N-carbamylglutamate (NCG) is an activator of arginine biosynthesis, but its specific role in crustaceans remains poorly understood. This study aimed to investigate the effects of NCG on arginine biosynthesis capacity, metabolism, digestion, and the gene expression of the mTOR signaling pathway in Eriocheir sinensis. In Experiment 1, hepatopancreas was cultured in vitro with NCG medium (0, 65, 75, and 85 mg/L NCG). In Experiment 2, crabs were fed either regular feed or NCG feed (content: 302.96 ± 4.07 mg/kg) for 14 days. In Experiment 1, NCG significantly upregulated pyrroline-5-carboxylate synthase (p5cs) gene expression (P < 0.05), an enzyme that is related to arginine biosynthesis. Similarly, dietary NCG upregulated p5cs expression and significantly increased the activities of carbamoyl-phosphate synthase-1 (CPS-1) and P5CS in the hepatopancreas and intestine (P < 0.05). Metabolomics analysis indicated that NCG altered the metabolic profile of the hepatopancreas, promoting cholesterol metabolism, and arginine and proline metabolism. In the intestine, trypsin and α-amylase activities were significantly elevated (P < 0.05). NCG also altered the composition of intestinal microflora, with an increase in Proteobacteria and in the ratio of Firmicutes to Bacteroidota. Additionally, NCG increased the content of signaling molecule nitric oxide (NO) and upregulated the expression of genes in the mTOR signaling pathway (P < 0.05). In conclusion, NCG supplementation enhanced arginine biosynthesis capacity, stimulated intestinal enzymatic activities, and upregulated mTOR signaling pathway gene expression in Eriocheir sinensis, indicating the potential for improved metabolism and digestion.
扫码关注我们
求助内容:
应助结果提醒方式:
