首页 > 最新文献

Computational Mechanics最新文献

英文 中文
Crack nucleation in heterogeneous bars: h- and p-FEM of a phase field model 异质棒材中的裂纹成核:相场模型的 h-FEM 和 p-FEM
IF 4.1 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-18 DOI: 10.1007/s00466-024-02449-5
Maxime Levy, Francesco Vicentini, Zohar Yosibash

Failure initiation and subsequent crack trajectory in heterogeneous materials, such as functionally graded materials and bones, are yet insufficiently addressed. The AT1 phase field model (PFM) is investigated herein in a 1D setting, imposing challenges and opportunities when discretized by h- and p-finite element (FE) methods. We derive explicit PFM solutions to a heterogeneous bar in tension considering heterogeneous E(x) and (G_{Ic}(x)), necessary for verification of the FE approximations. (G_{Ic}(x)) corrections accounting for the element size at the damage zone in h-FEMs are suggested to account for the peak stress underestimation. p-FEMs do not require any such corrections. We also derive and validate penalty coefficient for heterogeneous domains to enforce damage positivity and irreversibility via penalization. Numerical examples are provided, demonstrating that p-FEMs exhibit faster convergence rates comparing to classical h-FEMs. The new insights are encouraging towards p-FEM discretization in a 3D setting to allow an accurate prediction of failure initiation in human bones.

对于异质材料(如功能分级材料和骨骼)的失效起始和随后的裂纹轨迹,研究还不够深入。本文在一维环境下对 AT1 相场模型(PFM)进行了研究,当采用 h 和 p 有限元(FE)方法进行离散时,既面临挑战,也面临机遇。考虑到异质 E(x) 和 (G_{Ic}(x)),我们推导出处于拉伸状态的异质棒材的显式 PFM 解,这对于验证 FE 近似值非常必要。为了解释峰值应力的低估,我们建议对 h-FEM 中损伤区域的元素尺寸进行 (G_{Ic}(x)) 修正,p-FEM 则不需要任何此类修正。我们还推导并验证了异质域的惩罚系数,以通过惩罚强制执行损伤的正向性和不可逆性。我们提供的数值示例表明,与经典的 h-FEM 相比,p-FEM 的收敛速度更快。这些新见解有助于在三维环境中对 p-FEM 进行离散化,从而准确预测人体骨骼的破坏起因。
{"title":"Crack nucleation in heterogeneous bars: h- and p-FEM of a phase field model","authors":"Maxime Levy, Francesco Vicentini, Zohar Yosibash","doi":"10.1007/s00466-024-02449-5","DOIUrl":"https://doi.org/10.1007/s00466-024-02449-5","url":null,"abstract":"<p>Failure initiation and subsequent crack trajectory in heterogeneous materials, such as functionally graded materials and bones, are yet insufficiently addressed. The AT1 phase field model (PFM) is investigated herein in a 1D setting, imposing challenges and opportunities when discretized by <i>h</i>- and <i>p</i>-finite element (FE) methods. We derive explicit PFM solutions to a heterogeneous bar in tension considering heterogeneous <i>E</i>(<i>x</i>) and <span>(G_{Ic}(x))</span>, necessary for verification of the FE approximations. <span>(G_{Ic}(x))</span> corrections accounting for the element size at the damage zone in <i>h</i>-FEMs are suggested to account for the peak stress underestimation. <i>p</i>-FEMs do not require any such corrections. We also derive and validate penalty coefficient for heterogeneous domains to enforce damage positivity and irreversibility via penalization. Numerical examples are provided, demonstrating that <i>p</i>-FEMs exhibit faster convergence rates comparing to classical <i>h</i>-FEMs. The new insights are encouraging towards <i>p</i>-FEM discretization in a 3D setting to allow an accurate prediction of failure initiation in human bones.\u0000</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"2013 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A reduced-order computational homogenization framework for locally resonant metamaterial structures 局部谐振超材料结构的降阶计算均质化框架
IF 4.1 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-18 DOI: 10.1007/s00466-024-02453-9
Andrea Francesco Russillo, Varvara G. Kouznetsova, Giuseppe Failla, Marc G. D. Geers

A computational homogenization framework is presented to study the dynamics of locally resonant acoustic metamaterial structures. Modelling the resonant units at the microscale as representative volume elements and building on well-established scale transition relations, the framework brings as a main novelty a reduced-order macroscopic homogenized continuum whose governing equations involve no additional variables to describe the microscale dynamics unlike micromorphic homogenized continua obtained by alternative computational homogenization approaches. This model-order reduction is obtained by formulating the governing equations of the micro- and macroscale problems in the frequency domain, introducing a finite-element discretization of the two problems and performing an exact dynamic condensation of all the degrees of freedom at the microscale. An appropriate inverse Fourier transform approach is implemented on the frequency-domain equations to capture transient dynamics as well; notably, the implementation involves the Exponential Window Method, here applied for the first time to calculate the time-domain response of undamped locally resonant acoustic metamaterial structures. The framework may handle arbitrary geometries of micro- and macro-structures, any transient excitations and any boundary conditions on the macroscopic domain.

