Pub Date : 2024-03-18DOI: 10.1007/s00466-024-02449-5
Maxime Levy, Francesco Vicentini, Zohar Yosibash
Failure initiation and subsequent crack trajectory in heterogeneous materials, such as functionally graded materials and bones, are yet insufficiently addressed. The AT1 phase field model (PFM) is investigated herein in a 1D setting, imposing challenges and opportunities when discretized by h- and p-finite element (FE) methods. We derive explicit PFM solutions to a heterogeneous bar in tension considering heterogeneous E(x) and (G_{Ic}(x)), necessary for verification of the FE approximations. (G_{Ic}(x)) corrections accounting for the element size at the damage zone in h-FEMs are suggested to account for the peak stress underestimation. p-FEMs do not require any such corrections. We also derive and validate penalty coefficient for heterogeneous domains to enforce damage positivity and irreversibility via penalization. Numerical examples are provided, demonstrating that p-FEMs exhibit faster convergence rates comparing to classical h-FEMs. The new insights are encouraging towards p-FEM discretization in a 3D setting to allow an accurate prediction of failure initiation in human bones.
对于异质材料(如功能分级材料和骨骼)的失效起始和随后的裂纹轨迹,研究还不够深入。本文在一维环境下对 AT1 相场模型(PFM)进行了研究,当采用 h 和 p 有限元(FE)方法进行离散时,既面临挑战,也面临机遇。考虑到异质 E(x) 和 (G_{Ic}(x)),我们推导出处于拉伸状态的异质棒材的显式 PFM 解,这对于验证 FE 近似值非常必要。为了解释峰值应力的低估,我们建议对 h-FEM 中损伤区域的元素尺寸进行 (G_{Ic}(x)) 修正,p-FEM 则不需要任何此类修正。我们还推导并验证了异质域的惩罚系数,以通过惩罚强制执行损伤的正向性和不可逆性。我们提供的数值示例表明,与经典的 h-FEM 相比,p-FEM 的收敛速度更快。这些新见解有助于在三维环境中对 p-FEM 进行离散化,从而准确预测人体骨骼的破坏起因。
{"title":"Crack nucleation in heterogeneous bars: h- and p-FEM of a phase field model","authors":"Maxime Levy, Francesco Vicentini, Zohar Yosibash","doi":"10.1007/s00466-024-02449-5","DOIUrl":"https://doi.org/10.1007/s00466-024-02449-5","url":null,"abstract":"<p>Failure initiation and subsequent crack trajectory in heterogeneous materials, such as functionally graded materials and bones, are yet insufficiently addressed. The AT1 phase field model (PFM) is investigated herein in a 1D setting, imposing challenges and opportunities when discretized by <i>h</i>- and <i>p</i>-finite element (FE) methods. We derive explicit PFM solutions to a heterogeneous bar in tension considering heterogeneous <i>E</i>(<i>x</i>) and <span>(G_{Ic}(x))</span>, necessary for verification of the FE approximations. <span>(G_{Ic}(x))</span> corrections accounting for the element size at the damage zone in <i>h</i>-FEMs are suggested to account for the peak stress underestimation. <i>p</i>-FEMs do not require any such corrections. We also derive and validate penalty coefficient for heterogeneous domains to enforce damage positivity and irreversibility via penalization. Numerical examples are provided, demonstrating that <i>p</i>-FEMs exhibit faster convergence rates comparing to classical <i>h</i>-FEMs. The new insights are encouraging towards <i>p</i>-FEM discretization in a 3D setting to allow an accurate prediction of failure initiation in human bones.\u0000</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"2013 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-18DOI: 10.1007/s00466-024-02453-9
Andrea Francesco Russillo, Varvara G. Kouznetsova, Giuseppe Failla, Marc G. D. Geers
A computational homogenization framework is presented to study the dynamics of locally resonant acoustic metamaterial structures. Modelling the resonant units at the microscale as representative volume elements and building on well-established scale transition relations, the framework brings as a main novelty a reduced-order macroscopic homogenized continuum whose governing equations involve no additional variables to describe the microscale dynamics unlike micromorphic homogenized continua obtained by alternative computational homogenization approaches. This model-order reduction is obtained by formulating the governing equations of the micro- and macroscale problems in the frequency domain, introducing a finite-element discretization of the two problems and performing an exact dynamic condensation of all the degrees of freedom at the microscale. An appropriate inverse Fourier transform approach is implemented on the frequency-domain equations to capture transient dynamics as well; notably, the implementation involves the Exponential Window Method, here applied for the first time to calculate the time-domain response of undamped locally resonant acoustic metamaterial structures. The framework may handle arbitrary geometries of micro- and macro-structures, any transient excitations and any boundary conditions on the macroscopic domain.
