Pub Date : 2024-08-20DOI: 10.1016/j.cbpb.2024.111024
Hongsu Yang , Liqing Zhou , Yanxin Zheng , Tao Yu , Biao Wu , Zhihong Liu , Xiujun Sun
Myostatin (MSTN) plays an important role in muscle development in animals, especially for mammals and fishes. However, little information has been reported on the regulation of MSTN in marine invertebrates, such as bivalves. In the present study, we cloned the MSTN promoter sequence of Yesso scallop Patinopecten yessoensis, identifying 4 transcription start sites, eleven TATA boxes and one E-box. Additionally, transcription factor binding sites, including myocyte enhancer factor 2 (MEF2) and POU homeodomain protein, were identified. The interaction between the MSTN promoter and MEF2 was analyzed to reveal the transcriptional activity of different fragment sizes of promoters through the dual-luciferase reporter assays. The highest transcriptional activity was found in recombinant plasmids with the most MEF2 binding sites, indicating that this transcription factor upregulates MSTN in Yesso scallop. This study provides new insight into the regulation of muscle growth and development in this species.
{"title":"Myocyte enhancer factor 2 upregulates expression of myostatin promoter in Yesso scallop, Patinopecten yessoensis","authors":"Hongsu Yang , Liqing Zhou , Yanxin Zheng , Tao Yu , Biao Wu , Zhihong Liu , Xiujun Sun","doi":"10.1016/j.cbpb.2024.111024","DOIUrl":"10.1016/j.cbpb.2024.111024","url":null,"abstract":"<div><p>Myostatin (MSTN) plays an important role in muscle development in animals, especially for mammals and fishes. However, little information has been reported on the regulation of MSTN in marine invertebrates, such as bivalves. In the present study, we cloned the MSTN promoter sequence of Yesso scallop <em>Patinopecten yessoensis</em>, identifying 4 transcription start sites, eleven TATA boxes and one <em>E</em>-box. Additionally, transcription factor binding sites, including myocyte enhancer factor 2 (MEF2) and POU homeodomain protein, were identified. The interaction between the MSTN promoter and MEF2 was analyzed to reveal the transcriptional activity of different fragment sizes of promoters through the dual-luciferase reporter assays. The highest transcriptional activity was found in recombinant plasmids with the most MEF2 binding sites, indicating that this transcription factor upregulates MSTN in Yesso scallop. This study provides new insight into the regulation of muscle growth and development in this species.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.cbpb.2024.111021
Zhiqi Tian , Mingkui Wei , Rongrong Xue , Lei Song , Handong Li , Hong Ji , Peizhen Xiao , Jian Sun
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are part of the nuclear hormone receptor family, playing a crucial role in gene expression regulation. They serve as a connection between lipid metabolism disorders and innate immunity by being activated by fatty acids and their derivatives, facilitating signal transduction between the cell surface and nucleus. However, the specific transcriptional effects of different fatty acids (FAs) in fish are not yet fully understood. In our research, we identified and characterized PPARs in grass carp (Ctenopharyngodon idellus). The complete coding sequences of pparαa, pparαb, pparγ, pparδa, and pparδb were 1443 bp, 1404 bp, 1569 bp, 1551 bp, and 1560 bp in length, respectively. Pparα showed the highest expression in the liver, pparγ was mainly expressed in abdominal adipose tissue, and pparδ exhibited increased expression in the heart compared to other tissues. Gene localization analysis revealed that only pparδa was present in both the nucleus and cytoplasm, while the other four genes were exclusively located in the nucleus. Furthermore, our study explored the influence of various fatty acids (docosahexaenoic acid, palmitic acid, lauric acid and oleic acid at concentrations of 0, 50, 100, and 200 μM) on the transcriptional activities of different PPARs, demonstrating the diverse effects of fatty acid ligands on PPAR transcriptional activity. These results have significant implications for understanding the regulation of PPARs transcriptional activity.