本文提出了一个计算均质化框架,用于研究局部谐振声超材料结构的动力学。该框架将微尺度上的共振单元建模为代表性体积元素,并建立在成熟的尺度转换关系基础上,其主要创新点是减少了宏观均质化连续体的阶次,与其他计算均质化方法获得的微观均质化连续体不同,该连续体的控制方程不涉及描述微尺度动力学的额外变量。这种模型阶次缩减是通过在频域中制定微观和宏观问题的支配方程,引入这两个问题的有限元离散化,并在微观尺度上对所有自由度进行精确的动态压缩来实现的。在频域方程上采用了适当的反傅里叶变换方法,以捕捉瞬态动态;特别是,该方法的实施涉及指数窗法,在此首次应用于计算无阻尼局部共振声学超材料结构的时域响应。该框架可处理微观和宏观结构的任意几何形状、任何瞬态激励以及宏观域上的任何边界条件。
{"title":"A reduced-order computational homogenization framework for locally resonant metamaterial structures","authors":"Andrea Francesco Russillo, Varvara G. Kouznetsova, Giuseppe Failla, Marc G. D. Geers","doi":"10.1007/s00466-024-02453-9","DOIUrl":"https://doi.org/10.1007/s00466-024-02453-9","url":null,"abstract":"<p>A computational homogenization framework is presented to study the dynamics of locally resonant acoustic metamaterial structures. Modelling the resonant units at the microscale as representative volume elements and building on well-established scale transition relations, the framework brings as a main novelty a reduced-order macroscopic homogenized continuum whose governing equations involve no additional variables to describe the microscale dynamics unlike micromorphic homogenized continua obtained by alternative computational homogenization approaches. This model-order reduction is obtained by formulating the governing equations of the micro- and macroscale problems in the frequency domain, introducing a finite-element discretization of the two problems and performing an exact dynamic condensation of all the degrees of freedom at the microscale. An appropriate inverse Fourier transform approach is implemented on the frequency-domain equations to capture transient dynamics as well; notably, the implementation involves the Exponential Window Method, here applied for the first time to calculate the time-domain response of undamped locally resonant acoustic metamaterial structures. The framework may handle arbitrary geometries of micro- and macro-structures, any transient excitations and any boundary conditions on the macroscopic domain.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"119 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virtual clustering analysis for phase field model of quasi-static brittle fracture 准静态脆性断裂相场模型的虚拟聚类分析
IF 4.1 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-13 DOI: 10.1007/s00466-024-02459-3
Shaoqiang Tang, Jingcheng Miao

In this paper, we develop a Virtual Clustering Analysis method for a phase field model of brittle fracture. In addition to the strain/stress field, we treat the phase field variable via clusters as well, based on Green’s function of the governing Helmholtz equation. Around the crack path, we assign one cluster per cell. We detect the crack tip and recluster accordingly as the crack propagates. Three examples are presented to demonstrate the numerical efficiency of the proposed method, including either straight or curved crack, under tension or shear.

本文针对脆性断裂的相场模型开发了一种虚拟聚类分析方法。除了应变/应力场之外,我们还根据亥姆霍兹方程的格林函数,通过聚类来处理相场变量。在裂纹路径周围,我们为每个单元分配一个簇。我们检测裂纹尖端,并在裂纹扩展时相应地重新聚类。本文列举了三个例子来证明所提方法的数值效率,包括拉伸或剪切条件下的直线或曲线裂纹。
{"title":"Virtual clustering analysis for phase field model of quasi-static brittle fracture","authors":"Shaoqiang Tang, Jingcheng Miao","doi":"10.1007/s00466-024-02459-3","DOIUrl":"https://doi.org/10.1007/s00466-024-02459-3","url":null,"abstract":"<p>In this paper, we develop a Virtual Clustering Analysis method for a phase field model of brittle fracture. In addition to the strain/stress field, we treat the phase field variable via clusters as well, based on Green’s function of the governing Helmholtz equation. Around the crack path, we assign one cluster per cell. We detect the crack tip and recluster accordingly as the crack propagates. Three examples are presented to demonstrate the numerical efficiency of the proposed method, including either straight or curved crack, under tension or shear.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"87 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An aspect ratio dependent lumped mass formulation for serendipity finite elements with severe side-length discrepancy 用于具有严重边长差异的偶然性有限元的与长宽比相关的集合质量公式
IF 4.1 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-13 DOI: 10.1007/s00466-024-02457-5
Songyang Hou, Xiwei Li, Zhiwei Lin, Dongdong Wang