{"title":"A reduced-order computational homogenization framework for locally resonant metamaterial structures","authors":"Andrea Francesco Russillo, Varvara G. Kouznetsova, Giuseppe Failla, Marc G. D. Geers","doi":"10.1007/s00466-024-02453-9","DOIUrl":"https://doi.org/10.1007/s00466-024-02453-9","url":null,"abstract":"<p>A computational homogenization framework is presented to study the dynamics of locally resonant acoustic metamaterial structures. Modelling the resonant units at the microscale as representative volume elements and building on well-established scale transition relations, the framework brings as a main novelty a reduced-order macroscopic homogenized continuum whose governing equations involve no additional variables to describe the microscale dynamics unlike micromorphic homogenized continua obtained by alternative computational homogenization approaches. This model-order reduction is obtained by formulating the governing equations of the micro- and macroscale problems in the frequency domain, introducing a finite-element discretization of the two problems and performing an exact dynamic condensation of all the degrees of freedom at the microscale. An appropriate inverse Fourier transform approach is implemented on the frequency-domain equations to capture transient dynamics as well; notably, the implementation involves the Exponential Window Method, here applied for the first time to calculate the time-domain response of undamped locally resonant acoustic metamaterial structures. The framework may handle arbitrary geometries of micro- and macro-structures, any transient excitations and any boundary conditions on the macroscopic domain.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"119 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1007/s00466-024-02459-3
Shaoqiang Tang, Jingcheng Miao
In this paper, we develop a Virtual Clustering Analysis method for a phase field model of brittle fracture. In addition to the strain/stress field, we treat the phase field variable via clusters as well, based on Green’s function of the governing Helmholtz equation. Around the crack path, we assign one cluster per cell. We detect the crack tip and recluster accordingly as the crack propagates. Three examples are presented to demonstrate the numerical efficiency of the proposed method, including either straight or curved crack, under tension or shear.
{"title":"Virtual clustering analysis for phase field model of quasi-static brittle fracture","authors":"Shaoqiang Tang, Jingcheng Miao","doi":"10.1007/s00466-024-02459-3","DOIUrl":"https://doi.org/10.1007/s00466-024-02459-3","url":null,"abstract":"<p>In this paper, we develop a Virtual Clustering Analysis method for a phase field model of brittle fracture. In addition to the strain/stress field, we treat the phase field variable via clusters as well, based on Green’s function of the governing Helmholtz equation. Around the crack path, we assign one cluster per cell. We detect the crack tip and recluster accordingly as the crack propagates. Three examples are presented to demonstrate the numerical efficiency of the proposed method, including either straight or curved crack, under tension or shear.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"87 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-13DOI: 10.1007/s00466-024-02457-5
Songyang Hou, Xiwei Li, Zhiwei Lin, Dongdong Wang
The frequency solutions of finite elements may significantly deteriorate as the mesh aspect ratios become large, which implies a severe element side-length discrepancy. In this work, an aspect ratio dependent lumped mass (ARLM) formulation is proposed for serendipity elements, i.e., the two-dimensional eight-node and three dimensional twenty-node quadratic elements for linear problems. In particular, a generalized parametric lumped mass matrix template taking into account the mesh aspect ratios is introduced to examine the frequency accuracy of serendipity elements. This generalized lumped mass matrix template completely meets the mass conservation and non-negativity requirements. Subsequently, analytical frequency error estimates are developed for serendipity elements, which clearly illustrate the relationship between the frequency accuracy and element aspect ratios. Accordingly, optimal mass parameters are obtained as the functions of element aspect ratios through solving a constrained optimization problem for frequency accuracy. It turns out that the resulting aspect ratio dependent lumped mass matrices yield much more accurate frequency solutions, in comparison to the diagonal scaling lumped mass (HRZ) matrices and the mid-node lumped mass (MNLM) matrices without consideration of the element aspect ratios, especially for finite element discretizations with severe element side-length discrepancy. The superior accuracy and robustness of the proposed ARLM over HRZ and MNLM are consistently demonstrated by numerical examples.
