首页 > 最新文献

Network-Computation in Neural Systems最新文献

英文 中文
Deep Siamese domain adaptation convolutional neural network-based quaternion fractional order Meixner moments fostered big data analytical method for enhancing cloud data security. 基于深度暹罗域自适应卷积神经网络的四元数分数阶梅克斯纳矩大数据分析方法,用于增强云数据安全性。
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-11 DOI: 10.1080/0954898X.2024.2354477
J Sulthan Alikhan, S Miruna Joe Amali, R Karthick

In this paper, Quaternion Fractional Order Meixner Moments-based Deep Siamese Domain Adaptation Convolutional Neural Network-based Big Data Analytical Technique is proposed for improving Cloud Data Security (DSDA-CNN-QFOMM-BD-CDS). The proposed methodology comprises six phases: data collection, transmission, pre-processing, storage, analysis, and security of data. Big data analysis methodologies start with the data collection phase. Deep Siamese domain adaptation convolutional Neural Network (DSDA-CNN) is applied to categorize the types of attacks in the cloud database during the data analysis process. During data security phase, Quaternion Fractional Order Meixner Moments (QFOMM) is employed to protect the cloud data for encryption with decryption. The proposed method is implemented in JAVA and assessed using performance metrics, including precision, sensitivity, accuracy, recall, specificity, f-measure, computational complexity information loss, compression ratio, throughput, encryption time, decryption time. The performance of the proposed method offers 23.31%, 15.64%, 18.89% better accuracy and 36.69%, 17.25%, 19.96% less information loss. When compared to existing methods like Fractional order discrete Tchebyshev encryption fostered big data analytical model to maximize the safety of cloud data depend on Enhanced Elman spike neural network (EESNN-FrDTM-BD-CDS), an innovative scheme architecture for safe authentication along data sharing in cloud enabled Big data Environment (LZMA-DBSCAN-BD-CDS).

本文提出了基于四元数分数阶 Meixner 矩的深度暹罗域自适应卷积神经网络大数据分析技术(DSDA-CNN-QFOMM-BD-CDS),以提高云数据的安全性。所提出的方法包括六个阶段:数据收集、传输、预处理、存储、分析和数据安全。大数据分析方法从数据收集阶段开始。在数据分析过程中,应用深度连体域自适应卷积神经网络(DSDA-CNN)对云数据库中的攻击类型进行分类。在数据安全阶段,采用四元数分数阶美克斯纳矩(QFOMM)对云数据进行加密和解密保护。所提出的方法在 JAVA 中实现,并使用性能指标进行评估,包括精确度、灵敏度、准确度、召回率、特异性、f-度量、计算复杂度信息损失、压缩比、吞吐量、加密时间、解密时间。所提方法的准确度分别提高了 23.31%、15.64% 和 18.89%,信息损失分别减少了 36.69%、17.25% 和 19.96%。与分数阶离散切比雪夫加密等现有方法相比,该方法基于增强型埃尔曼穗神经网络(EESNN-FrDTM-BD-CDS)建立了大数据分析模型,最大限度地提高了云数据的安全性;该方法是一种创新的方案架构,可在启用云的大数据环境(LZMA-DBSCAN-BD-CDS)中实现数据共享的安全认证。
{"title":"Deep Siamese domain adaptation convolutional neural network-based quaternion fractional order Meixner moments fostered big data analytical method for enhancing cloud data security.","authors":"J Sulthan Alikhan, S Miruna Joe Amali, R Karthick","doi":"10.1080/0954898X.2024.2354477","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2354477","url":null,"abstract":"<p><p>In this paper, Quaternion Fractional Order Meixner Moments-based Deep Siamese Domain Adaptation Convolutional Neural Network-based Big Data Analytical Technique is proposed for improving Cloud Data Security (DSDA-CNN-QFOMM-BD-CDS). The proposed methodology comprises six phases: data collection, transmission, pre-processing, storage, analysis, and security of data. Big data analysis methodologies start with the data collection phase. Deep Siamese domain adaptation convolutional Neural Network (DSDA-CNN) is applied to categorize the types of attacks in the cloud database during the data analysis process. During data security phase, Quaternion Fractional Order Meixner Moments (QFOMM) is employed to protect the cloud data for encryption with decryption. The proposed method is implemented in JAVA and assessed using performance metrics, including precision, sensitivity, accuracy, recall, specificity, f-measure, computational complexity information loss, compression ratio, throughput, encryption time, decryption time. The performance of the proposed method offers 23.31%, 15.64%, 18.89% better accuracy and 36.69%, 17.25%, 19.96% less information loss. When compared to existing methods like Fractional order discrete Tchebyshev encryption fostered big data analytical model to maximize the safety of cloud data depend on Enhanced Elman spike neural network (EESNN-FrDTM-BD-CDS), an innovative scheme architecture for safe authentication along data sharing in cloud enabled Big data Environment (LZMA-DBSCAN-BD-CDS).</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-28"},"PeriodicalIF":7.8,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Support vector machine-based stock market prediction using long short-term memory and convolutional neural network with aquila circle inspired optimization. 基于支持向量机的股票市场预测,使用长短期记忆和卷积神经网络,以及受奎拉圆圈启发的优化。
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-10 DOI: 10.1080/0954898X.2024.2358957
J Karthick Myilvahanan, N Mohana Sundaram

Predicting the stock market is one of the significant chores and has a successful prediction of stock rates, and it helps in making correct decisions. The prediction of the stock market is the main challenge due to blaring, chaotic data as well as non-stationary data. In this research, the support vector machine (SVM) is devised for performing an effective stock market prediction. At first, the input time series data is considered and the pre-processing of data is done by employing a standard scalar. Then, the time intrinsic features are extracted and the suitable features are selected in the feature selection stage by eliminating other features using recursive feature elimination. Afterwards, the Long Short-Term Memory (LSTM) based prediction is done, wherein LSTM is trained to employ Aquila circle-inspired optimization (ACIO) that is newly introduced by merging Aquila optimizer (AO) with circle-inspired optimization algorithm (CIOA). On the other hand, delay-based matrix formation is conducted by considering input time series data. After that, convolutional neural network (CNN)-based prediction is performed, where CNN is tuned by the same ACIO. Finally, stock market prediction is executed utilizing SVM by fusing the predicted outputs attained from LSTM-based prediction and CNN-based prediction. Furthermore, the SVM attains better outcomes of minimum mean absolute percentage error; (MAPE) and normalized root-mean-square error (RMSE) with values about 0.378 and 0.294.

预测股市是一项重要任务,成功预测股票价格有助于做出正确决策。股票市场的预测是一项重大挑战,因为它面临着爆炸性、混沌数据和非稳态数据。本研究设计了支持向量机(SVM)来进行有效的股市预测。首先,考虑输入的时间序列数据,并采用标准标量对数据进行预处理。然后,提取时间内在特征,并在特征选择阶段使用递归特征消除法消除其他特征,从而选出合适的特征。然后,进行基于长短期记忆(LSTM)的预测,其中 LSTM 的训练采用了 Aquila 圆圈启发优化算法(ACIO),该算法是通过将 Aquila 优化器(AO)与圆圈启发优化算法(CIOA)合并而新引入的。另一方面,通过考虑输入的时间序列数据,进行基于延迟的矩阵形成。然后,执行基于卷积神经网络(CNN)的预测,其中 CNN 由相同的 ACIO 进行调整。最后,通过融合基于 LSTM 的预测和基于 CNN 的预测所获得的预测输出,利用 SVM 进行股市预测。此外,SVM 在最小平均绝对百分比误差 (MAPE) 和归一化均方根误差 (RMSE) 值约为 0.378 和 0.294 方面取得了更好的结果。
{"title":"Support vector machine-based stock market prediction using long short-term memory and convolutional neural network with aquila circle inspired optimization.","authors":"J Karthick Myilvahanan, N Mohana Sundaram","doi":"10.1080/0954898X.2024.2358957","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2358957","url":null,"abstract":"<p><p>Predicting the stock market is one of the significant chores and has a successful prediction of stock rates, and it helps in making correct decisions. The prediction of the stock market is the main challenge due to blaring, chaotic data as well as non-stationary data. In this research, the support vector machine (SVM) is devised for performing an effective stock market prediction. At first, the input time series data is considered and the pre-processing of data is done by employing a standard scalar. Then, the time intrinsic features are extracted and the suitable features are selected in the feature selection stage by eliminating other features using recursive feature elimination. Afterwards, the Long Short-Term Memory (LSTM) based prediction is done, wherein LSTM is trained to employ Aquila circle-inspired optimization (ACIO) that is newly introduced by merging Aquila optimizer (AO) with circle-inspired optimization algorithm (CIOA). On the other hand, delay-based matrix formation is conducted by considering input time series data. After that, convolutional neural network (CNN)-based prediction is performed, where CNN is tuned by the same ACIO. Finally, stock market prediction is executed utilizing SVM by fusing the predicted outputs attained from LSTM-based prediction and CNN-based prediction. Furthermore, the SVM attains better outcomes of minimum mean absolute percentage error; (MAPE) and normalized root-mean-square error (RMSE) with values about 0.378 and 0.294.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-36"},"PeriodicalIF":7.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A secure worst elite sailfish optimizer based routing and deep learning for black hole attack detection. 基于路由和深度学习的黑洞攻击检测的安全最差精英旗鱼优化器。
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-10 DOI: 10.1080/0954898X.2024.2363353
Mandeep Kumar, Jahid Ali

The Wireless Sensor Network (WSN) is susceptible to two kinds of attacks, namely active attack and passive attack. In an active attack, the attacker directly communicates with the target system or network. In contrast, in passive attack, the attacker is in indirect contact with the network. To preserve the functionality and dependability of wireless sensor networks, this research has been conducted recently to detect and mitigate the black hole attacks. In this research, a Deep learning (DL) based black hole attack detection model is designed. The WSN simulation is the beginning stage of this process. Moreover, routing is the key process, where the data is passed to the base station (BS) via the shortest and finest route. The proposed Worst Elite Sailfish Optimization (WESFO) is utilized for routing. Moreover, black hole attack detection is performed in the BS. The Auto Encoder (AE) is employed in attack detection, which is trained with the use of the proposed WESFO algorithm. Additionally, the proposed model is validated in terms of delay, Packet Delivery Rate (PDR), throughput, False-Negative Rate (FNR), and False-Positive Rate (FPR) parameters with the corresponding outcomes like 25.64 s, 94.83%, 119.3, 0.084, and 0.135 are obtained.

无线传感器网络(WSN)容易受到两种攻击,即主动攻击和被动攻击。在主动攻击中,攻击者直接与目标系统或网络通信。相比之下,在被动攻击中,攻击者与网络是间接接触。为了保持无线传感器网络的功能性和可靠性,最近开展了这项研究,以检测和缓解黑洞攻击。本研究设计了一种基于深度学习(DL)的黑洞攻击检测模型。WSN 模拟是这一过程的起始阶段。此外,路由是关键过程,数据通过最短和最细的路由传递到基站(BS)。路由选择采用了所提出的最差精英旗鱼优化(WESFO)方法。此外,还在 BS 中执行黑洞攻击检测。在攻击检测中使用了自动编码器(AE),该编码器是利用提出的 WESFO 算法训练的。此外,提议的模型还在延迟、数据包交付率(PDR)、吞吐量、假阴性率(FNR)和假阳性率(FPR)参数方面进行了验证,并获得了 25.64 秒、94.83%、119.3、0.084 和 0.135 等相应结果。
{"title":"A secure worst elite sailfish optimizer based routing and deep learning for black hole attack detection.","authors":"Mandeep Kumar, Jahid Ali","doi":"10.1080/0954898X.2024.2363353","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2363353","url":null,"abstract":"<p><p>The Wireless Sensor Network (WSN) is susceptible to two kinds of attacks, namely active attack and passive attack. In an active attack, the attacker directly communicates with the target system or network. In contrast, in passive attack, the attacker is in indirect contact with the network. To preserve the functionality and dependability of wireless sensor networks, this research has been conducted recently to detect and mitigate the black hole attacks. In this research, a Deep learning (DL) based black hole attack detection model is designed. The WSN simulation is the beginning stage of this process. Moreover, routing is the key process, where the data is passed to the base station (BS) via the shortest and finest route. The proposed Worst Elite Sailfish Optimization (WESFO) is utilized for routing. Moreover, black hole attack detection is performed in the BS. The Auto Encoder (AE) is employed in attack detection, which is trained with the use of the proposed WESFO algorithm. Additionally, the proposed model is validated in terms of delay, Packet Delivery Rate (PDR), throughput, False-Negative Rate (FNR), and False-Positive Rate (FPR) parameters with the corresponding outcomes like 25.64 s, 94.83%, 119.3, 0.084, and 0.135 are obtained.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-26"},"PeriodicalIF":7.8,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speaker-based language identification for Ethio-Semitic languages using CRNN and hybrid features. 使用 CRNN 和混合特征,基于扬声器识别 Ethio-Semitic 语言。
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-04 DOI: 10.1080/0954898X.2024.2359610
Malefia Demilie Melese, Amlakie Aschale Alemu, Ayodeji Olalekan Salau, Ibrahim Gashaw Kasa

Natural language is frequently employed for information exchange between humans and computers in modern digital environments. Natural Language Processing (NLP) is a basic requirement for technological advancement in the field of speech recognition. For additional NLP activities like speech-to-text translation, speech-to-speech translation, speaker recognition, and speech information retrieval, language identification (LID) is a prerequisite. In this paper, we developed a Language Identification (LID) model for Ethio-Semitic languages. We used a hybrid approach (a convolutional recurrent neural network (CRNN)), in addition to a mixed (Mel frequency cepstral coefficient (MFCC) and mel-spectrogram) approach, to build our LID model. The study focused on four Ethio-Semitic languages: Amharic, Ge'ez, Guragigna, and Tigrinya. By using data augmentation for the selected languages, we were able to expand our original dataset of 8 h of audio data to 24 h and 40 min. The proposed selected features, when evaluated, achieved an average performance accuracy of 98.1%, 98.6%, and 99.9% for testing, validation, and training, respectively. The results show that the CRNN model with (Mel-Spectrogram + MFCC) combination feature achieved the best results when compared to other existing models.