The frequency solutions of finite elements may significantly deteriorate as the mesh aspect ratios become large, which implies a severe element side-length discrepancy. In this work, an aspect ratio dependent lumped mass (ARLM) formulation is proposed for serendipity elements, i.e., the two-dimensional eight-node and three dimensional twenty-node quadratic elements for linear problems. In particular, a generalized parametric lumped mass matrix template taking into account the mesh aspect ratios is introduced to examine the frequency accuracy of serendipity elements. This generalized lumped mass matrix template completely meets the mass conservation and non-negativity requirements. Subsequently, analytical frequency error estimates are developed for serendipity elements, which clearly illustrate the relationship between the frequency accuracy and element aspect ratios. Accordingly, optimal mass parameters are obtained as the functions of element aspect ratios through solving a constrained optimization problem for frequency accuracy. It turns out that the resulting aspect ratio dependent lumped mass matrices yield much more accurate frequency solutions, in comparison to the diagonal scaling lumped mass (HRZ) matrices and the mid-node lumped mass (MNLM) matrices without consideration of the element aspect ratios, especially for finite element discretizations with severe element side-length discrepancy. The superior accuracy and robustness of the proposed ARLM over HRZ and MNLM are consistently demonstrated by numerical examples.

随着网格长宽比的增大,有限元的频率解可能会明显恶化,这意味着元素边长会出现严重偏差。在这项工作中,针对偶然性元素,即线性问题的二维八节点和三维二十节点二次元,提出了一种与长宽比相关的叠加质量(ARLM)公式。特别是,考虑到网格长宽比,引入了一个广义参数化的凑合质量矩阵模板,以检验偶然性元素的频率精度。这种广义凑合质量矩阵模板完全满足质量守恒和非负性要求。随后,为偶然性元素建立了分析频率误差估计,清楚地说明了频率精度与元素长宽比之间的关系。因此,通过求解频率精度的约束优化问题,可以获得作为元素纵横比函数的最佳质量参数。结果表明,与不考虑元素长宽比的对角线缩放块状质量(HRZ)矩阵和中间节点块状质量(MNLM)矩阵相比,与长宽比相关的块状质量矩阵产生的频率解要精确得多,尤其是在元素边长差异严重的有限元离散情况下。与 HRZ 和 MNLM 相比,所提出的 ARLM 具有更高的精度和鲁棒性,这一点已通过数值实例得到证实。
{"title":"An aspect ratio dependent lumped mass formulation for serendipity finite elements with severe side-length discrepancy","authors":"Songyang Hou, Xiwei Li, Zhiwei Lin, Dongdong Wang","doi":"10.1007/s00466-024-02457-5","DOIUrl":"https://doi.org/10.1007/s00466-024-02457-5","url":null,"abstract":"<p>The frequency solutions of finite elements may significantly deteriorate as the mesh aspect ratios become large, which implies a severe element side-length discrepancy. In this work, an aspect ratio dependent lumped mass (ARLM) formulation is proposed for serendipity elements, i.e., the two-dimensional eight-node and three dimensional twenty-node quadratic elements for linear problems. In particular, a generalized parametric lumped mass matrix template taking into account the mesh aspect ratios is introduced to examine the frequency accuracy of serendipity elements. This generalized lumped mass matrix template completely meets the mass conservation and non-negativity requirements. Subsequently, analytical frequency error estimates are developed for serendipity elements, which clearly illustrate the relationship between the frequency accuracy and element aspect ratios. Accordingly, optimal mass parameters are obtained as the functions of element aspect ratios through solving a constrained optimization problem for frequency accuracy. It turns out that the resulting aspect ratio dependent lumped mass matrices yield much more accurate frequency solutions, in comparison to the diagonal scaling lumped mass (HRZ) matrices and the mid-node lumped mass (MNLM) matrices without consideration of the element aspect ratios, especially for finite element discretizations with severe element side-length discrepancy. The superior accuracy and robustness of the proposed ARLM over HRZ and MNLM are consistently demonstrated by numerical examples.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"99 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time domain coupling of the boundary and discrete element methods for 3D problems 三维问题的边界法和离散元法的时域耦合
IF 4.1 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-11 DOI: 10.1007/s00466-024-02455-7
Guilherme Barros, Andre Pereira, Jerzy Rojek, John Carter, Klaus Thoeni

This paper presents an extension of the authors’ previously developed interface coupling technique for 2D problems to 3D problems. The method combines the strengths of the Discrete Element Method (DEM), known for its adeptness in capturing discontinuities and non-linearities at the microscale, and the Boundary Element Method (BEM), known for its efficiency in modelling wave propagation within infinite domains. The 3D formulation is based on spherical discrete elements and bilinear quadrilateral boundary elements. The innovative coupling methodology overcomes a critical limitation by enabling the representation of discontinuities within infinite domains, a pivotal development for large-scale dynamic problems. The paper systematically addresses challenges, with a focus on interface compatibility, showcasing the method’s accuracy through benchmark validation on a finite rod and infinite spherical cavity. Finally, a model of a column embedded into the ground illustrates the versatility of the approach in handling complex scenarios with multiple domains. This innovative coupling approach represents a significant leap in the integration of DEM and BEM for 3D problems and opens avenues for tackling complex and realistic problems in various scientific and engineering domains.

本文介绍了作者之前针对二维问题开发的界面耦合技术在三维问题上的扩展。该方法结合了离散元素法(DEM)和边界元素法(BEM)的优点,前者以善于捕捉微观尺度上的不连续性和非线性而著称,后者则以高效模拟无限域内的波传播而著称。三维建模基于球形离散元素和双线性四边形边界元素。创新的耦合方法克服了一个关键的局限性,即能够表示无限域内的不连续性,这对于大规模动态问题来说是一个关键的发展。论文系统地讨论了所面临的挑战,重点是界面兼容性,通过对有限杆和无限球形空腔的基准验证,展示了该方法的准确性。最后,通过一个嵌入地下的柱子模型,说明了该方法在处理多域复杂场景时的多功能性。这种创新的耦合方法代表了三维问题 DEM 和 BEM 集成的重大飞跃,为解决各种科学和工程领域的复杂和现实问题开辟了途径。
{"title":"Time domain coupling of the boundary and discrete element methods for 3D problems","authors":"Guilherme Barros, Andre Pereira, Jerzy Rojek, John Carter, Klaus Thoeni","doi":"10.1007/s00466-024-02455-7","DOIUrl":"https://doi.org/10.1007/s00466-024-02455-7","url":null,"abstract":"<p>This paper presents an extension of the authors’ previously developed interface coupling technique for 2D problems to 3D problems. The method combines the strengths of the Discrete Element Method (DEM), known for its adeptness in capturing discontinuities and non-linearities at the microscale, and the Boundary Element Method (BEM), known for its efficiency in modelling wave propagation within infinite domains. The 3D formulation is based on spherical discrete elements and bilinear quadrilateral boundary elements. The innovative coupling methodology overcomes a critical limitation by enabling the representation of discontinuities within infinite domains, a pivotal development for large-scale dynamic problems. The paper systematically addresses challenges, with a focus on interface compatibility, showcasing the method’s accuracy through benchmark validation on a finite rod and infinite spherical cavity. Finally, a model of a column embedded into the ground illustrates the versatility of the approach in handling complex scenarios with multiple domains. This innovative coupling approach represents a significant leap in the integration of DEM and BEM for 3D problems and opens avenues for tackling complex and realistic problems in various scientific and engineering domains.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"51 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raster approach to modelling the failure of arbitrarily inclined interfaces with structured meshes 用结构网格对任意倾斜界面的失效进行建模的栅格方法
IF 4.1 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-11 DOI: 10.1007/s00466-024-02456-6

Abstract

This paper presents an approach to evaluate the failure of arbitrarily inclined interfaces using FE models with structured spatial discretization, providing accurate prediction of crack propagation along paths known a priori that are not constrained to the element boundaries. The combination of algorithms for the generation of structured discretization of representative polycrystalline microstructures with novel cohesive element formulations allow modelling the failure of complex topologies along rasterised boundaries, with noticeably higher computational efficiency and comparable accuracy. Two formulations of raster cohesive elements are presented, adopting either elastic-brittle or Tvergaard–Hutchinson traction separation laws. The formulations proposed are first validated comparing the failure of the interface within bi-crystal structures discretised using hexahedral elements either within a structured mesh (i.e. with rasterised boundaries) or an unstructured mesh (i.e. with planar boundary). Subsequently, the effectiveness of the formulations is demonstrated comparing the inter-granular crack propagation within complex polycrystalline microstructures. The behaviour of the novel cohesive element formulation in structured meshes consisting of regular hexahedral elements is in excellent agreement with the deformation and failure of classic cohesive element formulations placed along the planar boundaries of unstructured meshes consisting of tetrahedral elements. The higher computational cost of the raster cohesive elements is more than compensated by the increase in computational efficiency of structured meshes when compared to unstructured meshes, leading to a reduction of the simulation time of up to over 200 times for the simulations presented in the paper, thus allowing the simulation of large domains.

