Pub Date : 2024-02-10DOI: 10.1016/j.cbpb.2024.110949
Nick Barts , Roshni H. Bhatt , Chelsea Toner , Wynn K. Meyer , Jacob D. Durrant , Kevin D. Kohl
Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of Peromyscus leucopus shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.
{"title":"Functional convergence in gastric lysozymes of foregut-fermenting rodents, ruminants, and primates is not attributed to convergent molecular evolution","authors":"Nick Barts , Roshni H. Bhatt , Chelsea Toner , Wynn K. Meyer , Jacob D. Durrant , Kevin D. Kohl","doi":"10.1016/j.cbpb.2024.110949","DOIUrl":"10.1016/j.cbpb.2024.110949","url":null,"abstract":"<div><p>Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of <em>Peromyscus leucopus</em> shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139718089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09DOI: 10.1016/j.cbpb.2024.110951
Sara Moutinho , Aires Oliva-Teles , Filipa Fontinha , Nicole Martins , Óscar Monroig , Helena Peres
This study aimed to evaluate the effects of fish meal (FM) replacement with defatted Hermetia illucens larvae meal (HM) on the hematological profile, immune parameters, intestinal inflammatory status, and antioxidant response in gilthead seabream juveniles. Four diets were formulated, replacing FM with HM at 0%, 22%, 60%, and 100% levels, corresponding to an inclusion level of 15 (diet HM15), 30 (diet HM30), and 45% (diet HM45), respectively. Over 67 days, fish were fed these diets until apparent visual satiation. Results showed no significant differences in immune parameters or hematological profiles, except for a decrease in hemoglobin and hematocrit levels. In the liver, glucose-6-phosphate dehydrogenase and glutathione peroxidase decreased linearly with HM content, especially at 100% replacement. Glutathione reductase activity was also reduced with HM inclusion, being lower in fish fed diet HM30 compared to the control. Fish fed diet HM15 showed lower hepatic superoxide dismutase activity, while catalase activity and lipid peroxidation remained unaffected. In the intestine, antioxidant enzyme activity was not influenced by HM, but lipid peroxidation linearly decreased with HM inclusion, being lower in the HM30 diet compared to the control. The inclusion of HM reduced the expression of intestinal pro-inflammatory genes (interleukin-1β and cyclooxygenase-2) while the expression of transforming growth factor β was higher in fish fed diet HM30 compared to the control and HM45 diets. In conclusion, up to 45% dietary inclusion of HM showed no adverse effects, improving liver antioxidant status, reducing intestinal oxidative stress, and regulating inflammatory gene expression.
{"title":"Black soldier fly larvae meal as a potential modulator of immune, inflammatory, and antioxidant status in gilthead seabream juveniles","authors":"Sara Moutinho , Aires Oliva-Teles , Filipa Fontinha , Nicole Martins , Óscar Monroig , Helena Peres","doi":"10.1016/j.cbpb.2024.110951","DOIUrl":"10.1016/j.cbpb.2024.110951","url":null,"abstract":"<div><p>This study aimed to evaluate the effects of fish meal (FM) replacement with defatted <em>Hermetia illucens</em> larvae meal (HM) on the hematological profile, immune parameters, intestinal inflammatory status, and antioxidant response in gilthead seabream juveniles. Four diets were formulated, replacing FM with HM at 0%, 22%, 60%, and 100% levels, corresponding to an inclusion level of 15 (diet HM15), 30 (diet HM30), and 45% (diet HM45), respectively. Over 67 days, fish were fed these diets until apparent visual satiation. Results showed no significant differences in immune parameters or hematological profiles, except for a decrease in hemoglobin and hematocrit levels. In the liver, glucose-6-phosphate dehydrogenase and glutathione peroxidase decreased linearly with HM content, especially at 100% replacement. Glutathione reductase activity was also reduced with HM inclusion, being lower in fish fed diet HM30 compared to the control. Fish fed diet HM15 showed lower hepatic superoxide dismutase activity, while catalase activity and lipid peroxidation remained unaffected. In the intestine, antioxidant enzyme activity was not influenced by HM, but lipid peroxidation linearly decreased with HM inclusion, being lower in the HM30 diet compared to the control. The inclusion of HM reduced the expression of intestinal pro-inflammatory genes (interleukin-1β and cyclooxygenase-2) while the expression of transforming growth factor β was higher in fish fed diet HM30 compared to the control and HM45 diets. In conclusion, up to 45% dietary inclusion of HM showed no adverse effects, improving liver antioxidant status, reducing intestinal oxidative stress, and regulating inflammatory gene expression.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mitogen-activated protein kinases (MAPKs) are a class of protein kinases that regulate various physiological processes, and play a crucial role in maintaining the osmotic equilibrium of fish. The objective of this study was to identify and characterize the mapk family genes in cobia (Rachycentron canadum) and examine their expression profiles under different low salinity stress regimes (acute: from 30‰ to 10‰ in 1 h, sub-chronic: from 30‰ to 10‰ over 4 d). A total of 12 cobia mapk genes (Rcmapks) were identified and cloned, including six erk subfamily genes (Rcmapk1/3/4/6/7/15), three jnk subfamily genes (Rcmapk8/9/10) and three p38 mapk subfamily genes (Rcmapk 11/13/14). Domain analysis indicated that the RcMAPKs possessed the typical domains including S_TKc and PKc_like domain. Phylogenetic analysis revealed that the Rcmapks were most closely related to those of the turbot (Scophthalmus maximus). The tissue distribution of mapk genes in adult cobia and the expression patterns of Rcmapks under different low salinity stress regimes were investigated using quantitative real-time PCR (qRT-PCR). The results revealed that Rcmapk3/9/10/11/13/14 exhibited a relatively broad expression distribution across 14 different tissues. For all these genes the highest expression level was in the brain, except for Rcmapk14 (highly expressed in the stomach, gill, and skin). The genes Rcmapk1/6/15 showed significantly higher expression in the testis. Under acute low salinity stress, expression of Rcmapk1/3/6/7/9/11/13/14 was significantly altered in the gill, intestine, and trunk kidney, however, the aforementioned genes exhibited very different expression patterns among the three tissues. In the gill, most of the genes from the erk (Rcmapk3/6/7) and p38 mapk subfamily (Rcmapk11/13/14) were significantly up-regulated at almost all the time points (P < 0.05); Similarly, the expression of Rcmapk3/9/11/13/14 genes were significantly increased in the trunk kidney; while in the intestine, most of the altered genes (Rcmapk6/7/9/11/13/14) were significantly down-regulated at 1 h. Following the sub-chronic low salinity stress, expression of Rcmapk1/3/6/7/9/11/13/14 genes were significantly altered in all three tissues. These findings provide important reference data for elucidating the roles of cobia mapk family genes in response to low salinity stress.
{"title":"Identification of mapk genes, and their expression profiles in response to low salinity stress, in cobia (Rachycentron canadum)","authors":"Yunsheng Yang, Qian Ma, Shulei Jin, Baosong Huang, Zhongliang Wang, Gang Chen","doi":"10.1016/j.cbpb.2024.110950","DOIUrl":"10.1016/j.cbpb.2024.110950","url":null,"abstract":"<div><p>Mitogen-activated protein kinases (MAPKs) are a class of protein kinases that regulate various physiological processes, and play a crucial role in maintaining the osmotic equilibrium of fish. The objective of this study was to identify and characterize the <em>mapk</em> family genes in cobia (<em>Rachycentron canadum</em>) and examine their expression profiles under different low salinity stress regimes (acute: from 30‰ to 10‰ in 1 h, sub-chronic: from 30‰ to 10‰ over 4 d). A total of 12 cobia <em>mapk</em> genes (<em>Rcmapks</em>) were identified and cloned, including six <em>erk</em> subfamily genes (<em>Rcmapk1/3/4/6/7/15</em>), three <em>jnk</em> subfamily genes (<em>Rcmapk8/9/10</em>) and three <em>p38 mapk</em> subfamily genes (<em>Rcmapk 11/13/14</em>). Domain analysis indicated that the RcMAPKs possessed the typical domains including S_TKc and PKc_like domain. Phylogenetic analysis revealed that the <em>Rcmapks</em> were most closely related to those of the turbot (<em>Scophthalmus maximus</em>). The tissue distribution of <em>mapk</em> genes in adult cobia and the expression patterns of <em>Rcmapks</em> under different low salinity stress regimes were investigated using quantitative real-time PCR (qRT-PCR). The results revealed that <em>Rcmapk3/9/10/11/13/14</em> exhibited a relatively broad expression distribution across 14 different tissues. For all these genes the highest expression level was in the brain, except for <em>Rcmapk14</em> (highly expressed in the stomach, gill, and skin). The genes <em>Rcmapk1/6/15</em> showed significantly higher expression in the testis. Under acute low salinity stress, expression of <em>Rcmapk1/3/6/7/9/11/13/14</em> was significantly altered in the gill, intestine, and trunk kidney, however, the aforementioned genes exhibited very different expression patterns among the three tissues. In the gill, most of the genes from the <em>erk</em> (<em>Rcmapk3/6/7</em>) and <em>p38 mapk</em> subfamily (<em>Rcmapk11/13/14</em>) were significantly up-regulated at almost all the time points (<em>P</em> < 0.05); Similarly, the expression of <em>Rcmapk3/9/11/13/14</em> genes were significantly increased in the trunk kidney; while in the intestine, most of the altered genes (<em>Rcmapk6/7/9/11/13/14</em>) were significantly down-regulated at 1 h. Following the sub-chronic low salinity stress, expression of <em>Rcmapk1/3/6/7/9/11/13/14</em> genes were significantly altered in all three tissues. These findings provide important reference data for elucidating the roles of cobia <em>mapk</em> family genes in response to low salinity stress.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139664893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-26DOI: 10.1016/j.cbpb.2024.110948