{"title":"Comparative study on the transcriptional activities of grass carp (Ctenopharyngodon idellus) peroxisome proliferator-activated receptors induced by different fatty acids","authors":"Zhiqi Tian , Mingkui Wei , Rongrong Xue , Lei Song , Handong Li , Hong Ji , Peizhen Xiao , Jian Sun","doi":"10.1016/j.cbpb.2024.111021","DOIUrl":"10.1016/j.cbpb.2024.111021","url":null,"abstract":"<div><p>Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are part of the nuclear hormone receptor family, playing a crucial role in gene expression regulation. They serve as a connection between lipid metabolism disorders and innate immunity by being activated by fatty acids and their derivatives, facilitating signal transduction between the cell surface and nucleus. However, the specific transcriptional effects of different fatty acids (FAs) in fish are not yet fully understood. In our research, we identified and characterized PPARs in grass carp (<em>Ctenopharyngodon idellus</em>). The complete coding sequences of <em>pparαa</em>, <em>pparαb</em>, <em>pparγ</em>, <em>pparδa</em>, and <em>pparδb</em> were 1443 bp, 1404 bp, 1569 bp, 1551 bp, and 1560 bp in length, respectively. <em>Pparα</em> showed the highest expression in the liver, <em>pparγ</em> was mainly expressed in abdominal adipose tissue, and <em>pparδ</em> exhibited increased expression in the heart compared to other tissues. Gene localization analysis revealed that only <em>pparδa</em> was present in both the nucleus and cytoplasm, while the other four genes were exclusively located in the nucleus. Furthermore, our study explored the influence of various fatty acids (docosahexaenoic acid, palmitic acid, lauric acid and oleic acid at concentrations of 0, 50, 100, and 200 μM) on the transcriptional activities of different PPARs, demonstrating the diverse effects of fatty acid ligands on PPAR transcriptional activity. These results have significant implications for understanding the regulation of PPARs transcriptional activity.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.cbpb.2024.111022
Maria A. Yutsyschyna, Jared B. Shaftoe, Todd E. Gillis
Pacific hagfish (Eptatretus stoutii) are an ancient agnathan vertebrate known to be anoxia tolerant. To study their metabolic organization and the role of the mitochondria in anoxia tolerance we developed a novel protocol to measure mitochondrial function in permeabilized cardiomyocytes and how this is affected by one hour of anoxia followed by reoxygenation. When measured at 10 °C the mitochondria had a respiration rate of 2.1 ± 0.1pmol/s/mg WW during OXPHOS with saturating concentrations of glutamate, malate, and succinate. This is comparatively low compared to other ectothermic species. The functional characteristics of the mitochondria were quantified with mitochondrial control ratios. These demonstrated that proton leak contributed to just under 50% of the oxygen flux, with the remainder going towards ATP phosphorylation. Finally, when the preparations were exposed to an anoxia-reoxygenation protocol there was no difference in respiration compared to that of a heart sample from the same animal maintained under normoxia for the same time. When Complex I alone or Complex I and II were stimulated following one hour of anoxia there was no decline in oxygen flux observed. However, if Complex II was activated alone there was a significant decline in respiration. This decrease was however also observed in the mitochondria maintained in normoxia for one hour. In conclusion, Pacific hagfish cardiac mitochondria demonstrated a low rate of oxygen consumption, a loosely coupled electron transfer system, and a resistance to one hour of anoxia.
太平洋鼠兔(Eptatretus stoutii)是一种已知耐缺氧的古老古脊椎动物。为了研究它们的新陈代谢组织以及线粒体在耐缺氧中的作用,我们开发了一种新方案来测量透化心肌细胞中的线粒体功能,以及缺氧一小时后复氧对线粒体功能的影响。在 10 °C 条件下测量时,线粒体在谷氨酸、苹果酸和琥珀酸饱和浓度的 OXPHOS 期间的呼吸速率为 2.1 ± 0.1 pmol/s/mg WW。这与其他外温动物相比相对较低。线粒体的功能特征通过线粒体控制比进行量化。这些结果表明,质子泄漏只占氧通量的不到 50%,其余部分用于 ATP 磷酸化。最后,当制备物暴露于缺氧复氧方案时,其呼吸作用与同一动物在常氧条件下维持相同时间的心脏样本呼吸作用相比没有差异。缺氧一小时后,单独刺激复合体 I 或复合体 I 和 II,没有观察到氧通量下降。但是,如果单独激活复合体 II,呼吸作用会显著下降。不过,在正常缺氧状态下维持 1 小时的线粒体中也观察到了这种下降。总之,太平洋鼠鲇心脏线粒体表现出较低的耗氧率、松散耦合的电子传递系统以及对一小时缺氧的耐受性。