摘要 本文介绍了一种使用结构化空间离散化有限元模型评估任意倾斜界面失效的方法,可准确预测裂纹沿先验已知路径传播的情况,这些路径不受限于元素边界。将生成具有代表性的多晶微结构的结构离散化算法与新型内聚元素公式相结合,可对沿栅格边界的复杂拓扑结构进行失效建模,计算效率明显提高,精度也相当高。本文介绍了两种栅格内聚元素公式,分别采用弹性-脆性或 Tvergaard-Hutchinson 牵引分离定律。首先,比较了在结构化网格(即栅格边界)或非结构化网格(即平面边界)中使用六面体元素离散的双晶结构内界面的破坏情况,验证了所提出的公式。随后,通过比较复杂多晶微结构中的晶间裂纹扩展,证明了这些公式的有效性。在由规则六面体元素组成的结构网格中,新型内聚元素公式的行为与沿由四面体元素组成的非结构网格的平面边界放置的经典内聚元素公式的变形和破坏行为非常一致。与非结构网格相比,结构网格计算效率的提高足以弥补栅格内聚元素较高的计算成本,在本文所介绍的模拟中,模拟时间最多缩短了 200 多倍,因此可以对大域进行模拟。
{"title":"Raster approach to modelling the failure of arbitrarily inclined interfaces with structured meshes","authors":"","doi":"10.1007/s00466-024-02456-6","DOIUrl":"https://doi.org/10.1007/s00466-024-02456-6","url":null,"abstract":"<h3>Abstract</h3> <p>This paper presents an approach to evaluate the failure of arbitrarily inclined interfaces using FE models with structured spatial discretization, providing accurate prediction of crack propagation along paths known a priori that are not constrained to the element boundaries. The combination of algorithms for the generation of structured discretization of representative polycrystalline microstructures with novel cohesive element formulations allow modelling the failure of complex topologies along rasterised boundaries, with noticeably higher computational efficiency and comparable accuracy. Two formulations of raster cohesive elements are presented, adopting either elastic-brittle or Tvergaard–Hutchinson traction separation laws. The formulations proposed are first validated comparing the failure of the interface within bi-crystal structures discretised using hexahedral elements either within a structured mesh (i.e. with rasterised boundaries) or an unstructured mesh (i.e. with planar boundary). Subsequently, the effectiveness of the formulations is demonstrated comparing the inter-granular crack propagation within complex polycrystalline microstructures. The behaviour of the novel cohesive element formulation in structured meshes consisting of regular hexahedral elements is in excellent agreement with the deformation and failure of classic cohesive element formulations placed along the planar boundaries of unstructured meshes consisting of tetrahedral elements. The higher computational cost of the raster cohesive elements is more than compensated by the increase in computational efficiency of structured meshes when compared to unstructured meshes, leading to a reduction of the simulation time of up to over 200 times for the simulations presented in the paper, thus allowing the simulation of large domains.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"34 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Velocity-based space-time FEMs for solid dynamics problem: generalized framework for linear basis functions in time 用于固体动力学问题的基于速度的时空有限元:时间线性基函数的广义框架
IF 4.1 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-11 DOI: 10.1007/s00466-024-02461-9
Vikas Sharma, Kazunori Fujisawa, Yuki Kuroda

Time discontinuous Galerkin space-time finite element method (ST/FEM) can be used for developing arbitrary high-order accurate and unconditionally stable time integration schemes for elastodynamics problems. The existing ST/FEMs can be classified as the single-field and two-field ST/FEM: in the former method, either displacement or velocity, is independent and discontinuous in time. In contrast, in the latter method, both displacement and velocity fields are independent and discontinuous in time. Both methods have third-order accuracy for linear interpolation in time, higher than typical time integration schemes used in semi-discretized. However, these methods currently lack a unified computational framework, so each method requires a separate implementation. Therefore, the main goal of the present study is to develop a generalized computational framework that can facilitate the derivation and implementation of the existing linear-in-time ST/FEMs in a unified manner. This framework is developed by realizing that existing methods differ through the treatments of displacement-velocity relationships, which can be unified through displacement functions. In addition, by employing this framework, a new ST/FEM, which is designated as LC v-ST/FEM, is derived from the linear combination of displacement functions of single-field and two-field ST/FEMs. LC v-ST/FEM contains a user-defined parameter (alpha in [0,1]), which can be used for controlling the high-frequency dissipation characteristics. From finite difference analysis and numerical solutions of benchmark problems, it is demonstrated that the proposed method is the third order accurate in time, unconditionally stable, and contains negligible numerical dispersion error for all (0 le alpha le 1). Moreover, for (alpha ne 0), the method can attenuate the spurious high-frequency components from the velocity and displacement fields.