{"title":"An aspect ratio dependent lumped mass formulation for serendipity finite elements with severe side-length discrepancy","authors":"Songyang Hou, Xiwei Li, Zhiwei Lin, Dongdong Wang","doi":"10.1007/s00466-024-02457-5","DOIUrl":"https://doi.org/10.1007/s00466-024-02457-5","url":null,"abstract":"<p>The frequency solutions of finite elements may significantly deteriorate as the mesh aspect ratios become large, which implies a severe element side-length discrepancy. In this work, an aspect ratio dependent lumped mass (ARLM) formulation is proposed for serendipity elements, i.e., the two-dimensional eight-node and three dimensional twenty-node quadratic elements for linear problems. In particular, a generalized parametric lumped mass matrix template taking into account the mesh aspect ratios is introduced to examine the frequency accuracy of serendipity elements. This generalized lumped mass matrix template completely meets the mass conservation and non-negativity requirements. Subsequently, analytical frequency error estimates are developed for serendipity elements, which clearly illustrate the relationship between the frequency accuracy and element aspect ratios. Accordingly, optimal mass parameters are obtained as the functions of element aspect ratios through solving a constrained optimization problem for frequency accuracy. It turns out that the resulting aspect ratio dependent lumped mass matrices yield much more accurate frequency solutions, in comparison to the diagonal scaling lumped mass (HRZ) matrices and the mid-node lumped mass (MNLM) matrices without consideration of the element aspect ratios, especially for finite element discretizations with severe element side-length discrepancy. The superior accuracy and robustness of the proposed ARLM over HRZ and MNLM are consistently demonstrated by numerical examples.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"99 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1007/s00466-024-02455-7
Guilherme Barros, Andre Pereira, Jerzy Rojek, John Carter, Klaus Thoeni
This paper presents an extension of the authors’ previously developed interface coupling technique for 2D problems to 3D problems. The method combines the strengths of the Discrete Element Method (DEM), known for its adeptness in capturing discontinuities and non-linearities at the microscale, and the Boundary Element Method (BEM), known for its efficiency in modelling wave propagation within infinite domains. The 3D formulation is based on spherical discrete elements and bilinear quadrilateral boundary elements. The innovative coupling methodology overcomes a critical limitation by enabling the representation of discontinuities within infinite domains, a pivotal development for large-scale dynamic problems. The paper systematically addresses challenges, with a focus on interface compatibility, showcasing the method’s accuracy through benchmark validation on a finite rod and infinite spherical cavity. Finally, a model of a column embedded into the ground illustrates the versatility of the approach in handling complex scenarios with multiple domains. This innovative coupling approach represents a significant leap in the integration of DEM and BEM for 3D problems and opens avenues for tackling complex and realistic problems in various scientific and engineering domains.
本文介绍了作者之前针对二维问题开发的界面耦合技术在三维问题上的扩展。该方法结合了离散元素法(DEM)和边界元素法(BEM)的优点,前者以善于捕捉微观尺度上的不连续性和非线性而著称,后者则以高效模拟无限域内的波传播而著称。三维建模基于球形离散元素和双线性四边形边界元素。创新的耦合方法克服了一个关键的局限性,即能够表示无限域内的不连续性,这对于大规模动态问题来说是一个关键的发展。论文系统地讨论了所面临的挑战,重点是界面兼容性,通过对有限杆和无限球形空腔的基准验证,展示了该方法的准确性。最后,通过一个嵌入地下的柱子模型,说明了该方法在处理多域复杂场景时的多功能性。这种创新的耦合方法代表了三维问题 DEM 和 BEM 集成的重大飞跃,为解决各种科学和工程领域的复杂和现实问题开辟了途径。
{"title":"Time domain coupling of the boundary and discrete element methods for 3D problems","authors":"Guilherme Barros, Andre Pereira, Jerzy Rojek, John Carter, Klaus Thoeni","doi":"10.1007/s00466-024-02455-7","DOIUrl":"https://doi.org/10.1007/s00466-024-02455-7","url":null,"abstract":"<p>This paper presents an extension of the authors’ previously developed interface coupling technique for 2D problems to 3D problems. The method combines the strengths of the Discrete Element Method (DEM), known for its adeptness in capturing discontinuities and non-linearities at the microscale, and the Boundary Element Method (BEM), known for its efficiency in modelling wave propagation within infinite domains. The 3D formulation is based on spherical discrete elements and bilinear quadrilateral boundary elements. The innovative coupling methodology overcomes a critical limitation by enabling the representation of discontinuities within infinite domains, a pivotal development for large-scale dynamic problems. The paper systematically addresses challenges, with a focus on interface compatibility, showcasing the method’s accuracy through benchmark validation on a finite rod and infinite spherical cavity. Finally, a model of a column embedded into the ground illustrates the versatility of the approach in handling complex scenarios with multiple domains. This innovative coupling approach represents a significant leap in the integration of DEM and BEM for 3D problems and opens avenues for tackling complex and realistic problems in various scientific and engineering domains.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"51 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1007/s00466-024-02456-6
Abstract