Dazhi Liu , Han Yu , Na Xue, Hancheng Bao, Qinfeng Gao, Yuan Tian
Alternative splicing (AS) plays an important role in various physiological processes in eukaryotes, such as the stress response. However, patterns of AS events remain largely unexplored during salinity acclimation in fishes. In this study, we conducted AS analysis using RNA-seq datasets to explore splicing patterns in the gill tissues of rainbow trout exposed to altered salinity environments, ranging from 0 ‰ (T0) to 30 ‰ (T30). The results revealed 1441, 351, 483, 1051 and 1049 differentially alternatively spliced (DAS) events in 5 pairwise comparisons, including T6 vs. T0, T12 vs. T0, T18 vs. T0, T24 vs. T0, and T30 vs. T0, respectively. These DAS events were derived from 1290, 328, 444, 963 and 948 genes. Enrichment analysis indicated that these DAS genes were related to RNA splicing and processing. Among these, 14 DAS genes were identified as members of the large heterogeneous nuclear RNP (hnRNP) gene family. Alternative 3′ splice site (A3SS), exon skipping (SE) and intron retention (RI) events resulted in the fragmentation or even loss of the functional RNA recognition motif (RRM) domains in hnrnpa0, hnrnp1a, hnrnp1b and hnrnpc genes. The incomplete RRM domains would hinder the interactions between hnRNP genes and pre-mRNAs. It would in turn influence the splicing patterns and mRNA stability of downstream target genes in response to salinity changes. The study provides insights into salinity acclimation in gill tissues of rainbow trout and serves as a significant reference on the osmoregulation mechanisms at post-transcription regulation levels in fish.
替代剪接(AS)在真核生物的各种生理过程(如应激反应)中发挥着重要作用。然而,在鱼类的盐度适应过程中,AS事件的模式在很大程度上仍未得到探索。在这项研究中,我们利用RNA-seq数据集进行了AS分析,以探索暴露于0‰(T0)至30‰(T30)盐度变化环境中的虹鳟鱼鳃组织的剪接模式。结果显示,在5个成对比较中,包括T6 vs. T0、T12 vs. T0、T18 vs. T0、T24 vs. T0和T30 vs. T0,分别发现了1441、351、483、1051和1049个差异替代剪接(DAS)事件。这些 DAS 事件分别来自 1290、328、444、963 和 948 个基因。富集分析表明,这些DAS基因与RNA剪接和加工有关。其中,14个DAS基因被鉴定为大型异质核RNP(hnRNP)基因家族的成员。在 hnrnpa0、hnrnp1a、hnrnp1b 和 hnrnpc 基因中,替代性 3'剪接位点(A3SS)、外显子跳过(SE)和内含子保留(RI)事件导致 RNA 识别基序(RRM)功能域的破碎甚至缺失。不完整的 RRM 结构域将阻碍 hnRNP 基因与 pre-mRNA 之间的相互作用。这反过来又会影响下游目标基因的剪接模式和 mRNA 稳定性,以应对盐度变化。该研究有助于深入了解虹鳟鳃组织的盐度适应性,对鱼类转录后调控水平的渗透调节机制具有重要的参考价值。
{"title":"Alternative splicing patterns of hnrnp genes in gill tissues of rainbow trout (Oncorhynchus mykiss) during salinity changes","authors":"Dazhi Liu , Han Yu , Na Xue, Hancheng Bao, Qinfeng Gao, Yuan Tian","doi":"10.1016/j.cbpb.2024.110948","DOIUrl":"10.1016/j.cbpb.2024.110948","url":null,"abstract":"<div><p><span><span><span><span>Alternative splicing (AS) plays an important role in various physiological processes in eukaryotes, such as the stress response. However, patterns of AS events remain largely unexplored during salinity </span>acclimation in fishes. In this study, we conducted AS analysis using RNA-seq datasets to explore splicing patterns in the gill tissues of </span>rainbow trout exposed to altered salinity environments, ranging from 0 ‰ (T0) to 30 ‰ (T30). The results revealed 1441, 351, 483, 1051 and 1049 differentially alternatively spliced (DAS) events in 5 pairwise comparisons, including T6 vs. T0, T12 vs. T0, T18 vs. T0, T24 vs. T0, and T30 vs. T0, respectively. These DAS events were derived from 1290, 328, 444, 963 and 948 genes. Enrichment analysis indicated that these DAS genes were related to </span>RNA splicing and processing. Among these, 14 DAS genes were identified as members of the large </span><em>heterogeneous nuclear RNP</em> (<em>hnRNP</em><span><span>) gene family. Alternative 3′ splice site (A3SS), </span>exon skipping<span> (SE) and intron retention (RI) events resulted in the fragmentation or even loss of the functional RNA recognition motif (RRM) domains in </span></span><em>hnrnpa0</em>, <em>hnrnp1a</em>, <em>hnrnp1b</em> and <em>hnrnpc</em> genes. The incomplete RRM domains would hinder the interactions between <em>hnRNP</em><span><span> genes and pre-mRNAs. It would in turn influence the splicing patterns and mRNA stability of downstream target genes in response to salinity changes. The study provides insights into salinity acclimation in gill tissues of rainbow trout and serves as a significant reference on the </span>osmoregulation mechanisms at post-transcription regulation levels in fish.</span></p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139572169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1016/j.cbpb.2024.110947
