这一贡献强调了情感分析中关系结构的重要性,并为从用户生成的内容中提取可操作的洞察力提供了一个强大的框架,从而改进了产品质量评估。GQP-PQE 方法推动了情感分析的发展,并为企业通过更好地了解消费者在社交媒体上的反馈来提高产品质量提供了实际意义。
{"title":"Sentiment analysis using graph-based Quickprop method for product quality enhancement.","authors":"Raj Kumar Veerasamy Subramani, Thirumoorthy Kumaresan","doi":"10.1080/0954898X.2024.2410777","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2410777","url":null,"abstract":"<p><p>The degree to which customers express satisfaction with a product on Twitter and other social media platforms is increasingly used to evaluate product quality. However, the volume and variety of textual data make traditional sentiment analysis methods challenging. The nuanced and context-dependent nature of product-related opinions presents a challenge for existing tools. This research addresses this gap by utilizing complex graph-based modelling strategies to capture the intricacies of real-world data. The Graph-based Quickprop Method constructs a graph model using the Sentiment140 dataset with 1.6 million tweets, where individuals are nodes and interactions are edges. Experimental results show a significant increase in sentiment classification accuracy, demonstrating the method's efficacy. This contribution underscores the importance of relational structures in sentiment analysis and provides a robust framework for extracting actionable insights from user-generated content, leading to improved product quality evaluations. The GQP-PQE method advances sentiment analysis and offers practical implications for businesses seeking to enhance product quality through a better understanding of consumer feedback on social media.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-23"},"PeriodicalIF":1.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep self-organizing map neural networks improve the segmentation for inadequate plantar pressure imaging data set. 深度自组织图神经网络改进了对不足的足底压力成像数据集的分割。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-14 DOI: 10.1080/0954898X.2024.2413849
Dan Wang, Zairan Li, Nilanjan Dey, Adam Slowik, R Simon Sherratt, Fuqian Shi

This study introduces a deep self-organizing map neural network based on level-set (LS-SOM) for the customization of a shoe-last defined from plantar pressure imaging data. To alleviate the over-segmentation problem of images, which refers to segmenting images into more subcomponents, a domain-based segmentation model of plantar pressure images was constructed. The domain growth algorithm was subsequently modified by optimizing its parameters. A SOM with 10, 15, 20, and 30 hidden layers was compared and validated according to domain growth characteristics by using merging and splitting algorithms. Furthermore, we incorporated a level set segmentation method into the plantar pressure image algorithm to enhance its efficiency. Compared to the literature, this proposed method has significantly improved pixel accuracy, average cross-combination ratio, frequency-weighted cross-combination ratio, and boundary F1 index comparison. Using the proposed methods, shoe lasts can be designed optimally, and wearing comfort is enhanced, particularly for people with high blood pressure.

本研究介绍了一种基于水平集(LS-SOM)的深度自组织图神经网络,用于根据足底压力成像数据定制鞋楦。为了缓解图像的过度分割问题,即把图像分割成更多的子组件,我们构建了一个基于域的足底压力图像分割模型。随后,通过优化参数对域增长算法进行了修改。通过使用合并和拆分算法,根据域增长特征对具有 10、15、20 和 30 个隐藏层的 SOM 进行了比较和验证。此外,我们还在足底压力图像算法中加入了水平集分割方法,以提高其效率。与文献相比,本文提出的方法在像素精度、平均交叉组合率、频率加权交叉组合率和边界 F1 指数比较等方面都有显著提高。利用所提出的方法,可以优化鞋楦设计,提高穿着舒适度,尤其适合高血压患者。
{"title":"Deep self-organizing map neural networks improve the segmentation for inadequate plantar pressure imaging data set.","authors":"Dan Wang, Zairan Li, Nilanjan Dey, Adam Slowik, R Simon Sherratt, Fuqian Shi","doi":"10.1080/0954898X.2024.2413849","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2413849","url":null,"abstract":"<p><p>This study introduces a deep self-organizing map neural network based on level-set (LS-SOM) for the customization of a shoe-last defined from plantar pressure imaging data. To alleviate the over-segmentation problem of images, which refers to segmenting images into more subcomponents, a domain-based segmentation model of plantar pressure images was constructed. The domain growth algorithm was subsequently modified by optimizing its parameters. A SOM with 10, 15, 20, and 30 hidden layers was compared and validated according to domain growth characteristics by using merging and splitting algorithms. Furthermore, we incorporated a level set segmentation method into the plantar pressure image algorithm to enhance its efficiency. Compared to the literature, this proposed method has significantly improved pixel accuracy, average cross-combination ratio, frequency-weighted cross-combination ratio, and boundary F1 index comparison. Using the proposed methods, shoe lasts can be designed optimally, and wearing comfort is enhanced, particularly for people with high blood pressure.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-21"},"PeriodicalIF":1.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuro connect: Integrating data-driven and BiGRU classification for enhanced autism prediction from fMRI data. 神经连接:整合数据驱动和 BiGRU 分类,从 fMRI 数据中增强自闭症预测。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-13 DOI: 10.1080/0954898X.2024.2412679
Pavithra Rajaram, Mohanapriya Marimuthu