This paper presents an approach to evaluate the failure of arbitrarily inclined interfaces using FE models with structured spatial discretization, providing accurate prediction of crack propagation along paths known a priori that are not constrained to the element boundaries. The combination of algorithms for the generation of structured discretization of representative polycrystalline microstructures with novel cohesive element formulations allow modelling the failure of complex topologies along rasterised boundaries, with noticeably higher computational efficiency and comparable accuracy. Two formulations of raster cohesive elements are presented, adopting either elastic-brittle or Tvergaard–Hutchinson traction separation laws. The formulations proposed are first validated comparing the failure of the interface within bi-crystal structures discretised using hexahedral elements either within a structured mesh (i.e. with rasterised boundaries) or an unstructured mesh (i.e. with planar boundary). Subsequently, the effectiveness of the formulations is demonstrated comparing the inter-granular crack propagation within complex polycrystalline microstructures. The behaviour of the novel cohesive element formulation in structured meshes consisting of regular hexahedral elements is in excellent agreement with the deformation and failure of classic cohesive element formulations placed along the planar boundaries of unstructured meshes consisting of tetrahedral elements. The higher computational cost of the raster cohesive elements is more than compensated by the increase in computational efficiency of structured meshes when compared to unstructured meshes, leading to a reduction of the simulation time of up to over 200 times for the simulations presented in the paper, thus allowing the simulation of large domains.
{"title":"Raster approach to modelling the failure of arbitrarily inclined interfaces with structured meshes","authors":"","doi":"10.1007/s00466-024-02456-6","DOIUrl":"https://doi.org/10.1007/s00466-024-02456-6","url":null,"abstract":"<h3>Abstract</h3> <p>This paper presents an approach to evaluate the failure of arbitrarily inclined interfaces using FE models with structured spatial discretization, providing accurate prediction of crack propagation along paths known a priori that are not constrained to the element boundaries. The combination of algorithms for the generation of structured discretization of representative polycrystalline microstructures with novel cohesive element formulations allow modelling the failure of complex topologies along rasterised boundaries, with noticeably higher computational efficiency and comparable accuracy. Two formulations of raster cohesive elements are presented, adopting either elastic-brittle or Tvergaard–Hutchinson traction separation laws. The formulations proposed are first validated comparing the failure of the interface within bi-crystal structures discretised using hexahedral elements either within a structured mesh (i.e. with rasterised boundaries) or an unstructured mesh (i.e. with planar boundary). Subsequently, the effectiveness of the formulations is demonstrated comparing the inter-granular crack propagation within complex polycrystalline microstructures. The behaviour of the novel cohesive element formulation in structured meshes consisting of regular hexahedral elements is in excellent agreement with the deformation and failure of classic cohesive element formulations placed along the planar boundaries of unstructured meshes consisting of tetrahedral elements. The higher computational cost of the raster cohesive elements is more than compensated by the increase in computational efficiency of structured meshes when compared to unstructured meshes, leading to a reduction of the simulation time of up to over 200 times for the simulations presented in the paper, thus allowing the simulation of large domains.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"34 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-11DOI: 10.1007/s00466-024-02461-9
Vikas Sharma, Kazunori Fujisawa, Yuki Kuroda
Time discontinuous Galerkin space-time finite element method (ST/FEM) can be used for developing arbitrary high-order accurate and unconditionally stable time integration schemes for elastodynamics problems. The existing ST/FEMs can be classified as the single-field and two-field ST/FEM: in the former method, either displacement or velocity, is independent and discontinuous in time. In contrast, in the latter method, both displacement and velocity fields are independent and discontinuous in time. Both methods have third-order accuracy for linear interpolation in time, higher than typical time integration schemes used in semi-discretized. However, these methods currently lack a unified computational framework, so each method requires a separate implementation. Therefore, the main goal of the present study is to develop a generalized computational framework that can facilitate the derivation and implementation of the existing linear-in-time ST/FEMs in a unified manner. This framework is developed by realizing that existing methods differ through the treatments of displacement-velocity relationships, which can be unified through displacement functions. In addition, by employing this framework, a new ST/FEM, which is designated as LC v-ST/FEM, is derived from the linear combination of displacement functions of single-field and two-field ST/FEMs. LC v-ST/FEM contains a user-defined parameter (alpha in [0,1]), which can be used for controlling the high-frequency dissipation characteristics. From finite difference analysis and numerical solutions of benchmark problems, it is demonstrated that the proposed method is the third order accurate in time, unconditionally stable, and contains negligible numerical dispersion error for all (0 le alpha le 1). Moreover, for (alpha ne 0), the method can attenuate the spurious high-frequency components from the velocity and displacement fields.