Soren Z. Coulson , Brynne M. Duffy , James F. Staples
Mitochondria serve several important roles in maintaining cellular homeostasis, including adenosine triphosphate (ATP) synthesis, apoptotic signalling, and regulation of both reactive oxygen species (ROS) and calcium. Therefore, mitochondrial studies may reveal insights into metabolism at higher levels of physiological organization. The apparent complexity of mitochondrial function may be daunting to researchers new to mitochondrial physiology. This review is aimed, therefore, at such researchers to provide a brief, yet approachable overview of common techniques used to assess mitochondrial function. Here we discuss the use of high-resolution respirometry in mitochondrial experiments and common analytical platforms used for this technique. Next, we compare the use of common mitochondrial preparation techniques, including adherent cells, tissue homogenate, permeabilized fibers and isolated mitochondria. Finally, we outline additional techniques that can be used in tandem with high-resolution respirometry to assess additional aspects of mitochondrial metabolism, including ATP synthesis, calcium uptake, membrane potential and reactive oxygen species emission. We also include limitations to each of these techniques and outline recommendations for experimental design and interpretation. With a general understanding of methodologies commonly used to study mitochondrial physiology, experimenters may begin contributing to our understanding of this organelle, and how it affects other physiological phenotypes.
线粒体在维持细胞稳态方面发挥着多种重要作用,包括三磷酸腺苷(ATP)合成、凋亡信号以及活性氧(ROS)和钙的调节。因此,线粒体研究可以揭示更高层次的生理组织代谢。线粒体功能的复杂性可能会让初涉线粒体生理学的研究人员望而生畏。因此,本综述旨在为这类研究人员提供评估线粒体功能的常用技术的简要而平易近人的概述。在此,我们将讨论线粒体实验中高分辨率呼吸测定法的使用以及该技术的常用分析平台。接下来,我们比较了常用线粒体制备技术的使用,包括粘附细胞、组织匀浆、渗透纤维和分离线粒体。最后,我们概述了可与高分辨率呼吸测定法同时使用的其他技术,以评估线粒体代谢的其他方面,包括 ATP 合成、钙吸收、膜电位和活性氧释放。我们还介绍了每种技术的局限性,并概述了有关实验设计和解释的建议。有了对线粒体生理学常用研究方法的一般了解,实验人员就可以开始帮助我们了解这一细胞器以及它如何影响其他生理表型。
{"title":"Mitochondrial techniques for physiologists","authors":"Soren Z. Coulson , Brynne M. Duffy , James F. Staples","doi":"10.1016/j.cbpb.2024.110947","DOIUrl":"10.1016/j.cbpb.2024.110947","url":null,"abstract":"<div><p>Mitochondria serve several important roles in maintaining cellular homeostasis, including adenosine triphosphate (ATP) synthesis, apoptotic signalling, and regulation of both reactive oxygen species (ROS) and calcium. Therefore, mitochondrial studies may reveal insights into metabolism at higher levels of physiological organization. The apparent complexity of mitochondrial function may be daunting to researchers new to mitochondrial physiology. This review is aimed, therefore, at such researchers to provide a brief, yet approachable overview of common techniques used to assess mitochondrial function. Here we discuss the use of high-resolution respirometry in mitochondrial experiments and common analytical platforms used for this technique. Next, we compare the use of common mitochondrial preparation techniques, including adherent cells, tissue homogenate, permeabilized fibers and isolated mitochondria. Finally, we outline additional techniques that can be used in tandem with high-resolution respirometry to assess additional aspects of mitochondrial metabolism, including ATP synthesis, calcium uptake, membrane potential and reactive oxygen species emission. We also include limitations to each of these techniques and outline recommendations for experimental design and interpretation. With a general understanding of methodologies commonly used to study mitochondrial physiology, experimenters may begin contributing to our understanding of this organelle, and how it affects other physiological phenotypes.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096495924000149/pdfft?md5=94021e17d563de63a1611da3fdef6928&pid=1-s2.0-S1096495924000149-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1016/j.cbpb.2024.110945
Linjie Li , Xiaoyong Li , Liugen Zeng , Ziyu Wang , Nan Deng , Peiying Huang , Jiahao Hou , Shaoqin Jian , Daxian Zhao
To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate oxidase (NOX), which produces the superoxide anion (O2−), in the innate immunity of Eriocheir sinensis, the full lengths of the NOS and NOX genes were cloned via rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of E. sinensis were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with Aeromonas hydrophila, NOS expression was significantly up-regulated at 3, 6, and 48 h, and NOX expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of E. sinensis was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O2−, and H2O2, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O2− and H2O2) were induced in E. sinensis after bacterial stimulation, which then exert antibacterial immunity.