Autism Spectrum Disorder (ASD) poses a significant challenge in early diagnosis and intervention due to its multifaceted clinical presentation and lack of objective biomarkers. This research presents a novel approach, termed Neuro Connect, which integrates data-driven techniques with Bidirectional Gated Recurrent Unit (BiGRU) classification to enhance the prediction of ASD using functional Magnetic Resonance Imaging (fMRI) data. This study uses both structural and functional neuroimaging data to investigate the complex brain underpinnings of autism spectrum disorder (ASD). They use an Auto-Encoder (AE) to efficiently reduce dimensionality while retaining critical information by learning and compressing important characteristics from high-dimensional data. We treat the feature-extracted data using a BiGRU model for the classification task of predicting ASD. They provide a new optimization strategy, the Horse Herd Algorithm (HHA), and show that it outperforms other established optimizers, such SGD and Adam, in order to improve classification accuracy. The model's performance is greatly enhanced by the HHA's novel optimization technique, which more precisely refines weight modifications made during training. The proposed ASD and EEG dataset accuracy value is 99.5%, and 99.3 compared to the existing method the proposed has a high accuracy value.

自闭症谱系障碍(ASD)的临床表现多种多样,且缺乏客观的生物标志物,这给早期诊断和干预带来了巨大挑战。这项研究提出了一种名为 "神经连接"(Neuro Connect)的新方法,它将数据驱动技术与双向门控递归单元(BiGRU)分类相结合,利用功能性磁共振成像(fMRI)数据加强对自闭症谱系障碍的预测。这项研究利用结构和功能神经成像数据来研究自闭症谱系障碍(ASD)复杂的大脑基础。他们使用自动编码器(AE)通过学习和压缩高维数据中的重要特征,在保留关键信息的同时有效地降低了维度。我们使用 BiGRU 模型处理提取的特征数据,以完成预测 ASD 的分类任务。他们提供了一种新的优化策略--马群算法(Horse Herd Algorithm,HHA),并证明它在提高分类准确性方面优于 SGD 和 Adam 等其他成熟的优化器。HHA 的新优化技术能更精确地完善训练过程中的权重修改,从而大大提高了模型的性能。所提出的 ASD 和脑电图数据集准确率值为 99.5%,与现有方法的 99.3 相比,所提出的方法具有较高的准确率值。
{"title":"Neuro connect: Integrating data-driven and BiGRU classification for enhanced autism prediction from fMRI data.","authors":"Pavithra Rajaram, Mohanapriya Marimuthu","doi":"10.1080/0954898X.2024.2412679","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2412679","url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) poses a significant challenge in early diagnosis and intervention due to its multifaceted clinical presentation and lack of objective biomarkers. This research presents a novel approach, termed Neuro Connect, which integrates data-driven techniques with Bidirectional Gated Recurrent Unit (BiGRU) classification to enhance the prediction of ASD using functional Magnetic Resonance Imaging (fMRI) data. This study uses both structural and functional neuroimaging data to investigate the complex brain underpinnings of autism spectrum disorder (ASD). They use an Auto-Encoder (AE) to efficiently reduce dimensionality while retaining critical information by learning and compressing important characteristics from high-dimensional data. We treat the feature-extracted data using a BiGRU model for the classification task of predicting ASD. They provide a new optimization strategy, the Horse Herd Algorithm (HHA), and show that it outperforms other established optimizers, such SGD and Adam, in order to improve classification accuracy. The model's performance is greatly enhanced by the HHA's novel optimization technique, which more precisely refines weight modifications made during training. The proposed ASD and EEG dataset accuracy value is 99.5%, and 99.3 compared to the existing method the proposed has a high accuracy value.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-32"},"PeriodicalIF":1.1,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Internet of Things and Cloud Computing-based Disease Diagnosis using Optimized Improved Generative Adversarial Network in Smart Healthcare System. 基于物联网和云计算的疾病诊断,在智能医疗系统中使用优化改进的生成对抗网络。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-13 DOI: 10.1080/0954898X.2024.2392770
Thimmakkondu Babuji Sivakumar, Shahul Hameed Hasan Hussain, R Balamanigandan