时间不连续 Galerkin 时空有限元法(ST/FEM)可用于开发弹性动力学问题的任意高阶精确且无条件稳定的时间积分方案。现有的 ST/FEM 可分为单场 ST/FEM 和双场 ST/FEM:在前一种方法中,位移或速度在时间上是独立和不连续的。而在后一种方法中,位移场和速度场都是独立的,在时间上也是不连续的。这两种方法在时间线性插值方面都具有三阶精度,高于半离散化的典型时间积分方案。然而,这些方法目前缺乏统一的计算框架,因此每种方法都需要单独实现。因此,本研究的主要目标是开发一个通用的计算框架,以便于统一推导和实现现有的时内线性 ST/FEM 方法。这一框架的建立是由于认识到现有方法在处理位移-速度关系时存在差异,而这些差异可以通过位移函数得到统一。此外,通过采用这一框架,从单场 ST/FEM 和双场 ST/FEM 的位移函数线性组合中推导出一种新的 ST/FEM,命名为 LC v-ST/FEM。LC v-ST/FEM 包含一个用户自定义参数 (alpha in [0,1]),可用于控制高频耗散特性。通过对基准问题的有限差分分析和数值求解,证明了所提出的方法在时间上是三阶精确的、无条件稳定的,并且在所有 (0 le alpha le 1 )情况下都包含可忽略的数值分散误差。此外,对于(0),该方法可以减弱速度场和位移场中虚假的高频成分。
{"title":"Velocity-based space-time FEMs for solid dynamics problem: generalized framework for linear basis functions in time","authors":"Vikas Sharma, Kazunori Fujisawa, Yuki Kuroda","doi":"10.1007/s00466-024-02461-9","DOIUrl":"https://doi.org/10.1007/s00466-024-02461-9","url":null,"abstract":"<p>Time discontinuous Galerkin space-time finite element method (ST/FEM) can be used for developing arbitrary high-order accurate and unconditionally stable time integration schemes for elastodynamics problems. The existing ST/FEMs can be classified as the single-field and two-field ST/FEM: in the former method, either displacement or velocity, is independent and discontinuous in time. In contrast, in the latter method, both displacement and velocity fields are independent and discontinuous in time. Both methods have third-order accuracy for linear interpolation in time, higher than typical time integration schemes used in semi-discretized. However, these methods currently lack a unified computational framework, so each method requires a separate implementation. Therefore, the main goal of the present study is to develop a generalized computational framework that can facilitate the derivation and implementation of the existing linear-in-time ST/FEMs in a unified manner. This framework is developed by realizing that existing methods differ through the treatments of displacement-velocity relationships, which can be unified through displacement functions. In addition, by employing this framework, a new ST/FEM, which is designated as LC v-ST/FEM, is derived from the linear combination of displacement functions of single-field and two-field ST/FEMs. LC v-ST/FEM contains a user-defined parameter <span>(alpha in [0,1])</span>, which can be used for controlling the high-frequency dissipation characteristics. From finite difference analysis and numerical solutions of benchmark problems, it is demonstrated that the proposed method is the third order accurate in time, unconditionally stable, and contains negligible numerical dispersion error for all <span>(0 le alpha le 1)</span>. Moreover, for <span>(alpha ne 0)</span>, the method can attenuate the spurious high-frequency components from the velocity and displacement fields.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"30 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-08DOI: 10.1007/s00466-024-02451-x
Aleksandr Yu Chirkov, Lidiia Nazarenko, Holm Altenbach
An alternative approach is proposed and applied to solve boundary value problems within the strain gradient elasticity theory. A mixed variation formulation of the finite element method (FEM) based on the concept of the Galerkin method is used. To construct finite-dimensional subspaces separate approximations of displacements, deformations, stresses, and their gradients are implemented by choosing the different sets of piecewise polynomial basis functions, interrelated by the stability condition of the mixed FEM approximation. This significantly simplifies the pre-requirement for approximating functions to belong to class C1 and allows one to use the simplest triangular finite elements with a linear approximation of displacements under uniform or near-uniform triangulation conditions. Global unknowns in a discrete problem are nodal displacements, while the strains and stresses and their gradients are treated as local unknowns. The conditions of existence, uniqueness, and continuous dependence of the solution on the problem’s initial data are formulated for discrete equations of mixed FEM. These are solved by a modified iteration procedure, where the global stiffness matrix for classical elasticity problems is treated as a preconditioning matrix with fictitious elastic moduli. This avoids the need to form a global stiffness matrix for the problem of strain gradient elasticity since it is enough to calculate only the residual vector in the current approximation. A set of modeling plane crack problems is solved. The obtained solutions agree with the results available in the relevant literature. Good convergence is achieved by refining the mesh for all scale parameters. All three problems under study exhibit specific qualitative features characterizing strain gradient solutions namely crack stiffness increase with length scale parameter and cusp-like closure effect.