为了阐明产生自由基一氧化氮(NO)的一氧化氮合酶(NOS)和产生超氧阴离子(O2-)的烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NOX)在中华鳖先天性免疫中的作用,研究人员通过快速扩增 cDNA 末端克隆了 NOS 和 NOX 基因的全长,并将其表达为原核生物形式、通过快速扩增 cDNA 末端,克隆了中华鹤先天免疫中的 NOS 和 NOX 基因全长,然后以原核形式表达,得到了重组蛋白 NOS-HIS 和 NOX-HIS。通过细菌结合和刺激实验,探讨了 NOS 和 NOX 在中华鹅膏菌先天免疫中的分子机制。结果表明,NOS和NOX的长度分别为5900 bp和4504 bp,在进化过程中是保守的。定量实时聚合酶链式反应(real-time PCR)显示,NOS和NOX在所有研究组织中均有表达,其中在血细胞中的表达量最高。NOS-HIS和NOX-HIS与细菌的结合力不同,它们与革兰氏阳性菌的结合力高于与革兰氏阴性菌的结合力。经嗜水气单胞菌刺激后,NOS的表达在3、6和48小时内显著上调,NOX的表达在3、12、24和48小时内显著下调。细菌刺激后,中华鹅膏菌血清中的 NOS 酶活性在 6 和 48 h 也明显上调,NOX 酶活性在 12 和 48 h 明显下调,与基因表达趋势一致。此外,相关的自由基分子 NO、O2- 和 H2O2 在细菌刺激后也呈下降趋势。总之,细菌刺激后,中华鹅膏菌的 NOS 和 NOX 基因表达和酶活性分别发生了变化,并诱导了一系列自由基分子(NO、O2- 和 H2O2)的含量,从而发挥了抗菌免疫作用。
{"title":"Molecular mechanism of the NOS/NOX regulation of antibacterial activity in Eriocheir sinensis","authors":"Linjie Li , Xiaoyong Li , Liugen Zeng , Ziyu Wang , Nan Deng , Peiying Huang , Jiahao Hou , Shaoqin Jian , Daxian Zhao","doi":"10.1016/j.cbpb.2024.110945","DOIUrl":"10.1016/j.cbpb.2024.110945","url":null,"abstract":"<div><p><span><span>To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and </span>nicotinamide adenine dinucleotide phosphate<span> oxidase (NOX), which produces the superoxide anion (O</span></span><sub>2</sub><sup>−</sup>), in the innate immunity of <span><em>Eriocheir sinensis</em></span>, the full lengths of the <em>NOS</em> and <span><em>NOX</em></span> genes were cloned <em>via</em><span> rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of </span><em>E. sinensis</em><span> were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with </span><span><em>Aeromonas hydrophila</em></span>, <em>NOS</em> expression was significantly up-regulated at 3, 6, and 48 h, and <em>NOX</em><span> expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of </span><em>E. sinensis</em> was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O<sub>2</sub><sup>−</sup>, and H<sub>2</sub>O<sub>2</sub>, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O<sub>2</sub><sup>−</sup> and H<sub>2</sub>O<sub>2</sub>) were induced in <em>E. sinensis</em> after bacterial stimulation, which then exert antibacterial immunity.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-22DOI: 10.1016/j.cbpb.2024.110946
Gui-Yun Long , Xi-Bin Yang , Zhao Wang , Qing-Hui Zeng , Hong Yang , Dao-Chao Jin
Ion transport peptide (ITP), a superfamily of arthropod neuropeptides, serves a crucial role in regulating various physiological processes such as diuresis, ecdysis behavior, and wing expansion. However, the molecular characteristics, expression profile, and role of ITP in Sogatella furcifera are poorly understood. To elucidate the characteristics and biological function of ITP in S. furcifera, we employed reverse transcription-polymerase chain reaction (RT-PCR) and RNA interference (RNAi) methods. The identified SfITP gene encodes 117 amino acids. The expression of SfITP gradually increased followed the formation of 3-day-old of 5th instar nymph, peaking initially at 40 min after eclosion, and reaching another peak 24 h after eclosion, with particularly high expression levels in thorax and wing tissues. Notably, SfITP RNAi in 3rd instar nymphs of S. furcifera significantly inhibited the transcript levels of SfITP, resulting in 55% mortality and 78% wing deformity. These findings suggests that SfITP is involved in the regulation of wing expansion in S. furcifera, providing insights into the regulation of insect wing expansion and contributing to the molecular understanding of this process.