时间不连续 Galerkin 时空有限元法(ST/FEM)可用于开发弹性动力学问题的任意高阶精确且无条件稳定的时间积分方案。现有的 ST/FEM 可分为单场 ST/FEM 和双场 ST/FEM:在前一种方法中,位移或速度在时间上是独立和不连续的。而在后一种方法中,位移场和速度场都是独立的,在时间上也是不连续的。这两种方法在时间线性插值方面都具有三阶精度,高于半离散化的典型时间积分方案。然而,这些方法目前缺乏统一的计算框架,因此每种方法都需要单独实现。因此,本研究的主要目标是开发一个通用的计算框架,以便于统一推导和实现现有的时内线性 ST/FEM 方法。这一框架的建立是由于认识到现有方法在处理位移-速度关系时存在差异,而这些差异可以通过位移函数得到统一。此外,通过采用这一框架,从单场 ST/FEM 和双场 ST/FEM 的位移函数线性组合中推导出一种新的 ST/FEM,命名为 LC v-ST/FEM。LC v-ST/FEM 包含一个用户自定义参数 (alpha in [0,1]),可用于控制高频耗散特性。通过对基准问题的有限差分分析和数值求解,证明了所提出的方法在时间上是三阶精确的、无条件稳定的,并且在所有 (0 le alpha le 1 )情况下都包含可忽略的数值分散误差。此外,对于(0),该方法可以减弱速度场和位移场中虚假的高频成分。
{"title":"Velocity-based space-time FEMs for solid dynamics problem: generalized framework for linear basis functions in time","authors":"Vikas Sharma, Kazunori Fujisawa, Yuki Kuroda","doi":"10.1007/s00466-024-02461-9","DOIUrl":"https://doi.org/10.1007/s00466-024-02461-9","url":null,"abstract":"<p>Time discontinuous Galerkin space-time finite element method (ST/FEM) can be used for developing arbitrary high-order accurate and unconditionally stable time integration schemes for elastodynamics problems. The existing ST/FEMs can be classified as the single-field and two-field ST/FEM: in the former method, either displacement or velocity, is independent and discontinuous in time. In contrast, in the latter method, both displacement and velocity fields are independent and discontinuous in time. Both methods have third-order accuracy for linear interpolation in time, higher than typical time integration schemes used in semi-discretized. However, these methods currently lack a unified computational framework, so each method requires a separate implementation. Therefore, the main goal of the present study is to develop a generalized computational framework that can facilitate the derivation and implementation of the existing linear-in-time ST/FEMs in a unified manner. This framework is developed by realizing that existing methods differ through the treatments of displacement-velocity relationships, which can be unified through displacement functions. In addition, by employing this framework, a new ST/FEM, which is designated as LC v-ST/FEM, is derived from the linear combination of displacement functions of single-field and two-field ST/FEMs. LC v-ST/FEM contains a user-defined parameter <span>(alpha in [0,1])</span>, which can be used for controlling the high-frequency dissipation characteristics. From finite difference analysis and numerical solutions of benchmark problems, it is demonstrated that the proposed method is the third order accurate in time, unconditionally stable, and contains negligible numerical dispersion error for all <span>(0 le alpha le 1)</span>. Moreover, for <span>(alpha ne 0)</span>, the method can attenuate the spurious high-frequency components from the velocity and displacement fields.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"30 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plane crack problems within strain gradient elasticity and mixed finite element implementation 应变梯度弹性中的平面裂缝问题及混合有限元实现
IF 4.1 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-08 DOI: 10.1007/s00466-024-02451-x
Aleksandr Yu Chirkov, Lidiia Nazarenko, Holm Altenbach

An alternative approach is proposed and applied to solve boundary value problems within the strain gradient elasticity theory. A mixed variation formulation of the finite element method (FEM) based on the concept of the Galerkin method is used. To construct finite-dimensional subspaces separate approximations of displacements, deformations, stresses, and their gradients are implemented by choosing the different sets of piecewise polynomial basis functions, interrelated by the stability condition of the mixed FEM approximation. This significantly simplifies the pre-requirement for approximating functions to belong to class C1 and allows one to use the simplest triangular finite elements with a linear approximation of displacements under uniform or near-uniform triangulation conditions. Global unknowns in a discrete problem are nodal displacements, while the strains and stresses and their gradients are treated as local unknowns. The conditions of existence, uniqueness, and continuous dependence of the solution on the problem’s initial data are formulated for discrete equations of mixed FEM. These are solved by a modified iteration procedure, where the global stiffness matrix for classical elasticity problems is treated as a preconditioning matrix with fictitious elastic moduli. This avoids the need to form a global stiffness matrix for the problem of strain gradient elasticity since it is enough to calculate only the residual vector in the current approximation. A set of modeling plane crack problems is solved. The obtained solutions agree with the results available in the relevant literature. Good convergence is achieved by refining the mesh for all scale parameters. All three problems under study exhibit specific qualitative features characterizing strain gradient solutions namely crack stiffness increase with length scale parameter and cusp-like closure effect.