The integration of IoT and cloud services enhances communication and quality of life, while predictive analytics powered by AI and deep learning enables proactive healthcare. Deep learning, a subset of machine learning, efficiently analyzes vast datasets, offering rapid disease prediction. Leveraging recurrent neural networks on electronic health records improves accuracy for timely intervention and preventative care. In this manuscript, Internet of Things and Cloud Computing-based Disease Diagnosis using Optimized Improved Generative Adversarial Network in Smart Healthcare System (IOT-CC-DD-OICAN-SHS) is proposed. Initially, an Internet of Things (IoT) device collects diabetes, chronic kidney disease, and heart disease data from patients via wearable devices and intelligent sensors and then saves the patient's large data in the cloud. These cloud data are pre-processed to turn them into a suitable format. The pre-processed dataset is sent into the Improved Generative Adversarial Network (IGAN), which reliably classifies the data as disease-free or diseased. Then, IGAN was optimized using the Flamingo Search optimization algorithm (FSOA). The proposed technique is implemented in Java using Cloud Sim and examined utilizing several performance metrics. The proposed method attains greater accuracy and specificity with lower execution time compared to existing methodologies, IoT-C-SHMS-HDP-DL, PPEDL-MDTC and CSO-CLSTM-DD-SHS respectively.

物联网和云服务的整合提高了通信和生活质量,而由人工智能和深度学习驱动的预测分析则实现了积极主动的医疗保健。深度学习是机器学习的一个子集,它能有效地分析庞大的数据集,提供快速的疾病预测。利用电子健康记录中的递归神经网络,可提高及时干预和预防保健的准确性。本文提出了基于物联网和云计算的疾病诊断方法,即在智能医疗系统中使用优化改进生成对抗网络(IOT-CC-DD-OICAN-SHS)。最初,物联网(IoT)设备通过可穿戴设备和智能传感器收集患者的糖尿病、慢性肾病和心脏病数据,然后将患者的大数据保存在云端。这些云数据经过预处理,变成合适的格式。预处理后的数据集被送入改进生成对抗网络(IGAN),该网络能可靠地将数据分类为无病或有病。然后,使用火烈鸟搜索优化算法(FSOA)对 IGAN 进行优化。提出的技术使用云 Sim 在 Java 中实现,并利用多个性能指标进行检验。与现有方法(分别为 IoT-C-SHMS-HDP-DL、PPEDL-MDTC 和 CSO-CLSTM-DD-SHS)相比,所提出的方法以更短的执行时间获得了更高的准确性和特异性。
{"title":"Internet of Things and Cloud Computing-based Disease Diagnosis using Optimized Improved Generative Adversarial Network in Smart Healthcare System.","authors":"Thimmakkondu Babuji Sivakumar, Shahul Hameed Hasan Hussain, R Balamanigandan","doi":"10.1080/0954898X.2024.2392770","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2392770","url":null,"abstract":"<p><p>The integration of IoT and cloud services enhances communication and quality of life, while predictive analytics powered by AI and deep learning enables proactive healthcare. Deep learning, a subset of machine learning, efficiently analyzes vast datasets, offering rapid disease prediction. Leveraging recurrent neural networks on electronic health records improves accuracy for timely intervention and preventative care. In this manuscript, Internet of Things and Cloud Computing-based Disease Diagnosis using Optimized Improved Generative Adversarial Network in Smart Healthcare System (IOT-CC-DD-OICAN-SHS) is proposed. Initially, an Internet of Things (IoT) device collects diabetes, chronic kidney disease, and heart disease data from patients via wearable devices and intelligent sensors and then saves the patient's large data in the cloud. These cloud data are pre-processed to turn them into a suitable format. The pre-processed dataset is sent into the Improved Generative Adversarial Network (IGAN), which reliably classifies the data as disease-free or diseased. Then, IGAN was optimized using the Flamingo Search optimization algorithm (FSOA). The proposed technique is implemented in Java using Cloud Sim and examined utilizing several performance metrics. The proposed method attains greater accuracy and specificity with lower execution time compared to existing methodologies, IoT-C-SHMS-HDP-DL, PPEDL-MDTC and CSO-CLSTM-DD-SHS respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-24"},"PeriodicalIF":1.1,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing an optimal task scheduling and VM placement in the cloud environment with multi-objective constraints using Hybrid Lemurs and Gannet Optimization Algorithm. 使用混合 Lemurs 和 Gannet 优化算法,在多目标约束条件下设计云环境中的最佳任务调度和虚拟机放置。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-09 DOI: 10.1080/0954898X.2024.2412678
Kapil Vhatkar, Atul Baliram Kathole, Savita Lonare, Jayashree Katti, Vinod Vijaykumar Kimbahune