{"title":"Wing expansion functional analysis of ion transport peptide gene in Sogatella furcifera (Horváth) (Hemiptera: Delphacidae)","authors":"Gui-Yun Long , Xi-Bin Yang , Zhao Wang , Qing-Hui Zeng , Hong Yang , Dao-Chao Jin","doi":"10.1016/j.cbpb.2024.110946","DOIUrl":"10.1016/j.cbpb.2024.110946","url":null,"abstract":"<div><p><span>Ion transport<span><span> peptide (ITP), a superfamily of arthropod neuropeptides, serves a crucial role in regulating various </span>physiological processes<span> such as diuresis, ecdysis behavior, and wing expansion. However, the molecular characteristics, expression profile, and role of </span></span></span><em>ITP</em> in <em>Sogatella furcifera</em> are poorly understood. To elucidate the characteristics and biological function of <em>ITP</em> in <em>S. furcifera</em>, we employed reverse transcription-polymerase chain reaction (RT-PCR) and RNA interference (RNAi) methods. The identified <em>SfITP</em><span> gene encodes 117 amino acids. The expression of </span><em>SfITP</em> gradually increased followed the formation of 3-day-old of 5th instar nymph, peaking initially at 40 min after eclosion, and reaching another peak 24 h after eclosion, with particularly high expression levels in thorax and wing tissues. Notably, <em>SfITP</em> RNAi in 3rd instar nymphs of <em>S. furcifera</em> significantly inhibited the transcript levels of <em>SfITP</em>, resulting in 55% mortality and 78% wing deformity. These findings suggests that <em>SfITP</em> is involved in the regulation of wing expansion in <em>S. furcifera</em>, providing insights into the regulation of insect wing expansion and contributing to the molecular understanding of this process.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study explores growth potential of two medicinal herbs, Withania somnifera (Ashwagandha or ‘A') and Asparagus racemosus (Shatavari or ‘S') after their dietary inclusion in fish, Channa punctatus (13.5 2 g; 11.5 1 cm). Three hundred well-acclimatized fish were distributed into 10 groups- C (Control), S1 (1% S), S2 (2% S), S3 (3% S), A1 (1% A), A2 (2% A), A3 (3% A), AS1 (1% A and S), AS2 (2% A and S), and AS3 (3% A and S), each having 10 specimens. Fish were fed with these diets for 60 days. The study was performed in triplicate. Growth indices- weight gain (WG), specific growth rate percentage (SGR%), feed intake (FI), and condition factor (CF), after 30 and 60 days, were found significantly (p < 0.05) up-regulated in all the groups, except S1, when compared to the C. A significant (p < 0.05) increase in final body weight (FBW) was noticed in all the groups, except S1, after 60 days. Relative to the control group, activities of lipase and amylase in the gut tissue were elevated in all groups, at both sampling times, with the exception of lipase in S1 at 60 days, and amylase in S1 at day 30 and day 60 and S2 at day 60. The mRNA expression of myogenic regulatory factors (MRFs) was also found to be significantly (p < 0.05) up-regulated with the highest fold changes recorded in AS3 for myoD (3.93 ± 0.91); myoG (6.71 ± 0.30); myf5 (4.40 ± 0.33); MRF4 (4.94 ± 0.21) in comparison to the C.