在现代数字环境中,人与计算机之间经常使用自然语言进行信息交流。自然语言处理(NLP)是语音识别领域技术进步的基本要求。对于语音到文本翻译、语音到语音翻译、说话人识别和语音信息检索等其他 NLP 活动,语言识别(LID)是先决条件。在本文中,我们为 Ethio-Semitic 语言开发了一个语言识别 (LID) 模型。我们采用了一种混合方法(卷积递归神经网络(CRNN))以及一种混合方法(梅尔频率倒频谱系数(MFCC)和梅尔频谱图)来建立 LID 模型。研究重点是四种民族-闪米特语言:阿姆哈拉语、盖伊兹语、古拉格尼亚语和提格雷尼亚语。通过对所选语言进行数据扩充,我们将原来 8 小时的音频数据集扩充到了 24 小时 40 分钟。在对所选特征进行评估时,建议的测试、验证和训练平均准确率分别达到 98.1%、98.6% 和 99.9%。结果表明,与其他现有模型相比,具有(Mel-Spectrogram + MFCC)组合特征的 CRNN 模型取得了最佳结果。
{"title":"Speaker-based language identification for Ethio-Semitic languages using CRNN and hybrid features.","authors":"Malefia Demilie Melese, Amlakie Aschale Alemu, Ayodeji Olalekan Salau, Ibrahim Gashaw Kasa","doi":"10.1080/0954898X.2024.2359610","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2359610","url":null,"abstract":"<p><p>Natural language is frequently employed for information exchange between humans and computers in modern digital environments. Natural Language Processing (NLP) is a basic requirement for technological advancement in the field of speech recognition. For additional NLP activities like speech-to-text translation, speech-to-speech translation, speaker recognition, and speech information retrieval, language identification (LID) is a prerequisite. In this paper, we developed a Language Identification (LID) model for Ethio-Semitic languages. We used a hybrid approach (a convolutional recurrent neural network (CRNN)), in addition to a mixed (Mel frequency cepstral coefficient (MFCC) and mel-spectrogram) approach, to build our LID model. The study focused on four Ethio-Semitic languages: Amharic, Ge'ez, Guragigna, and Tigrinya. By using data augmentation for the selected languages, we were able to expand our original dataset of 8 h of audio data to 24 h and 40 min. The proposed selected features, when evaluated, achieved an average performance accuracy of 98.1%, 98.6%, and 99.9% for testing, validation, and training, respectively. The results show that the CRNN model with (Mel-Spectrogram + MFCC) combination feature achieved the best results when compared to other existing models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-23"},"PeriodicalIF":7.8,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ContrAttNet: Contribution and attention approach to multivariate time-series data imputation. ContrAttNet:多变量时间序列数据估算的贡献和关注方法。
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-06-03 DOI: 10.1080/0954898X.2024.2360157
Yunfei Yin, Caihao Huang, Xianjian Bao

The imputation of missing values in multivariate time-series data is a basic and popular data processing technology. Recently, some studies have exploited Recurrent Neural Networks (RNNs) and Generative Adversarial Networks (GANs) to impute/fill the missing values in multivariate time-series data. However, when faced with datasets with high missing rates, the imputation error of these methods increases dramatically. To this end, we propose a neural network model based on dynamic contribution and attention, denoted as ContrAttNet. ContrAttNet consists of three novel modules: feature attention module, iLSTM (imputation Long Short-Term Memory) module, and 1D-CNN (1-Dimensional Convolutional Neural Network) module. ContrAttNet exploits temporal information and spatial feature information to predict missing values, where iLSTM attenuates the memory of LSTM according to the characteristics of the missing values, to learn the contributions of different features. Moreover, the feature attention module introduces an attention mechanism based on contributions, to calculate supervised weights. Furthermore, under the influence of these supervised weights, 1D-CNN processes the time-series data by treating them as spatial features. Experimental results show that ContrAttNet outperforms other state-of-the-art models in the missing value imputation of multivariate time-series data, with average 6% MAPE and 9% MAE on the benchmark datasets.

多元时间序列数据中缺失值的估算是一项基本且流行的数据处理技术。最近,一些研究利用循环神经网络(RNN)和生成对抗网络(GAN)来估算/填补多元时间序列数据中的缺失值。然而,当面对高缺失率的数据集时,这些方法的估算误差会急剧增加。为此,我们提出了一种基于动态贡献和注意力的神经网络模型,称为 ContrAttNet。ContrAttNet 由三个新模块组成:特征注意模块、iLSTM(估算长短期记忆)模块和 1D-CNN(一维卷积神经网络)模块。ContrAttNet 利用时间信息和空间特征信息预测缺失值,而 iLSTM 则根据缺失值的特征减弱 LSTM 的记忆,以学习不同特征的贡献。此外,特征关注模块引入了基于贡献的关注机制,以计算监督权重。此外,在这些监督权重的影响下,1D-CNN 将时间序列数据视为空间特征进行处理。实验结果表明,ContrAttNet 在多变量时间序列数据的缺失值估算方面优于其他最先进的模型,在基准数据集上的平均 MAPE 为 6%,MAE 为 9%。
{"title":"ContrAttNet: Contribution and attention approach to multivariate time-series data imputation.","authors":"Yunfei Yin, Caihao Huang, Xianjian Bao","doi":"10.1080/0954898X.2024.2360157","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2360157","url":null,"abstract":"<p><p>The imputation of missing values in multivariate time-series data is a basic and popular data processing technology. Recently, some studies have exploited Recurrent Neural Networks (RNNs) and Generative Adversarial Networks (GANs) to impute/fill the missing values in multivariate time-series data. However, when faced with datasets with high missing rates, the imputation error of these methods increases dramatically. To this end, we propose a neural network model based on dynamic contribution and attention, denoted as <b>ContrAttNet</b>. <b>ContrAttNet</b> consists of three novel modules: feature attention module, iLSTM (imputation Long Short-Term Memory) module, and 1D-CNN (1-Dimensional Convolutional Neural Network) module. <b>ContrAttNet</b> exploits temporal information and spatial feature information to predict missing values, where iLSTM attenuates the memory of LSTM according to the characteristics of the missing values, to learn the contributions of different features. Moreover, the feature attention module introduces an attention mechanism based on contributions, to calculate supervised weights. Furthermore, under the influence of these supervised weights, 1D-CNN processes the time-series data by treating them as spatial features. Experimental results show that <b>ContrAttNet</b> outperforms other state-of-the-art models in the missing value imputation of multivariate time-series data, with average 6% MAPE and 9% MAE on the benchmark datasets.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-24"},"PeriodicalIF":7.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141201474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid deep learning approach for sentiment analysis using text and emojis. 使用文本和表情符号进行情感分析的混合深度学习方法。
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-29 DOI: 10.1080/0954898X.2024.2349275
Arjun Kuruva, C Nagaraju Chiluka

Sentiment Analysis (SA) is a technique for categorizing texts based on the sentimental polarity of people's opinions. This paper introduces a sentiment analysis (SA) model with text and emojis. The two preprocessed data's are data with text and emojis and text without emojis. Feature extraction consists text features and text with emojis features. The text features are features like N-grams, modified Term Frequency-Inverse Document Frequency (TF-IDF), and Bag-of-Words (BoW) features extracted from the text. In classification, CNN (Conventional Neural Network) and MLP (Multi-Layer Perception) use emojis and text-based SA. The CNN weight is optimized by a new Electric fish Customized Shark Smell Optimization (ECSSO) Algorithm. Similarly, the text-based SA is carried out by hybrid Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) classifiers. The bagged data are given as input to the classification process via RNN and LSTM. Here, the weight of LSTM is optimized by the suggested ECSSO algorithm. Then, the mean of LSTM and RNN determines the final output. The specificity of the developed scheme is 29.01%, 42.75%, 23.88%,22.07%, 25.31%, 18.42%, 5.68%, 10.34%, 6.20%, 6.64%, and 6.84% better for 70% than other models. The efficiency of the proposed scheme is computed and evaluated.

情感分析(Sentiment Analysis,SA)是一种根据人们观点的情感极性对文本进行分类的技术。本文介绍了一种包含文本和表情符号的情感分析(SA)模型。两种预处理数据分别是包含文本和表情符号的数据和不包含表情符号的文本数据。特征提取包括文本特征和带有表情符号的文本特征。文本特征是从文本中提取的 N-grams、修改后的词频-反向文档频率(TF-IDF)和词袋(BoW)等特征。在分类中,CNN(传统神经网络)和 MLP(多层感知)使用表情符号和基于文本的 SA。CNN 的权重通过新的电鱼定制鲨鱼气味优化算法(ECSSO)进行优化。同样,基于文本的 SA 由混合长短期记忆(LSTM)和循环神经网络(RNN)分类器执行。袋装数据通过 RNN 和 LSTM 作为分类过程的输入。在这里,LSTM 的权重通过建议的 ECSSO 算法进行优化。然后,LSTM 和 RNN 的平均值决定最终输出。所开发方案的特异性分别为 29.01%、42.75%、23.88%、22.07%、25.31%、18.42%、5.68%、10.34%、6.20%、6.64% 和 6.84%,70% 优于其他模型。计算并评估了建议方案的效率。
{"title":"Hybrid deep learning approach for sentiment analysis using text and emojis.","authors":"Arjun Kuruva, C Nagaraju Chiluka","doi":"10.1080/0954898X.2024.2349275","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2349275","url":null,"abstract":"<p><p>Sentiment Analysis (SA) is a technique for categorizing texts based on the sentimental polarity of people's opinions. This paper introduces a sentiment analysis (SA) model with text and emojis. The two preprocessed data's are data with text and emojis and text without emojis. Feature extraction consists text features and text with emojis features. The text features are features like N-grams, modified Term Frequency-Inverse Document Frequency (TF-IDF), and Bag-of-Words (BoW) features extracted from the text. In classification, CNN (Conventional Neural Network) and MLP (Multi-Layer Perception) use emojis and text-based SA. The CNN weight is optimized by a new Electric fish Customized Shark Smell Optimization (ECSSO) Algorithm. Similarly, the text-based SA is carried out by hybrid Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) classifiers. The bagged data are given as input to the classification process via RNN and LSTM. Here, the weight of LSTM is optimized by the suggested ECSSO algorithm. Then, the mean of LSTM and RNN determines the final output. The specificity of the developed scheme is 29.01%, 42.75%, 23.88%,22.07%, 25.31%, 18.42%, 5.68%, 10.34%, 6.20%, 6.64%, and 6.84% better for 70% than other models. The efficiency of the proposed scheme is computed and evaluated.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-30"},"PeriodicalIF":7.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing inset-fed rectangular micro strip patch antenna by improved particle swarm optimization and simulated annealing. 通过改进的粒子群优化和模拟退火优化嵌入式馈电矩形微带贴片天线
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-28 DOI: 10.1080/0954898X.2024.2358961
Jakkuluri Vijaya Kumar, S Maflin Shaby