{"title":"Plane crack problems within strain gradient elasticity and mixed finite element implementation","authors":"Aleksandr Yu Chirkov, Lidiia Nazarenko, Holm Altenbach","doi":"10.1007/s00466-024-02451-x","DOIUrl":"https://doi.org/10.1007/s00466-024-02451-x","url":null,"abstract":"<p>An alternative approach is proposed and applied to solve boundary value problems within the strain gradient elasticity theory. A mixed variation formulation of the finite element method (FEM) based on the concept of the Galerkin method is used. To construct finite-dimensional subspaces separate approximations of displacements, deformations, stresses, and their gradients are implemented by choosing the different sets of piecewise polynomial basis functions, interrelated by the stability condition of the mixed FEM approximation. This significantly simplifies the pre-requirement for approximating functions to belong to class C<sup>1</sup> and allows one to use the simplest triangular finite elements with a linear approximation of displacements under uniform or near-uniform triangulation conditions. Global unknowns in a discrete problem are nodal displacements, while the strains and stresses and their gradients are treated as local unknowns. The conditions of existence, uniqueness, and continuous dependence of the solution on the problem’s initial data are formulated for discrete equations of mixed FEM. These are solved by a modified iteration procedure, where the global stiffness matrix for classical elasticity problems is treated as a preconditioning matrix with fictitious elastic moduli. This avoids the need to form a global stiffness matrix for the problem of strain gradient elasticity since it is enough to calculate only the residual vector in the current approximation. A set of modeling plane crack problems is solved. The obtained solutions agree with the results available in the relevant literature. Good convergence is achieved by refining the mesh for all scale parameters. All three problems under study exhibit specific qualitative features characterizing strain gradient solutions namely crack stiffness increase with length scale parameter and cusp-like closure effect.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"44 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07DOI: 10.1007/s00466-024-02450-y
Deison Preve, Pietro Lenarda, Daniele Bianchi, Alessio Gizzi
The present endeavour numerically exploits the use of a phase-field model to simulate and investigate fracture patterns, deformation mechanisms, damage, and mechanical responses in a human vertebra after the incision of pedicle screws under compressive regimes. Moreover, the proposed phase field framework can elucidate scenarios where different damage patterns, such as crack nucleation sites and crack trajectories, play a role after the spine fusion procedure, considering several simulated physiological movements of the vertebral body. Spatially heterogeneous elastic properties and phase field parameters have been computationally derived from bone density estimation. A convergence analysis has been conducted for the vertebra-screws model, considering several mesh refinements, which has demonstrated good agreement with the existing literature on this topic. Consequently, by assuming different angles for the insertion of the pedicle screws and taking into account a few vertebral motion loading regimes, a plethora of numerical results characterizing the damage occurring within the vertebral model has been derived. Overall, the phase field results confirm and enrich the current literature, shed light on the medical community, which will be useful in enhancing clinical interventions and reducing post-surgery bone failure and screw loosening. The proposed computational approach also investigates the effects in terms of fracture and mechanical behaviour of the vertebral-screws body within different metastatic lesions opening towards major life threatening scenarios.