{"title":"Dietary inclusion of Withania somnifera and Asparagus racemosus induces growth, activities of digestive enzymes, and transcriptional modulation of MyoD, MyoG, Myf5, and MRF4 genes in fish, Channa punctatus","authors":"Sunil P. Trivedi , Shikha Dwivedi , Abha Trivedi , Adeel Ahmad Khan , Shefalee Singh , Kamlesh K. Yadav , Vivek Kumar , Shraddha Dwivedi , Vidyanand Tiwari , Yashika Awasthi","doi":"10.1016/j.cbpb.2024.110944","DOIUrl":"10.1016/j.cbpb.2024.110944","url":null,"abstract":"<div><p>The present study explores growth potential of two medicinal herbs, <em>Withania somnifera</em> (Ashwagandha or ‘A') and <em>Asparagus racemosus</em> (Shatavari or ‘S') after their dietary inclusion in fish, <em>Channa punctatus</em> (13.5 <span><math><mo>±</mo></math></span> 2 g; 11.5 <span><math><mo>±</mo></math></span> 1 cm). Three hundred well-acclimatized fish were distributed into 10 groups- C (Control), S1 (1% S), S2 (2% S), S3 (3% S), A1 (1% A), A2 (2% A), A3 (3% A), AS1 (1% A and S), AS2 (2% A and S), and AS3 (3% A and S), each having 10 specimens. Fish were fed with these diets for 60 days. The study was performed in triplicate. Growth indices- weight gain (WG), specific growth rate percentage (SGR%), feed intake (FI), and condition factor (CF), after 30 and 60 days, were found significantly (<em>p</em> < 0.05) up-regulated in all the groups, except S1, when compared to the C. A significant (<em>p</em> < 0.05) increase in final body weight (FBW) was noticed in all the groups, except S1, after 60 days. Relative to the control group, activities of lipase and amylase in the gut tissue were elevated in all groups, at both sampling times, with the exception of lipase in S1 at 60 days, and amylase in S1 at day 30 and day 60 and S2 at day 60. The mRNA expression of myogenic regulatory factors (MRFs) was also found to be significantly (<em>p</em> < 0.05) up-regulated with the highest fold changes recorded in AS3 for <em>myoD</em> (3.93 ± 0.91); <em>myoG</em> (6.71 ± 0.30); <em>myf5</em> (4.40 ± 0.33); <em>MRF4</em> (4.94 ± 0.21) in comparison to the C.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139490974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-13DOI: 10.1016/j.cbpb.2024.110942
Ivone Giffard-Mena , Elizabeth Ponce-Rivas , Héctor M. Sigala-Andrade , Carla Uranga-Solís , Ana Denisse Re , Fernando Díaz , Laura Camacho-Jiménez
Salinity and temperature influence growth, survival, and reproduction of crustacean species such as Penaeus vannamei where Na +/K+-ATPase plays a key role in maintaining osmotic homeostasis in different salinity conditions. This ability is suggested to be mediated by other proteins including neuropeptides such as the crustacean hyperglycemic hormones (CHHs), and heat shock proteins (HSPs). The mRNA expression of Na+/K+-ATPase, HSP60, HSP70, CHH-A, and CHH-B1, was analyzed by qPCR in shrimp acclimated to different salinities (10, 26, and 40 PSU) and temperature conditions (20, 23, 26, 29, and 32 °C) to evaluate their uses as molecular stress biomarkers. The results showed that the hemolymph osmoregulatory capacity in shrimp changed with exposure to the different salinities. From 26 to 32 °C the Na+/K+-ATPase expression increased significantly at 10 PSU relative to shrimp acclimated at 26 PSU and at 20 °C increased at similar values independently of salinity. The highest HSP expression levels were obtained by HSP70 at 20 °C, suggesting a role in protecting proteins such as Na+/K+ -ATPase under low-temperature and salinity conditions. CHH-A was not expressed in the gill under any condition, but CHH-B1 showed the highest expression at the lowest temperatures and salinities, suggesting its participation in the Na+/K+-ATPase induction. Since Na+/K+-ATPase, HSPs, and CHHs seem to participate in maintaining the osmo-ionic balance and homeostasis in P. vannamei, their expression levels may be used as a stress biomarkers to monitor marine crustacean health status when acclimated in low salinity and temperature conditions.
{"title":"Evaluation of the osmoregulatory capacity and three stress biomarkers in white shrimp Penaeus vannamei exposed to different temperature and salinity conditions: Na+/K+ ATPase, Heat Shock Proteins (HSP), and Crustacean Hyperglycemic Hormones (CHHs)","authors":"Ivone Giffard-Mena , Elizabeth Ponce-Rivas , Héctor M. Sigala-Andrade , Carla Uranga-Solís , Ana Denisse Re , Fernando Díaz , Laura Camacho-Jiménez","doi":"10.1016/j.cbpb.2024.110942","DOIUrl":"10.1016/j.cbpb.2024.110942","url":null,"abstract":"<div><p>Salinity and temperature influence growth, survival, and reproduction of crustacean species such as <span><em>Penaeus</em><em> vannamei</em></span> where Na <sup>+</sup>/K<sup>+</sup><span>-ATPase plays a key role in maintaining osmotic homeostasis<span> in different salinity conditions. This ability is suggested to be mediated by other proteins including neuropeptides<span> such as the crustacean hyperglycemic hormones (CHHs), and heat shock proteins (HSPs). The mRNA expression of Na</span></span></span><sup>+</sup>/K<sup>+</sup><span><span>-ATPase, HSP60, HSP70, CHH-A, and CHH-B1, was analyzed by qPCR in </span>shrimp acclimated to different salinities (10, 26, and 40 PSU) and temperature conditions (20, 23, 26, 29, and 32 °C) to evaluate their uses as molecular stress biomarkers. The results showed that the hemolymph osmoregulatory capacity in shrimp changed with exposure to the different salinities. From 