An efficient resource utilization method can greatly reduce expenses and unwanted resources. Typical cloud resource planning approaches lack support for the emerging paradigm regarding asset management speed and optimization. The use of cloud computing relies heavily on task planning and allocation of resources. The task scheduling issue is more crucial in arranging and allotting application jobs supplied by customers on Virtual Machines (VM) in a specific manner. The task planning issue needs to be specifically stated to increase scheduling efficiency. The task scheduling in the cloud environment model is developed using optimization techniques. This model intends to optimize both the task scheduling and VM placement over the cloud environment. In this model, a new hybrid-meta-heuristic optimization algorithm is developed named the Hybrid Lemurs-based Gannet Optimization Algorithm (HL-GOA). The multi-objective function is considered with constraints like cost, time, resource utilization, makespan, and throughput. The proposed model is further validated and compared against existing methodologies. The total time required for scheduling and VM placement is 30.23%, 6.25%, 11.76%, and 10.44% reduced than ESO, RSO, LO, and GOA with 2 VMs. The simulation outcomes revealed that the developed model effectively resolved the scheduling and VL placement issues.

高效的资源利用方法可以大大减少开支和不必要的资源。典型的云资源规划方法缺乏对新兴资产管理速度和优化模式的支持。云计算的使用在很大程度上依赖于任务规划和资源分配。任务调度问题在以特定方式在虚拟机(VM)上安排和分配客户提供的应用任务时更为关键。为了提高调度效率,需要具体说明任务规划问题。云环境中的任务调度模型是利用优化技术开发的。该模型旨在优化云环境中的任务调度和虚拟机放置。在该模型中,开发了一种新的混合元启发式优化算法,名为基于狐猴的混合甘网优化算法(HL-GOA)。多目标函数考虑了成本、时间、资源利用率、工期和吞吐量等约束条件。提出的模型得到了进一步验证,并与现有方法进行了比较。与使用 2 个虚拟机的 ESO、RSO、LO 和 GOA 相比,调度和虚拟机放置所需的总时间分别减少了 30.23%、6.25%、11.76% 和 10.44%。仿真结果表明,开发的模型有效地解决了调度和虚拟机放置问题。
{"title":"Designing an optimal task scheduling and VM placement in the cloud environment with multi-objective constraints using Hybrid Lemurs and Gannet Optimization Algorithm.","authors":"Kapil Vhatkar, Atul Baliram Kathole, Savita Lonare, Jayashree Katti, Vinod Vijaykumar Kimbahune","doi":"10.1080/0954898X.2024.2412678","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2412678","url":null,"abstract":"<p><p>An efficient resource utilization method can greatly reduce expenses and unwanted resources. Typical cloud resource planning approaches lack support for the emerging paradigm regarding asset management speed and optimization. The use of cloud computing relies heavily on task planning and allocation of resources. The task scheduling issue is more crucial in arranging and allotting application jobs supplied by customers on Virtual Machines (VM) in a specific manner. The task planning issue needs to be specifically stated to increase scheduling efficiency. The task scheduling in the cloud environment model is developed using optimization techniques. This model intends to optimize both the task scheduling and VM placement over the cloud environment. In this model, a new hybrid-meta-heuristic optimization algorithm is developed named the Hybrid Lemurs-based Gannet Optimization Algorithm (HL-GOA). The multi-objective function is considered with constraints like cost, time, resource utilization, makespan, and throughput. The proposed model is further validated and compared against existing methodologies. The total time required for scheduling and VM placement is 30.23%, 6.25%, 11.76%, and 10.44% reduced than ESO, RSO, LO, and GOA with 2 VMs. The simulation outcomes revealed that the developed model effectively resolved the scheduling and VL placement issues.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-31"},"PeriodicalIF":1.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study of early stage Alzheimer's disease classification using various transfer learning CNN frameworks. 使用各种迁移学习 CNN 框架对早期阿尔茨海默病分类的比较研究。
IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-05 DOI: 10.1080/0954898X.2024.2406946
Yajuvendra Pratap Singh, Daya Krishan Lobiyal