{"title":"Mitochondria from the systemic heart of Pacific hagfish (Eptatretus stoutii) are insensitive to one hour of anoxia followed by reoxygenation","authors":"Maria A. Yutsyschyna, Jared B. Shaftoe, Todd E. Gillis","doi":"10.1016/j.cbpb.2024.111022","DOIUrl":"10.1016/j.cbpb.2024.111022","url":null,"abstract":"<div><p>Pacific hagfish (<em>Eptatretus stoutii</em>) are an ancient agnathan vertebrate known to be anoxia tolerant. To study their metabolic organization and the role of the mitochondria in anoxia tolerance we developed a novel protocol to measure mitochondrial function in permeabilized cardiomyocytes and how this is affected by one hour of anoxia followed by reoxygenation. When measured at 10 °C the mitochondria had a respiration rate of 2.1 ± 0.1pmol/s/mg WW during OXPHOS with saturating concentrations of glutamate, malate, and succinate. This is comparatively low compared to other ectothermic species. The functional characteristics of the mitochondria were quantified with mitochondrial control ratios. These demonstrated that proton leak contributed to just under 50% of the oxygen flux, with the remainder going towards ATP phosphorylation. Finally, when the preparations were exposed to an anoxia-reoxygenation protocol there was no difference in respiration compared to that of a heart sample from the same animal maintained under normoxia for the same time. When Complex I alone or Complex I and II were stimulated following one hour of anoxia there was no decline in oxygen flux observed. However, if Complex II was activated alone there was a significant decline in respiration. This decrease was however also observed in the mitochondria maintained in normoxia for one hour. In conclusion, Pacific hagfish cardiac mitochondria demonstrated a low rate of oxygen consumption, a loosely coupled electron transfer system, and a resistance to one hour of anoxia.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.cbpb.2024.111018
Jinkun Huang , Haifu Wan , Jing Jiang , Yicong Huang , Pengfei Zou , Ziping Zhang , Xiwei Jia , Yilei Wang
The mud crab (Scylla paramamosain) is a commercially significant marine decapod crustacean. Due to its obvious sexual dimorphism, the mechanism of sex differentiation and gonadal development has attracted significant research interest. The Dmrt (double-sex and mab-3 related transcription factor) genes are vital in animal gonadal development and sex differentiation. In the present study, miR-34 was predicted to target the 3′ end of Dmrt-1, idmrt-2, Dmrt-3, Dsx and Dmrt-like genes by prediction software, and the interactions between miR-34 and these Dmrt genes were validated by in vivo and in vitro experiments. Dual luciferase assay results indicated that miR-34 mimics/inhibitors co-transfected with plasmid vectors with 3′ end of Dmrt-1, idmrt-2, Dmrt-3, Dsx and Dmrt-like, respectively, led to a significant decrease/increase of fluorescence activity in HEK293T cells. In vivo experiments showed that injection of agomir-34 significantly inhibited Dmrt-1, idmrt-2, Dsx and Dmrt-like expression, while injection of antagomir-34 caused the opposite result. However, Dmrt-3 expression was not affected by injection of miR-34 reagents. Meanwhile, the expression of spermatogenesis and testicular development-related molecular marker genes (IAG, foxl2 and vasa) in mud crabs was significantly changed after injecting the miR-34 reagent in vivo. Furthermore, the result of immunoblotting proved that the expression level of Dmrt-like protein can be regulated by miR-34. These results imply that miR-34 is indirectly involved in sex differentiation and testicular development of S. paramamosain by regulating Dmrt-1, idmrt-2, Dsx and Dmrt-like genes.