在应变梯度弹性理论中,提出并应用了一种替代方法来解决边界值问题。该方法采用了基于 Galerkin 方法概念的有限元方法(FEM)的混合变化公式。为了构建有限维子空间,通过选择不同的分片多项式基函数集,实现了位移、变形、应力及其梯度的单独近似,并通过混合有限元近似的稳定性条件相互关联。这大大简化了逼近函数属于 C1 类的前提条件,并允许使用最简单的三角形有限元,在均匀或接近均匀的三角形条件下对位移进行线性逼近。离散问题中的全局未知量是节点位移,而应变和应力及其梯度被视为局部未知量。混合有限元离散方程的存在性、唯一性和解对问题初始数据的连续依赖性等条件是为混合有限元离散方程制定的。这些问题通过改进的迭代程序求解,其中经典弹性问题的全局刚度矩阵被视为具有虚构弹性模量的预处理矩阵。这就避免了为应变梯度弹性问题形成全局刚度矩阵的需要,因为只需计算当前近似中的残余向量即可。解决了一组建模平面裂缝问题。求解结果与相关文献中的结果一致。通过细化所有尺度参数的网格,实现了良好的收敛性。所研究的三个问题都表现出应变梯度解的特定质量特征,即裂纹刚度随长度尺度参数的增加而增加,以及类似尖顶的闭合效应。
{"title":"Plane crack problems within strain gradient elasticity and mixed finite element implementation","authors":"Aleksandr Yu Chirkov, Lidiia Nazarenko, Holm Altenbach","doi":"10.1007/s00466-024-02451-x","DOIUrl":"https://doi.org/10.1007/s00466-024-02451-x","url":null,"abstract":"<p>An alternative approach is proposed and applied to solve boundary value problems within the strain gradient elasticity theory. A mixed variation formulation of the finite element method (FEM) based on the concept of the Galerkin method is used. To construct finite-dimensional subspaces separate approximations of displacements, deformations, stresses, and their gradients are implemented by choosing the different sets of piecewise polynomial basis functions, interrelated by the stability condition of the mixed FEM approximation. This significantly simplifies the pre-requirement for approximating functions to belong to class C<sup>1</sup> and allows one to use the simplest triangular finite elements with a linear approximation of displacements under uniform or near-uniform triangulation conditions. Global unknowns in a discrete problem are nodal displacements, while the strains and stresses and their gradients are treated as local unknowns. The conditions of existence, uniqueness, and continuous dependence of the solution on the problem’s initial data are formulated for discrete equations of mixed FEM. These are solved by a modified iteration procedure, where the global stiffness matrix for classical elasticity problems is treated as a preconditioning matrix with fictitious elastic moduli. This avoids the need to form a global stiffness matrix for the problem of strain gradient elasticity since it is enough to calculate only the residual vector in the current approximation. A set of modeling plane crack problems is solved. The obtained solutions agree with the results available in the relevant literature. Good convergence is achieved by refining the mesh for all scale parameters. All three problems under study exhibit specific qualitative features characterizing strain gradient solutions namely crack stiffness increase with length scale parameter and cusp-like closure effect.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"44 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase field modelling and simulation of damage occurring in human vertebra after screws fixation procedure 螺钉固定术后人体脊椎损伤的相场建模与模拟
IF 4.1 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-07 DOI: 10.1007/s00466-024-02450-y
Deison Preve, Pietro Lenarda, Daniele Bianchi, Alessio Gizzi

The present endeavour numerically exploits the use of a phase-field model to simulate and investigate fracture patterns, deformation mechanisms, damage, and mechanical responses in a human vertebra after the incision of pedicle screws under compressive regimes. Moreover, the proposed phase field framework can elucidate scenarios where different damage patterns, such as crack nucleation sites and crack trajectories, play a role after the spine fusion procedure, considering several simulated physiological movements of the vertebral body. Spatially heterogeneous elastic properties and phase field parameters have been computationally derived from bone density estimation. A convergence analysis has been conducted for the vertebra-screws model, considering several mesh refinements, which has demonstrated good agreement with the existing literature on this topic. Consequently, by assuming different angles for the insertion of the pedicle screws and taking into account a few vertebral motion loading regimes, a plethora of numerical results characterizing the damage occurring within the vertebral model has been derived. Overall, the phase field results confirm and enrich the current literature, shed light on the medical community, which will be useful in enhancing clinical interventions and reducing post-surgery bone failure and screw loosening. The proposed computational approach also investigates the effects in terms of fracture and mechanical behaviour of the vertebral-screws body within different metastatic lesions opening towards major life threatening scenarios.