The recent wireless communication systems require high gain, lightweight, low profile, and simple antenna structures to ensure high efficiency and reliability. The existing microstrip patch antenna (MPA) design approaches attain low gain and high return loss. To solve this issue, the geometric dimensions of the antenna should be optimized. The improved Particle Swarm Optimization (PSO) algorithm which is the combination of PSO and simulated annealing (SA) approach (PSO-SA) is employed in this paper to optimize the width and length of the inset-fed rectangular microstrip patch antennas for Ku-band and C-band applications. The inputs to the proposed algorithm such as substrate height, dielectric constant, and resonant frequency and outputs are optimized for width and height. The return loss and gain of the antenna are considered for the fitness function. To calculate the fitness value, the Feedforward Neural Network (FNN) is employed in the PSO-SA approach. The design and optimization of the proposed MPA are implemented in MATLAB software. The performance of the optimally designed antenna with the proposed approach is evaluated in terms of the radiation pattern, return loss, Voltage Standing Wave Ratio (VSWR), gain, computation time, directivity, and convergence speed.

最近的无线通信系统需要高增益、重量轻、外形小巧和结构简单的天线,以确保高效率和高可靠性。现有的微带贴片天线(MPA)设计方法增益低、回波损耗大。为解决这一问题,应优化天线的几何尺寸。本文采用了改进的粒子群优化(PSO)算法,即 PSO 和模拟退火(SA)方法(PSO-SA)的结合,来优化用于 Ku 波段和 C 波段应用的插馈式矩形微带贴片天线的宽度和长度。所提算法的输入(如基板高度、介电常数和谐振频率)和输出(如宽度和高度)均已优化。天线的回波损耗和增益被视为拟合函数。为了计算适配值,PSO-SA 方法采用了前馈神经网络(FNN)。拟议 MPA 的设计和优化在 MATLAB 软件中实现。通过辐射模式、回波损耗、电压驻波比 (VSWR)、增益、计算时间、指向性和收敛速度等方面,对采用所提方法优化设计的天线性能进行了评估。
{"title":"Optimizing inset-fed rectangular micro strip patch antenna by improved particle swarm optimization and simulated annealing.","authors":"Jakkuluri Vijaya Kumar, S Maflin Shaby","doi":"10.1080/0954898X.2024.2358961","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2358961","url":null,"abstract":"<p><p>The recent wireless communication systems require high gain, lightweight, low profile, and simple antenna structures to ensure high efficiency and reliability. The existing microstrip patch antenna (MPA) design approaches attain low gain and high return loss. To solve this issue, the geometric dimensions of the antenna should be optimized. The improved Particle Swarm Optimization (PSO) algorithm which is the combination of PSO and simulated annealing (SA) approach (PSO-SA) is employed in this paper to optimize the width and length of the inset-fed rectangular microstrip patch antennas for Ku-band and C-band applications. The inputs to the proposed algorithm such as substrate height, dielectric constant, and resonant frequency and outputs are optimized for width and height. The return loss and gain of the antenna are considered for the fitness function. To calculate the fitness value, the Feedforward Neural Network (FNN) is employed in the PSO-SA approach. The design and optimization of the proposed MPA are implemented in MATLAB software. The performance of the optimally designed antenna with the proposed approach is evaluated in terms of the radiation pattern, return loss, Voltage Standing Wave Ratio (VSWR), gain, computation time, directivity, and convergence speed.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-31"},"PeriodicalIF":7.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective prediction of human skin cancer using stacking based ensemble deep learning algorithm. 使用基于堆叠的集合深度学习算法有效预测人类皮肤癌。
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-28 DOI: 10.1080/0954898X.2024.2346608
David Neels Ponkumar Devadhas, Hephzi Punithavathi Isaac Sugirtharaj, Mary Harin Fernandez, Duraipandy Periyasamy

Automated diagnosis of cancer from skin lesion data has been the focus of numerous research. Despite that it can be challenging to interpret these images because of features like colour illumination changes, variation in the sizes and forms of the lesions. To tackle these problems, the proposed model develops an ensemble of deep learning techniques for skin cancer diagnosis. Initially, skin imaging data are collected and preprocessed using resizing and anisotropic diffusion to enhance the quality of the image. Preprocessed images are fed into the Fuzzy-C-Means clustering technique to segment the region of diseases. Stacking-based ensemble deep learning approach is used for classification and the LSTM acts as a meta-classifier. Deep Neural Network (DNN) and Convolutional Neural Network (CNN) are used as input for LSTM. This segmented images are utilized to be input into the CNN, and the local binary pattern (LBP) technique is employed to extract DNN features from the segments of the image. The output from these two classifiers will be fed into the LSTM Meta classifier. This LSTM classifies the input data and predicts the skin cancer disease. The proposed approach had a greater accuracy of 97%. Hence, the developed model accurately predicts skin cancer disease.