{"title":"miR-34 negatively regulates the expression of Dmrt and related genes in the testis of mud crab Scylla paramamosain","authors":"Jinkun Huang , Haifu Wan , Jing Jiang , Yicong Huang , Pengfei Zou , Ziping Zhang , Xiwei Jia , Yilei Wang","doi":"10.1016/j.cbpb.2024.111018","DOIUrl":"10.1016/j.cbpb.2024.111018","url":null,"abstract":"<div><p>The mud crab (<em>Scylla paramamosain</em>) is a commercially significant marine decapod crustacean. Due to its obvious sexual dimorphism, the mechanism of sex differentiation and gonadal development has attracted significant research interest. The <em>Dmrt</em> (double-sex and mab-3 related transcription factor) genes are vital in animal gonadal development and sex differentiation. In the present study, miR-34 was predicted to target the 3′ end of <em>Dmrt-1</em>, <em>idmrt-2</em>, <em>Dmrt-3</em>, <em>Dsx</em> and <em>Dmrt-like</em> genes by prediction software, and the interactions between miR-34 and these <em>Dmrt</em> genes were validated by <em>in vivo</em> and <em>in vitro</em> experiments. Dual luciferase assay results indicated that miR-34 mimics/inhibitors co-transfected with plasmid vectors with 3′ end of <em>Dmrt-1</em>, <em>idmrt-2</em>, <em>Dmrt-3</em>, <em>Dsx</em> and <em>Dmrt-like</em>, respectively, led to a significant decrease/increase of fluorescence activity in HEK293T cells. <em>In vivo</em> experiments showed that injection of agomir-34 significantly inhibited <em>Dmrt-1</em>, <em>idmrt-2</em>, <em>Dsx</em> and <em>Dmrt-like</em> expression, while injection of antagomir-34 caused the opposite result. However, <em>Dmrt-3</em> expression was not affected by injection of miR-34 reagents. Meanwhile, the expression of spermatogenesis and testicular development-related molecular marker genes (<em>IAG</em>, <em>foxl2</em> and <em>vasa</em>) in mud crabs was significantly changed after injecting the miR-34 reagent <em>in vivo</em>. Furthermore, the result of immunoblotting proved that the expression level of Dmrt-like protein can be regulated by miR-34. These results imply that miR-34 is indirectly involved in sex differentiation and testicular development of <em>S. paramamosain</em> by regulating <em>Dmrt-1</em>, <em>idmrt-2</em>, <em>Dsx</em> and <em>Dmrt-like</em> genes.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1016/j.cbpb.2024.111009
Kai Dang , Mengru Cao , Huiping Wang , Huajian Yang , Yong Kong , Yuan Gao , Airong Qian
Long-term inactivity of skeletal muscle results in muscular disuse atrophy; however, hibernating animals do not experience muscular disuse atrophy during the hibernation period. The molecular mechanism underlining the anti-atrophy effect in these animals is unclear. O-linked N acetyl-β-D-glucosaminylation (O-GlcNAcylation) and its effect on cell signaling pathways are important mechanisms underlying muscular disuse atrophy; thus, in this study, we investigated O-GlcNAcylation changes during hibernation in Spermophilus dauricus to explore the role of O-GlcNAcylation in the muscle disuse atrophy resistance of hibernating animals. The results showed that during hibernation, the muscle fiber cross-sectional area and ratio of muscle fiber did not change, and the morphological structure of the muscle remained intact, with normal contractile function. The level of O-GlcNAcylation decreased during hibernation, but quickly returned to normal in the periodic arousal stage. The O-GlcNAcylation level of sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) decreased, whereas its activity increased. The decrease in O-GlcNAcylation of SERCA could result in the decreased binding of phospholamban to SERCA1, thus decreasing its inhibition to SERCA1 activity. This in turn can inhibit muscle cell calcium overload, maintain muscle cell calcium homeostasis, and stabilize the calpain proteolytic pathway, ultimately inhibiting skeletal muscle atrophy. Our results demonstrate that periodic arousal along with returning O-GlcNAcylation level to normal are important mechanisms in preventing disuse atrophy of skeletal muscle during hibernation.