The current research explores the improvements in predictive performance and computational efficiency that machine learning and deep learning methods have made over time. Specifically, the application of transfer learning concepts within Convolutional Neural Networks (CNNs) has proved useful for diagnosing and classifying the various stages of Alzheimer's disease. Using base architectures such as Xception, InceptionResNetV2, DenseNet201, InceptionV3, ResNet50, and MobileNetV2, this study extends these models by adding batch normalization (BN), dropout, and dense layers. These enhancements improve the model's effectiveness and precision in addressing the specified medical issue. The proposed model is rigorously validated and evaluated using publicly available Kaggle MRI Alzheimer's data consisting of 1280 testing images and 5120 patient training images. For comprehensive performance evaluation, precision, recall, F1-score, and accuracy metrics are utilized. The findings indicate that the Xception method is the most promising of those considered. Without employing five K-fold techniques, this model obtains a 99% accuracy and 0.135 loss score. In addition, integrating five K-fold methods enhances the accuracy to 99.68% while decreasing the loss score to 0.120. The research further included the evaluation of the Receiver Operating Characteristic Area Under the Curve (ROC-AUC) for various classes and models. As a result, our model may detect and diagnose Alzheimer's disease quickly and accurately.

目前的研究探讨了机器学习和深度学习方法在预测性能和计算效率方面的改进。具体来说,卷积神经网络(CNN)中迁移学习概念的应用已被证明有助于诊断和分类阿尔茨海默病的各个阶段。本研究利用 Xception、InceptionResNetV2、DenseNet201、InceptionV3、ResNet50 和 MobileNetV2 等基本架构,通过添加批量归一化 (BN)、剔除和密集层来扩展这些模型。这些改进提高了模型在解决特定医疗问题时的有效性和精确性。利用公开的 Kaggle 核磁共振阿尔茨海默病数据(包括 1280 张测试图像和 5120 张患者训练图像)对所提出的模型进行了严格的验证和评估。为了进行全面的性能评估,使用了精确度、召回率、F1 分数和准确度指标。研究结果表明,Xception 方法是最有前途的方法。在未采用五次 K 折技术的情况下,该模型的准确率为 99%,损失分值为 0.135。此外,整合五种 K-fold 方法可将准确率提高到 99.68%,同时将损失分降低到 0.120。研究还进一步评估了不同类别和模型的曲线下接收方操作特征区域(ROC-AUC)。因此,我们的模型可以快速准确地检测和诊断阿尔茨海默病。
{"title":"A comparative study of early stage Alzheimer's disease classification using various transfer learning CNN frameworks.","authors":"Yajuvendra Pratap Singh, Daya Krishan Lobiyal","doi":"10.1080/0954898X.2024.2406946","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2406946","url":null,"abstract":"<p><p>The current research explores the improvements in predictive performance and computational efficiency that machine learning and deep learning methods have made over time. Specifically, the application of transfer learning concepts within Convolutional Neural Networks (CNNs) has proved useful for diagnosing and classifying the various stages of Alzheimer's disease. Using base architectures such as Xception, InceptionResNetV2, DenseNet201, InceptionV3, ResNet50, and MobileNetV2, this study extends these models by adding batch normalization (BN), dropout, and dense layers. These enhancements improve the model's effectiveness and precision in addressing the specified medical issue. The proposed model is rigorously validated and evaluated using publicly available Kaggle MRI Alzheimer's data consisting of 1280 testing images and 5120 patient training images. For comprehensive performance evaluation, precision, recall, F1-score, and accuracy metrics are utilized. The findings indicate that the Xception method is the most promising of those considered. Without employing five K-fold techniques, this model obtains a 99% accuracy and 0.135 loss score. In addition, integrating five K-fold methods enhances the accuracy to 99.68% while decreasing the loss score to 0.120. The research further included the evaluation of the Receiver Operating Characteristic Area Under the Curve (ROC-AUC) for various classes and models. As a result, our model may detect and diagnose Alzheimer's disease quickly and accurately.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-29"},"PeriodicalIF":1.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Network-Computation in Neural Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1