本研究利用相场模型对人类脊椎在压缩条件下切开椎弓根螺钉后的断裂模式、变形机制、损伤和机械响应进行了数值模拟和研究。此外,考虑到椎体的几种模拟生理运动,所提出的相场框架可以阐明脊柱融合手术后不同损伤模式(如裂纹成核点和裂纹轨迹)发挥作用的情况。空间异质弹性特性和相场参数是通过骨密度估算计算得出的。对椎体-螺钉模型进行了收敛性分析,考虑了几种网格细化方法,结果表明与现有的相关文献有很好的一致性。因此,通过假设椎弓根螺钉插入的不同角度,并考虑到几种椎体运动加载机制,得出了大量描述椎体模型内损伤特征的数值结果。总之,相场结果证实并丰富了现有文献,为医学界提供了启示,这将有助于加强临床干预,减少术后骨质破坏和螺钉松动。所提出的计算方法还研究了不同转移性病变中椎体-螺钉体的断裂和机械行为对重大生命威胁的影响。
{"title":"Phase field modelling and simulation of damage occurring in human vertebra after screws fixation procedure","authors":"Deison Preve, Pietro Lenarda, Daniele Bianchi, Alessio Gizzi","doi":"10.1007/s00466-024-02450-y","DOIUrl":"https://doi.org/10.1007/s00466-024-02450-y","url":null,"abstract":"<p>The present endeavour numerically exploits the use of a phase-field model to simulate and investigate fracture patterns, deformation mechanisms, damage, and mechanical responses in a human vertebra after the incision of pedicle screws under compressive regimes. Moreover, the proposed phase field framework can elucidate scenarios where different damage patterns, such as crack nucleation sites and crack trajectories, play a role after the spine fusion procedure, considering several simulated physiological movements of the vertebral body. Spatially heterogeneous elastic properties and phase field parameters have been computationally derived from bone density estimation. A convergence analysis has been conducted for the vertebra-screws model, considering several mesh refinements, which has demonstrated good agreement with the existing literature on this topic. Consequently, by assuming different angles for the insertion of the pedicle screws and taking into account a few vertebral motion loading regimes, a plethora of numerical results characterizing the damage occurring within the vertebral model has been derived. Overall, the phase field results confirm and enrich the current literature, shed light on the medical community, which will be useful in enhancing clinical interventions and reducing post-surgery bone failure and screw loosening. The proposed computational approach also investigates the effects in terms of fracture and mechanical behaviour of the vertebral-screws body within different metastatic lesions opening towards major life threatening scenarios.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"137 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hierarchic isogeometric hyperelastic solid-shell 分层等几何超弹性固壳
IF 4.1 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-03-05 DOI: 10.1007/s00466-024-02452-w
Leonardo Leonetti, Hugo M. Verhelst

The present study aims to develop an original solid-like shell element for large deformation analysis of hyperelastic shell structures in the context of isogeometric analysis (IGA). The presented model includes a new variable to describe the thickness change of the shell and allows for the application of unmodified three-dimensional constitutive laws defined in curvilinear coordinate systems and the analysis of variable thickness shells. In this way, the thickness locking affecting standard solid-shell-like models is cured by enhancing the thickness strain by exploiting a hierarchical approach, allowing linear transversal strains. Furthermore, a patch-wise reduced integration scheme is adopted for computational efficiency reasons and to annihilate shear and membrane locking. In addition, the Mixed-Integration Point (MIP) format is extended to hyperelastic materials to improve the convergence behaviour, hence the efficiency, in Newton iterations. Using benchmark problems, it is shown that the proposed model is reliable and resolves locking issues that were present in the previously published isogeometric solid-shell formulations.

本研究旨在开发一种独创的类实体壳元素,用于等几何分析(IGA)中超弹性壳结构的大变形分析。所提出的模型包括一个新变量,用于描述壳体厚度的变化,并允许应用在曲线坐标系中定义的未修改的三维构成法则,以及对厚度可变的壳体进行分析。这样,通过利用分层方法增强厚度应变,允许线性横向应变,从而解决了影响标准类实壳模型的厚度锁定问题。此外,为了提高计算效率,并消除剪切锁定和膜锁定,还采用了片状减小积分方案。此外,还将混合积分(MIP)格式扩展到超弹性材料,以改善牛顿迭代的收敛行为,从而提高效率。使用基准问题表明,所提出的模型是可靠的,并解决了以前发表的等几何固壳公式中存在的锁定问题。
{"title":"A hierarchic isogeometric hyperelastic solid-shell","authors":"Leonardo Leonetti, Hugo M. Verhelst","doi":"10.1007/s00466-024-02452-w","DOIUrl":"https://doi.org/10.1007/s00466-024-02452-w","url":null,"abstract":"<p>The present study aims to develop an original solid-like shell element for large deformation analysis of hyperelastic shell structures in the context of isogeometric analysis (IGA). The presented model includes a new variable to describe the thickness change of the shell and allows for the application of unmodified three-dimensional constitutive laws defined in curvilinear coordinate systems and the analysis of variable thickness shells. In this way, the thickness locking affecting standard solid-shell-like models is cured by enhancing the thickness strain by exploiting a hierarchical approach, allowing linear transversal strains. Furthermore, a patch-wise reduced integration scheme is adopted for computational efficiency reasons and to annihilate shear and membrane locking. In addition, the Mixed-Integration Point (MIP) format is extended to hyperelastic materials to improve the convergence behaviour, hence the efficiency, in Newton iterations. Using benchmark problems, it is shown that the proposed model is reliable and resolves locking issues that were present in the previously published isogeometric solid-shell formulations.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"82 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140033351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Mechanics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1