{"title":"O-GlcNAcylation of SERCA protects skeletal muscle in hibernating Spermophilus dauricus from disuse atrophy","authors":"Kai Dang , Mengru Cao , Huiping Wang , Huajian Yang , Yong Kong , Yuan Gao , Airong Qian","doi":"10.1016/j.cbpb.2024.111009","DOIUrl":"10.1016/j.cbpb.2024.111009","url":null,"abstract":"<div><p>Long-term inactivity of skeletal muscle results in muscular disuse atrophy; however, hibernating animals do not experience muscular disuse atrophy during the hibernation period. The molecular mechanism underlining the anti-atrophy effect in these animals is unclear. O-linked N acetyl-β-D-glucosaminylation (O-GlcNAcylation) and its effect on cell signaling pathways are important mechanisms underlying muscular disuse atrophy; thus, in this study, we investigated O-GlcNAcylation changes during hibernation in <em>Spermophilus dauricus</em> to explore the role of O-GlcNAcylation in the muscle disuse atrophy resistance of hibernating animals. The results showed that during hibernation, the muscle fiber cross-sectional area and ratio of muscle fiber did not change, and the morphological structure of the muscle remained intact, with normal contractile function. The level of O-GlcNAcylation decreased during hibernation, but quickly returned to normal in the periodic arousal stage. The O-GlcNAcylation level of sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) decreased, whereas its activity increased. The decrease in O-GlcNAcylation of SERCA could result in the decreased binding of phospholamban to SERCA1, thus decreasing its inhibition to SERCA1 activity. This in turn can inhibit muscle cell calcium overload, maintain muscle cell calcium homeostasis, and stabilize the calpain proteolytic pathway, ultimately inhibiting skeletal muscle atrophy. Our results demonstrate that periodic arousal along with returning O-GlcNAcylation level to normal are important mechanisms in preventing disuse atrophy of skeletal muscle during hibernation.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1016/j.cbpb.2024.111011
Younes Abdollahzadeh , Mohammad Mazandarani , Seyed Hossein Hoseinifar , Thora Lieke , Hien Van Doan , Sajjad Pourmozaffar
In the current study, the effects of dietary fulvic acid supplementation at levels of 0.5, 1 and 2% were examined in white-leg shrimp, Litopenaeus vannamei. A significant increase in the weight of the shrimp was observed in the group treated with 2% fulvic acid in comparison to the control group. This may have been associated with an increased digestive efficiency, with the food conversion ratio reducing from 2.4 to 1.9, and increased hepatopancreatic amylase, protease, and lipase enzyme activities. Enhanced activity of hemolymph superoxide dismutase was suggestive of an enhanced immune capacity, while hemolymph cell count increased by 16.4 and 13.6% in shrimp receiving diets supplemented with 1 and 2% fulvic acid, respectively. Additionally, the number of large granular cells increased by 37.3% and 40.8% relative to the control in these two groups. Furthermore, the lysozyme activity increased in shrimp receiving dietary supplementation of 1% and 2% fulvic acid by 16.7% and 24.7%, respectively. Phenol oxidase activity, which activates phagocytosis and encapsulation of invading pathogens, increased in all groups supplemented with fulvic acid, with the highest activity in the 1% fulvic acid group. Overall the present results suggest that fulvic acid is a promising feed additive for white-leg shrimp super-intensive culture.
{"title":"Dietary fulvic acid improves immune, digestive and antioxidant parameters in juvenile white-leg shrimp (Litopenaeus vannamei) in a super-intensive system","authors":"Younes Abdollahzadeh , Mohammad Mazandarani , Seyed Hossein Hoseinifar , Thora Lieke , Hien Van Doan , Sajjad Pourmozaffar","doi":"10.1016/j.cbpb.2024.111011","DOIUrl":"10.1016/j.cbpb.2024.111011","url":null,"abstract":"<div><p>In the current study, the effects of dietary fulvic acid supplementation at levels of 0.5, 1 and 2% were examined in white-leg shrimp, <em>Litopenaeus vannamei</em>. A significant increase in the weight of the shrimp was observed in the group treated with 2% fulvic acid in comparison to the control group. This may have been associated with an increased digestive efficiency, with the food conversion ratio reducing from 2.4 to 1.9, and increased hepatopancreatic amylase, protease, and lipase enzyme activities. Enhanced activity of hemolymph superoxide dismutase was suggestive of an enhanced immune capacity, while hemolymph cell count increased by 16.4 and 13.6% in shrimp receiving diets supplemented with 1 and 2% fulvic acid, respectively. Additionally, the number of large granular cells increased by 37.3% and 40.8% relative to the control in these two groups. Furthermore, the lysozyme activity increased in shrimp receiving dietary supplementation of 1% and 2% fulvic acid by 16.7% and 24.7%, respectively. Phenol oxidase activity, which activates phagocytosis and encapsulation of invading pathogens, increased in all groups supplemented with fulvic acid, with the highest activity in the 1% fulvic acid group. Overall the present results suggest that fulvic acid is a promising feed additive for white-leg shrimp super-intensive culture.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.cbpb.2024.111010
Amanda W.S. Martins , Leandro S. Nunes , Eduardo B. Blödorn , Eduardo N. Dellagostin , Tony L.R. Silveira , Gilberto L. Collares , William B. Domingues , Danillo Pinhal , Mariana H. Remião , Vinicius F. Campos