{"title":"Phase field modelling and simulation of damage occurring in human vertebra after screws fixation procedure","authors":"Deison Preve, Pietro Lenarda, Daniele Bianchi, Alessio Gizzi","doi":"10.1007/s00466-024-02450-y","DOIUrl":"https://doi.org/10.1007/s00466-024-02450-y","url":null,"abstract":"<p>The present endeavour numerically exploits the use of a phase-field model to simulate and investigate fracture patterns, deformation mechanisms, damage, and mechanical responses in a human vertebra after the incision of pedicle screws under compressive regimes. Moreover, the proposed phase field framework can elucidate scenarios where different damage patterns, such as crack nucleation sites and crack trajectories, play a role after the spine fusion procedure, considering several simulated physiological movements of the vertebral body. Spatially heterogeneous elastic properties and phase field parameters have been computationally derived from bone density estimation. A convergence analysis has been conducted for the vertebra-screws model, considering several mesh refinements, which has demonstrated good agreement with the existing literature on this topic. Consequently, by assuming different angles for the insertion of the pedicle screws and taking into account a few vertebral motion loading regimes, a plethora of numerical results characterizing the damage occurring within the vertebral model has been derived. Overall, the phase field results confirm and enrich the current literature, shed light on the medical community, which will be useful in enhancing clinical interventions and reducing post-surgery bone failure and screw loosening. The proposed computational approach also investigates the effects in terms of fracture and mechanical behaviour of the vertebral-screws body within different metastatic lesions opening towards major life threatening scenarios.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"137 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140053763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-05DOI: 10.1007/s00466-024-02452-w
Leonardo Leonetti, Hugo M. Verhelst
The present study aims to develop an original solid-like shell element for large deformation analysis of hyperelastic shell structures in the context of isogeometric analysis (IGA). The presented model includes a new variable to describe the thickness change of the shell and allows for the application of unmodified three-dimensional constitutive laws defined in curvilinear coordinate systems and the analysis of variable thickness shells. In this way, the thickness locking affecting standard solid-shell-like models is cured by enhancing the thickness strain by exploiting a hierarchical approach, allowing linear transversal strains. Furthermore, a patch-wise reduced integration scheme is adopted for computational efficiency reasons and to annihilate shear and membrane locking. In addition, the Mixed-Integration Point (MIP) format is extended to hyperelastic materials to improve the convergence behaviour, hence the efficiency, in Newton iterations. Using benchmark problems, it is shown that the proposed model is reliable and resolves locking issues that were present in the previously published isogeometric solid-shell formulations.
{"title":"A hierarchic isogeometric hyperelastic solid-shell","authors":"Leonardo Leonetti, Hugo M. Verhelst","doi":"10.1007/s00466-024-02452-w","DOIUrl":"https://doi.org/10.1007/s00466-024-02452-w","url":null,"abstract":"<p>The present study aims to develop an original solid-like shell element for large deformation analysis of hyperelastic shell structures in the context of isogeometric analysis (IGA). The presented model includes a new variable to describe the thickness change of the shell and allows for the application of unmodified three-dimensional constitutive laws defined in curvilinear coordinate systems and the analysis of variable thickness shells. In this way, the thickness locking affecting standard solid-shell-like models is cured by enhancing the thickness strain by exploiting a hierarchical approach, allowing linear transversal strains. Furthermore, a patch-wise reduced integration scheme is adopted for computational efficiency reasons and to annihilate shear and membrane locking. In addition, the Mixed-Integration Point (MIP) format is extended to hyperelastic materials to improve the convergence behaviour, hence the efficiency, in Newton iterations. Using benchmark problems, it is shown that the proposed model is reliable and resolves locking issues that were present in the previously published isogeometric solid-shell formulations.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"82 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140033351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}