根据皮肤病变数据自动诊断癌症一直是众多研究的重点。尽管如此,由于颜色光照变化、病变的大小和形态变化等特征,解释这些图像可能具有挑战性。为了解决这些问题,所提出的模型开发了一种用于皮肤癌诊断的深度学习技术组合。首先,收集皮肤成像数据,并使用大小调整和各向异性扩散进行预处理,以提高图像质量。预处理后的图像被送入模糊-C-Means 聚类技术,以分割疾病区域。基于堆叠的集合深度学习方法用于分类,LSTM 充当元分类器。深度神经网络(DNN)和卷积神经网络(CNN)被用作 LSTM 的输入。深度神经网络(DNN)和卷积神经网络(CNN)被用作 LSTM 的输入,分段图像被用作 CNN 的输入,局部二值模式(LBP)技术被用于从图像分段中提取 DNN 特征。这两个分类器的输出将输入 LSTM 元分类器。LSTM 对输入数据进行分类,并预测皮肤癌疾病。所提出的方法准确率高达 97%。因此,所开发的模型能准确预测皮肤癌疾病。
{"title":"Effective prediction of human skin cancer using stacking based ensemble deep learning algorithm.","authors":"David Neels Ponkumar Devadhas, Hephzi Punithavathi Isaac Sugirtharaj, Mary Harin Fernandez, Duraipandy Periyasamy","doi":"10.1080/0954898X.2024.2346608","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2346608","url":null,"abstract":"<p><p>Automated diagnosis of cancer from skin lesion data has been the focus of numerous research. Despite that it can be challenging to interpret these images because of features like colour illumination changes, variation in the sizes and forms of the lesions. To tackle these problems, the proposed model develops an ensemble of deep learning techniques for skin cancer diagnosis. Initially, skin imaging data are collected and preprocessed using resizing and anisotropic diffusion to enhance the quality of the image. Preprocessed images are fed into the Fuzzy-C-Means clustering technique to segment the region of diseases. Stacking-based ensemble deep learning approach is used for classification and the LSTM acts as a meta-classifier. Deep Neural Network (DNN) and Convolutional Neural Network (CNN) are used as input for LSTM. This segmented images are utilized to be input into the CNN, and the local binary pattern (LBP) technique is employed to extract DNN features from the segments of the image. The output from these two classifiers will be fed into the LSTM Meta classifier. This LSTM classifies the input data and predicts the skin cancer disease. The proposed approach had a greater accuracy of 97%. Hence, the developed model accurately predicts skin cancer disease.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-37"},"PeriodicalIF":7.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized encoder-decoder cascaded deep convolutional network for leaf disease image segmentation. 用于叶病图像分割的优化编码器-解码器级联深度卷积网络
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-22 DOI: 10.1080/0954898X.2024.2326493
David Femi, Manapakkam Anandan Mukunthan

Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.

如今,深度学习(DL)技术正被用于植物病害的自动识别和诊断,从而提高全球粮食安全,并使非专业人员也能检测这些病害。在众多深度学习技术中,深度编码器-解码器级联网络(DEDCNet)模型可以从叶片图像中精确分割出病害区域,从而对多种病害进行区分和分类。另一方面,模型的训练取决于超参数的适当选择。而且,这种网络结构在不同参数下的鲁棒性较弱。因此,本手稿提出了优化 DEDCNet(ODEDCNet)模型,用于改进叶病图像分割。为了选择最佳的 DEDCNet 超参数,该模型采用了全新的 Dingo 优化算法(DOA)。DOA 取决于恐龙的觅食特性,包括探索和利用阶段。在探索阶段,它会在搜索区域内做出许多可预测的决定,而在利用阶段,则会在提供的区域内探索最佳决定。在选择超参数时,会将分割精度作为每只恐龙的适应度值。通过配置所选的超参数,DEDCNet 就能训练分割叶片病害区域。分割后的图像将进一步交给预先训练好的卷积神经网络(CNN),然后由支持向量机(SVM)对叶片病害进行分类。ODEDCNet 在 PlantVillage 和槟榔叶图像数据集上表现出色,前者的准确率达到惊人的 97.33%,后者的准确率达到 97.42%。这两个数据集的召回率、F-score、Dice系数和精确度值都值得一提:槟榔叶图像数据集的召回率、F-score、Dice系数和精确度值分别为97.4%、97.29%、97.35%和0.9897;植物村数据集的召回率、F-score、Dice系数和精确度值分别为97.5%、97.42%、97.46%和0.9901,所有数据的处理时间分别为0.07秒和0.06秒。我们使用所考虑的数据集对所取得的成果与当代优化算法进行了评估,以了解 DOA 的效率。
{"title":"Optimized encoder-decoder cascaded deep convolutional network for leaf disease image segmentation.","authors":"David Femi, Manapakkam Anandan Mukunthan","doi":"10.1080/0954898X.2024.2326493","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2326493","url":null,"abstract":"<p><p>Nowadays, Deep Learning (DL) techniques are being used to automate the identification and diagnosis of plant diseases, thereby enhancing global food security and enabling non-experts to detect these diseases. Among many DL techniques, a Deep Encoder-Decoder Cascaded Network (DEDCNet) model can precisely segment diseased areas from the leaf images to differentiate and classify multiple diseases. On the other hand, the model training depends on the appropriate selection of hyperparameters. Also, this network structure has weak robustness with different parameters. Hence, in this manuscript, an Optimized DEDCNet (ODEDCNet) model is proposed for improved leaf disease image segmentation. To choose the best DEDCNet hyperparameters, a brand-new Dingo Optimization Algorithm (DOA) is included in this model. The DOA depends on the foraging nature of dingoes, which comprises exploration and exploitation phases. In exploration, it attains many predictable decisions in the search area, whereas exploitation enables exploring the best decisions in a provided area. The segmentation accuracy is used as the fitness value of each dingo for hyperparameter selection. By configuring the chosen hyperparameters, the DEDCNet is trained to segment the leaf disease regions. The segmented images are further given to the pre-trained Convolutional Neural Networks (CNNs) followed by the Support Vector Machine (SVM) for classifying leaf diseases. ODEDCNet performs exceptionally well on the PlantVillage and Betel Leaf Image datasets, attaining an astounding 97.33% accuracy on the former and 97.42% accuracy on the latter. Both datasets achieve noteworthy recall, F-score, Dice coefficient, and precision values: the Betel Leaf Image dataset shows values of 97.4%, 97.29%, 97.35%, and 0.9897; the PlantVillage dataset shows values of 97.5%, 97.42%, 97.46%, and 0.9901, all completed in remarkably short processing times of 0.07 and 0.06 seconds, respectively. The achieved outcomes are evaluated with the contemporary optimization algorithms using the considered datasets to comprehend the efficiency of DOA.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-27"},"PeriodicalIF":7.8,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional social optimization-based migration and replica management algorithm for load balancing in distributed file system for cloud computing. 基于分数社会优化的迁移和副本管理算法,用于云计算分布式文件系统的负载平衡。
IF 7.8 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-21 DOI: 10.1080/0954898X.2024.2353665
Manjula Hulagappa Nebagiri, Latha Pillappa Hnumanthappa