MicroRNAs play crucial regulatory roles in various aspects of development and physiology, including environmental adaptation and stress responses in teleosts. RT-qPCR is the most commonly used method for studying microRNA expression, with the accuracy and reliability of results depending on the use of an appropriate reference gene for normalization. This study aimed to evaluate seven miRNAs (U6, Let-7a, miR-23a, miR-25-3, miR-103, miR-99-5, and miR-455) expression stability in different tissues of Nile tilapia subjected to osmotic stress. Fish were divided into two groups: a control and an experimental group, raised in 0 and 12 ppt salinity water respectively. After 21 days, brain, gills, liver, and posterior intestine were collected for analysis. Different mathematical algorithms (geNorm, NormFinder, BestKeeper, and the comparative ΔCt method) were employed to identify the most suitable reference miRNAs. The results indicate that the miR-455/miR-23a combination is a robust reference for normalizing miRNA expression levels in studies of osmotic stress responses in Nile tilapia. The stability of miRNA expression can vary depending on specific stress conditions and biological processes, underscoring the necessity of selecting appropriate normalizing miRNAs for each experimental context. This study identifies reliable reference genes for future RT-qPCR analyses of miRNA expression, thereby enhancing our understanding of molecular responses in fish to environmental challenges. These insights are fundamental to the development of new technologies for the improved management and sustainability of aquaculture practices.
{"title":"Selection of references for quantitative real-time PCR analysis of microRNAs in Nile tilapia (Oreochromis niloticus) under osmotic stress","authors":"Amanda W.S. Martins , Leandro S. Nunes , Eduardo B. Blödorn , Eduardo N. Dellagostin , Tony L.R. Silveira , Gilberto L. Collares , William B. Domingues , Danillo Pinhal , Mariana H. Remião , Vinicius F. Campos","doi":"10.1016/j.cbpb.2024.111010","DOIUrl":"10.1016/j.cbpb.2024.111010","url":null,"abstract":"<div><p>MicroRNAs play crucial regulatory roles in various aspects of development and physiology, including environmental adaptation and stress responses in teleosts. RT-qPCR is the most commonly used method for studying microRNA expression, with the accuracy and reliability of results depending on the use of an appropriate reference gene for normalization. This study aimed to evaluate seven miRNAs (U6, Let-7a, miR-23a, miR-25-3, miR-103, miR-99-5, and miR-455) expression stability in different tissues of Nile tilapia subjected to osmotic stress. Fish were divided into two groups: a control and an experimental group, raised in 0 and 12 ppt salinity water respectively. After 21 days, brain, gills, liver, and posterior intestine were collected for analysis. Different mathematical algorithms (geNorm, NormFinder, BestKeeper, and the comparative ΔCt method) were employed to identify the most suitable reference miRNAs. The results indicate that the miR-455/miR-23a combination is a robust reference for normalizing miRNA expression levels in studies of osmotic stress responses in Nile tilapia. The stability of miRNA expression can vary depending on specific stress conditions and biological processes, underscoring the necessity of selecting appropriate normalizing miRNAs for each experimental context. This study identifies reliable reference genes for future RT-qPCR analyses of miRNA expression, thereby enhancing our understanding of molecular responses in fish to environmental challenges. These insights are fundamental to the development of new technologies for the improved management and sustainability of aquaculture practices.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1016/j.cbpb.2024.111008
Sulayman A. Lyons, Grant B. McClelland
For small mammals, such as mice, cannulation procedures can be quite challenging, limiting research associated with tracing isotopically labelled substrates at the whole-animal level. When cannulation in mice is possible, assessment of substrate use is further limited to when mice are either under anesthesia or are at rest, as there are no studies directly quantifying substrate use during exercise in mice. The use of isotopic tracer techniques has greatly advanced our knowledge in understanding how metabolic substrates (carbohydrates, amino acids, and fatty acids) contribute to whole-body metabolism. However, research regarding tissue-specific fuel use contributions to whole-body energy expenditure in mice at varying metabolic intensities (i.e., exercise) is lacking, despite the popularity of using mice in a variety of metabolic models. In this commentary, we briefly discuss the methodologies, advantages, and disadvantages of using radiolabelled, positron emission, and stable isotopes with a specific focus on fatty acids. We highlight recent mouse studies that have used creative experimental designs employing the use of isotopic tracer techniques and we briefly discuss how these methodologies can be further pursued to deepen our understanding of substrate use during exercise. Lastly, we show findings of a recent study we performed using a radiolabelled fatty acid tracer (14C-bromopalmitic acid) to determine fatty acid uptake in 16 muscles, two brown and two white adipose tissue depots during submaximal exercise in deer mice.