26 to 32 °C the Na</span><sup>+</sup>/K<sup>+</sup>-ATPase expression increased significantly at 10 PSU relative to shrimp acclimated at 26 PSU and at 20 °C increased at similar values independently of salinity. The highest HSP expression levels were obtained by HSP70 at 20 °C, suggesting a role in protecting proteins such as Na<sup>+</sup>/K<sup>+</sup> -ATPase under low-temperature and salinity conditions. CHH-A was not expressed in the gill under any condition, but CHH-B1 showed the highest expression at the lowest temperatures and salinities, suggesting its participation in the Na<sup>+</sup>/K<sup>+</sup>-ATPase induction. Since Na<sup>+</sup>/K<sup>+</sup>-ATPase, HSPs, and CHHs seem to participate in maintaining the osmo-ionic balance and homeostasis in <em>P. vannamei,</em> their expression levels may be used as a stress biomarkers to monitor marine crustacean health status when acclimated in low salinity and temperature conditions.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139460764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-13DOI: 10.1016/j.cbpb.2024.110943
Ioannis Georgoulis , Dimitrios K. Papadopoulos , Athanasios Lattos , Basile Michaelidis , Konstantinos Feidantsis , Ioannis A. Giantsis
Bivalves are among the marine organisms most influenced by climate change. Despite the flat oyster's Ostrea edulis high economic value, its culture is developed on a very small scale, since this species possesses a strong susceptibility to abiotic stressors. Due to climate change, temperature is one of the most critical environmental parameters for the welfare of the Mediterranean basin's marine inhabitants. The present study's purpose was to investigate the physiological performance of the Mediterranean's native O. edulis as it faces exposure to different temperatures. Since juveniles are more susceptible to abiotic stressors, this experimental procedure was focused on young individuals. The seawater temperatures studied included a standard control temperature of 21 °C (often observed in several marine areas throughout the Mediterranean), as well as increased seawater temperatures of 25 °C and 28 °C, occasionally occurring in shallow Mediterranean waters inhabited by bivalve spat. These were selected since the tissues of O. edulis becomes partly anaerobic in temperatures exceeding 26 °C, while cardiac dysfunction (arrhythmia) emerges at 28 °C. The results demonstrate that temperatures above 25 °C trigger both the transcriptional upregulation of hsp70 and hsp90, and the antioxidant genes Cu/Zn sod and catalase. Enhancement of thermal tolerance and increased defense against increased ROS production during thermal stress, were observed. As the intensity and duration of thermal stress increases, apoptotic damage may also occur. The increased oxidative and thermal stress incurred at the highest temperature of 28 °C, seemed to trigger the switch from aerobic to anaerobic metabolism, reflected by higher pepck mRNA expressions and lower ETS activity.
{"title":"Increased seawater temperature triggers thermal, oxidative and metabolic response of Ostrea edulis, leading to anaerobiosis","authors":"Ioannis Georgoulis , Dimitrios K. Papadopoulos , Athanasios Lattos , Basile Michaelidis , Konstantinos Feidantsis , Ioannis A. Giantsis","doi":"10.1016/j.cbpb.2024.110943","DOIUrl":"10.1016/j.cbpb.2024.110943","url":null,"abstract":"<div><p>Bivalves are among the marine organisms most influenced by climate change. Despite the flat oyster's <span><em>Ostrea edulis</em></span> high economic value, its culture is developed on a very small scale, since this species possesses a strong susceptibility to abiotic stressors. Due to climate change, temperature is one of the most critical environmental parameters for the welfare of the Mediterranean basin's marine inhabitants. The present study's purpose was to investigate the physiological performance of the Mediterranean's native <em>O. edulis</em> as it faces exposure to different temperatures. Since juveniles are more susceptible to abiotic stressors, this experimental procedure was focused on young individuals. The seawater temperatures studied included a standard control temperature of 21 °C (often observed in several marine areas throughout the Mediterranean), as well as increased seawater temperatures of 25 °C and 28 °C, occasionally occurring in shallow Mediterranean waters inhabited by bivalve spat. These were selected since the tissues of <em>O. edulis</em> becomes partly anaerobic in temperatures exceeding 26 °C, while cardiac dysfunction (arrhythmia) emerges at 28 °C. The results demonstrate that temperatures above 25 °C trigger both the transcriptional upregulation of <span><em>hsp70</em></span> and <span><em>hsp90</em><em>,</em></span> and the antioxidant genes <em>Cu/Zn sod</em> and <span><em>catalase</em></span><span>. Enhancement of thermal tolerance and increased defense against increased ROS production during thermal stress, were observed. As the intensity and duration of thermal stress increases, apoptotic damage may also occur. The increased oxidative and thermal stress incurred at the highest temperature of 28 °C, seemed to trigger the switch from aerobic to anaerobic metabolism, reflected by higher </span><span><em>pepck</em></span><span> mRNA expressions and lower ETS activity.</span></p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139460507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}