Effective management of data is a major issue in Distributed File System (DFS), like the cloud. This issue is handled by replicating files in an effective manner, which can minimize the time of data access and elevate the data availability. This paper devises a Fractional Social Optimization Algorithm (FSOA) for replica management along with balancing load in DFS in the cloud stage. Balancing the workload for DFS is the main objective. Here, the chunk creation is done by partitioning the file into a different number of chunks considering Deep Fuzzy Clustering (DFC) and then in the round-robin manner the Virtual machine (VM) is assigned. In that case for balancing the load considering certain objectives like resource use, energy consumption and migration cost thereby the load balancing is performed with the proposed FSOA. Here, the FSOA is formulated by uniting the Social optimization algorithm (SOA) and Fractional Calculus (FC). The replica management is done in DFS using the proposed FSOA by considering the various objectives. The FSOA has the smallest load of 0.299, smallest cost of 0.395, smallest energy consumption of 0.510, smallest overhead of 0.358, and smallest throughput of 0.537.

在云计算等分布式文件系统(DFS)中,数据的有效管理是一个主要问题。这个问题可以通过有效复制文件来解决,这样可以最大限度地缩短数据访问时间,提高数据可用性。本文设计了一种分数社会优化算法(FSOA),用于复制管理和平衡云阶段 DFS 的负载。平衡 DFS 的工作负载是主要目标。在这里,通过深度模糊聚类(DFC)将文件划分为不同数量的块来创建块,然后以循环方式分配虚拟机(VM)。在这种情况下,为了平衡负载,需要考虑某些目标,如资源使用、能源消耗和迁移成本,从而使用所提出的 FSOA 进行负载平衡。在这里,FSOA 是通过联合社会优化算法(SOA)和分数微积分(FC)来实现的。考虑到各种目标,使用所提出的 FSOA 在 DFS 中进行副本管理。FSOA 的最小负载为 0.299,最小成本为 0.395,最小能耗为 0.510,最小开销为 0.358,最小吞吐量为 0.537。
{"title":"Fractional social optimization-based migration and replica management algorithm for load balancing in distributed file system for cloud computing.","authors":"Manjula Hulagappa Nebagiri, Latha Pillappa Hnumanthappa","doi":"10.1080/0954898X.2024.2353665","DOIUrl":"https://doi.org/10.1080/0954898X.2024.2353665","url":null,"abstract":"<p><p>Effective management of data is a major issue in Distributed File System (DFS), like the cloud. This issue is handled by replicating files in an effective manner, which can minimize the time of data access and elevate the data availability. This paper devises a Fractional Social Optimization Algorithm (FSOA) for replica management along with balancing load in DFS in the cloud stage. Balancing the workload for DFS is the main objective. Here, the chunk creation is done by partitioning the file into a different number of chunks considering Deep Fuzzy Clustering (DFC) and then in the round-robin manner the Virtual machine (VM) is assigned. In that case for balancing the load considering certain objectives like resource use, energy consumption and migration cost thereby the load balancing is performed with the proposed FSOA. Here, the FSOA is formulated by uniting the Social optimization algorithm (SOA) and Fractional Calculus (FC). The replica management is done in DFS using the proposed FSOA by considering the various objectives. The FSOA has the smallest load of 0.299, smallest cost of 0.395, smallest energy consumption of 0.510, smallest overhead of 0.358, and smallest throughput of 0.537.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-28"},"PeriodicalIF":7.8,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Network-Computation in Neural Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1