{"title":"Commentary: Tracing the fate of metabolic substrates during changes in whole-body energy expenditure in mice","authors":"Sulayman A. Lyons, Grant B. McClelland","doi":"10.1016/j.cbpb.2024.111008","DOIUrl":"10.1016/j.cbpb.2024.111008","url":null,"abstract":"<div><p>For small mammals, such as mice, cannulation procedures can be quite challenging, limiting research associated with tracing isotopically labelled substrates at the whole-animal level. When cannulation in mice is possible, assessment of substrate use is further limited to when mice are either under anesthesia or are at rest, as there are no studies directly quantifying substrate use during exercise in mice. The use of isotopic tracer techniques has greatly advanced our knowledge in understanding how metabolic substrates (carbohydrates, amino acids, and fatty acids) contribute to whole-body metabolism. However, research regarding tissue-specific fuel use contributions to whole-body energy expenditure in mice at varying metabolic intensities (i.e., exercise) is lacking, despite the popularity of using mice in a variety of metabolic models. In this commentary, we briefly discuss the methodologies, advantages, and disadvantages of using radiolabelled, positron emission, and stable isotopes with a specific focus on fatty acids. We highlight recent mouse studies that have used creative experimental designs employing the use of isotopic tracer techniques and we briefly discuss how these methodologies can be further pursued to deepen our understanding of substrate use during exercise. Lastly, we show findings of a recent study we performed using a radiolabelled fatty acid tracer (<sup>14</sup>C-bromopalmitic acid) to determine fatty acid uptake in 16 muscles, two brown and two white adipose tissue depots during submaximal exercise in deer mice.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096495924000757/pdfft?md5=52eaaa18630023dda103a8a6242449d3&pid=1-s2.0-S1096495924000757-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.cbpb.2024.111007
Yuya Ohhara , Mai Sato , Mai Sakai , Chika Sugiyama , Takahiro Ozawa , Kimiko Yamakawa-Kobayashi
n-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFAs), including eicosapentaenoic acid (EPA), are essential multifunctional nutrients in animals. Microorganisms such as microalgae are known to be n-3 LC-PUFA producers in aquatic environments. Various aquatic invertebrates, including Harpacticoida copepods, and a few terrestrial invertebrates, such as the nematode Caenorhabditis elegans, possess n-3 LC-PUFA biosynthetic enzymes. However, the capacity for n-3 LC-PUFA biosynthesis and the underlying molecular mechanisms in terrestrial insects are largely unclear. In this study, we investigated the fatty acid biosynthetic pathway in the silkworm Bombyx mori and found that EPA was present in silkworms throughout their development. Stable isotope tracing revealed that dietary α-linolenic acid (ALA) was metabolized to EPA in silkworm larvae. These results indicated that silkworms synthesize EPA from ALA. Given that EPA is enriched in the central nervous system, we propose that EPA confers optimal neuronal functions, similar to docosahexaenoic acid, in the mammalian nervous system.
{"title":"The bioconversion of dietary α-linolenic acid to eicosapentaenoic acid in Bombyx mori","authors":"Yuya Ohhara , Mai Sato , Mai Sakai , Chika Sugiyama , Takahiro Ozawa , Kimiko Yamakawa-Kobayashi","doi":"10.1016/j.cbpb.2024.111007","DOIUrl":"10.1016/j.cbpb.2024.111007","url":null,"abstract":"<div><p>n-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFAs), including eicosapentaenoic acid (EPA), are essential multifunctional nutrients in animals. Microorganisms such as microalgae are known to be n-3 LC-PUFA producers in aquatic environments. Various aquatic invertebrates, including Harpacticoida copepods, and a few terrestrial invertebrates, such as the nematode <em>Caenorhabditis elegans,</em> possess n-3 LC-PUFA biosynthetic enzymes. However, the capacity for n-3 LC-PUFA biosynthesis and the underlying molecular mechanisms in terrestrial insects are largely unclear. In this study, we investigated the fatty acid biosynthetic pathway in the silkworm <em>Bombyx mori</em> and found that EPA was present in silkworms throughout their development. Stable isotope tracing revealed that dietary α-linolenic acid (ALA) was metabolized to EPA in silkworm larvae. These results indicated that silkworms synthesize EPA from ALA. Given that EPA is enriched in the central nervous system, we propose that EPA confers optimal neuronal functions, similar to docosahexaenoic acid, in the mammalian nervous system.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1016/j.cbpb.2024.111006
Ana Paula Nascimento Corrêa , Niumaique Gonçalves da Silva , Jonathan Ratko , Diego Ortiz da Silva , Ieda Cristina Schleger , Diego Mauro Carneiro Pereira , Ananda Karla Alves Neundorf , Maria Rosa Dmengeon Pedreiro de Souza , Tatiana Herrerias , Lucélia Donatti
Psalidodon bifasciatus is a fish species sensitive to physical and chemical changes in water. It serves as a good bioindicator of temperature variations and is utilized in environmental monitoring studies in Brazilian rivers. The objective of this study was to evaluate antioxidant defense biomarkers in the heart, brain, and muscle of P. bifasciatus exposed to a 10 °C thermal increase. P. bifasciatus were collected and divided into a control group (21 °C) and groups subjected to thermal shock (31 °C) for periods of 2, 6, 12, 24, and 48h. Two-way ANOVA indicated that a 10 °C temperature increase caused oxidative stress in P. bifasciatus. This was evidenced by altered levels of lipid peroxidation (LPO), carbonylated proteins (PCO), and glutathione peroxidase (GPx) in the heart, catalase (CAT) and LPO in the brain, and LPO in the muscle. Principal component analysis (PCA) and integrated biomarker response (IBR) analysis indicated that, compared to the heart and muscle, the brain exhibited a greater activation of the antioxidant response. Sensitivity analysis indicated that the muscle was the most sensitive organ, followed by the brain and heart. Our results indicate that the stress response is tissue-specific through the activation of distinct mechanisms. These responses may be associated with the tissue's function as well as its energy demand. As expected, P. bifasciatus showed changes in response to thermal stress, with the brain showing the greatest alteration in antioxidant defenses and the muscle being the most sensitive tissue.
{"title":"Influence of acute heat shock on antioxidant defense of tropical fish, Psalidodon bifasciatus","authors":"Ana Paula Nascimento Corrêa , Niumaique Gonçalves da Silva , Jonathan Ratko , Diego Ortiz da Silva , Ieda Cristina Schleger , Diego Mauro Carneiro Pereira , Ananda Karla Alves Neundorf , Maria Rosa Dmengeon Pedreiro de Souza , Tatiana Herrerias , Lucélia Donatti","doi":"10.1016/j.cbpb.2024.111006","DOIUrl":"10.1016/j.cbpb.2024.111006","url":null,"abstract":"<div><p><em>Psalidodon bifasciatus</em> is a fish species sensitive to physical and chemical changes in water. It serves as a good bioindicator of temperature variations and is utilized in environmental monitoring studies in Brazilian rivers. The objective of this study was to evaluate antioxidant defense biomarkers in the heart, brain, and muscle of <em>P. bifasciatus</em> exposed to a 10 °C thermal increase. <em>P. bifasciatus</em> were collected and divided into a control group (21 °C) and groups subjected to thermal shock (31 °C) for periods of 2, 6, 12, 24, and 48h. Two-way ANOVA indicated that a 10 °C temperature increase caused oxidative stress in <em>P. bifasciatus</em>. This was evidenced by altered levels of lipid peroxidation (LPO), carbonylated proteins (PCO), and glutathione peroxidase (GPx) in the heart, catalase (CAT) and LPO in the brain, and LPO in the muscle. Principal component analysis (PCA) and integrated biomarker response (IBR) analysis indicated that, compared to the heart and muscle, the brain exhibited a greater activation of the antioxidant response. Sensitivity analysis indicated that the muscle was the most sensitive organ, followed by the brain and heart. Our results indicate that the stress response is tissue-specific through the activation of distinct mechanisms. These responses may be associated with the tissue's function as well as its energy demand. As expected, <em>P. bifasciatus</em> showed changes in response to thermal stress, with the brain showing the greatest alteration in antioxidant defenses and the muscle being the most sensitive tissue.</p></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}