Pub Date : 2024-02-20DOI: 10.1007/s00466-024-02444-w
Nima Azizi, Wolfgang Dornisch
A curved non-isoparametric Reissner–Mindlin shell element is developed for analyzing thin-walled structures. The standard kinematic description of the element requires the calculation of the director vector. To address this demand accurately, similar to isogeometric analysis (IGA), the geometry is defined by utilization of the non-uniform rational B-splines (NURBS) imported directly from computer-aided design (CAD) files. Then, shape functions of the Legendre spectral element method (SEM) are used to interpolate the displacements. Consequently, the shell director vector and Jacobian of the transformation are calculated properly according to the presented formulation. On the other hand, in Legendre SEM combined with Gauss–Lobatto–Legendre quadrature, the integration points and the element nodes coincide. Thus, the easily computable local coordinate systems at the integration points can be used directly as nodal basis systems. A separate calculation of nodal basis systems at control points, which is the source of either complexity or error in IGA shells, is not required. Given the condition number of the stiffness matrix in the developed method, super high-order elements can also be used. Very high order p-refined elements are used in addition to h-refinement of the mesh to show the capability of higher order elements to analyze problems without mesh refinement. The validity and convergence rate of the method are investigated and verified through various cases of h- and p-refinement in challenging obstacle course problems.
开发了一种用于分析薄壁结构的曲线非等参数 Reissner-Mindlin 壳元素。该元素的标准运动学描述要求计算导向矢量。为了准确地满足这一要求,与等几何分析(IGA)类似,利用直接从计算机辅助设计(CAD)文件导入的非均匀有理 B-样条曲线(NURBS)来定义几何形状。然后,利用 Legendre 频谱元素法 (SEM) 的形状函数对位移进行插值。因此,根据所提出的公式,可以正确计算壳体导向矢量和变换的雅各布。另一方面,在 Legendre SEM 与高斯-洛巴托-Legendre 正交相结合的方法中,积分点和元素节点是重合的。因此,积分点上易于计算的局部坐标系可直接用作节点基础系统。无需单独计算控制点上的节点基础系统,而这正是 IGA 壳体复杂性或误差的来源。考虑到所开发方法中刚度矩阵的条件数,超高阶元素也可以使用。除了对网格进行 h 细化外,还使用了极高阶 p 细化元素,以显示高阶元素在不细化网格的情况下分析问题的能力。通过在具有挑战性的障碍赛跑问题中使用 h 细化和 p 细化的各种情况,研究和验证了该方法的有效性和收敛率。
{"title":"A spectral finite element Reissner–Mindlin shell formulation with NURBS-based geometry definition","authors":"Nima Azizi, Wolfgang Dornisch","doi":"10.1007/s00466-024-02444-w","DOIUrl":"https://doi.org/10.1007/s00466-024-02444-w","url":null,"abstract":"<p>A curved non-isoparametric Reissner–Mindlin shell element is developed for analyzing thin-walled structures. The standard kinematic description of the element requires the calculation of the director vector. To address this demand accurately, similar to isogeometric analysis (IGA), the geometry is defined by utilization of the non-uniform rational B-splines (NURBS) imported directly from computer-aided design (CAD) files. Then, shape functions of the Legendre spectral element method (SEM) are used to interpolate the displacements. Consequently, the shell director vector and Jacobian of the transformation are calculated properly according to the presented formulation. On the other hand, in Legendre SEM combined with Gauss–Lobatto–Legendre quadrature, the integration points and the element nodes coincide. Thus, the easily computable local coordinate systems at the integration points can be used directly as nodal basis systems. A separate calculation of nodal basis systems at control points, which is the source of either complexity or error in IGA shells, is not required. Given the condition number of the stiffness matrix in the developed method, super high-order elements can also be used. Very high order <i>p</i>-refined elements are used in addition to <i>h</i>-refinement of the mesh to show the capability of higher order elements to analyze problems without mesh refinement. The validity and convergence rate of the method are investigated and verified through various cases of <i>h</i>- and <i>p</i>-refinement in challenging obstacle course problems.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"38 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20DOI: 10.1007/s00466-024-02446-8
Abstract
This paper introduces a metamodelling technique that employs gradient-enhanced Gaussian process regression (GPR) to emulate diverse internal energy densities based on the deformation gradient tensor (varvec{F}) and electric displacement field (varvec{D}_0). The approach integrates principal invariants as inputs for the surrogate internal energy density, enforcing physical constraints like material frame indifference and symmetry. This technique enables accurate interpolation of energy and its derivatives, including the first Piola-Kirchhoff stress tensor and material electric field. The method ensures stress and electric field-free conditions at the origin, which is challenging with regression-based methods like neural networks. The paper highlights that using invariants of the dual potential of internal energy density, i.e., the free energy density dependent on the material electric field (varvec{E}_0), is inappropriate. The saddle point nature of the latter contrasts with the convexity of the internal energy density, creating challenges for GPR or Gradient Enhanced GPR models using invariants of (varvec{F}) and (varvec{E}_0) (free energy-based GPR), compared to those involving (varvec{F}) and (varvec{D}_0) (internal energy-based GPR). Numerical examples within a 3D Finite Element framework assess surrogate model accuracy across challenging scenarios, comparing displacement and stress fields with ground-truth analytical models. Cases include extreme twisting and electrically induced wrinkles, demonstrating practical applicability and robustness of the proposed approach.
{"title":"Learning nonlinear constitutive models in finite strain electromechanics with Gaussian process predictors","authors":"","doi":"10.1007/s00466-024-02446-8","DOIUrl":"https://doi.org/10.1007/s00466-024-02446-8","url":null,"abstract":"<h3>Abstract</h3> <p>This paper introduces a metamodelling technique that employs gradient-enhanced Gaussian process regression (GPR) to emulate diverse internal energy densities based on the deformation gradient tensor <span> <span>(varvec{F})</span> </span> and electric displacement field <span> <span>(varvec{D}_0)</span> </span>. The approach integrates principal invariants as inputs for the surrogate internal energy density, enforcing physical constraints like material frame indifference and symmetry. This technique enables accurate interpolation of energy and its derivatives, including the first Piola-Kirchhoff stress tensor and material electric field. The method ensures stress and electric field-free conditions at the origin, which is challenging with regression-based methods like neural networks. The paper highlights that using invariants of the dual potential of internal energy density, i.e., the free energy density dependent on the material electric field <span> <span>(varvec{E}_0)</span> </span>, is inappropriate. The saddle point nature of the latter contrasts with the convexity of the internal energy density, creating challenges for GPR or Gradient Enhanced GPR models using invariants of <span> <span>(varvec{F})</span> </span> and <span> <span>(varvec{E}_0)</span> </span> (free energy-based GPR), compared to those involving <span> <span>(varvec{F})</span> </span> and <span> <span>(varvec{D}_0)</span> </span> (internal energy-based GPR). Numerical examples within a 3D Finite Element framework assess surrogate model accuracy across challenging scenarios, comparing displacement and stress fields with ground-truth analytical models. Cases include extreme twisting and electrically induced wrinkles, demonstrating practical applicability and robustness of the proposed approach.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"126 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1007/s00466-024-02443-x
Florian Brunner, Tristan Seidlhofer, Manfred H. Ulz
The aim of this work is the derivation and examination of a material model, accounting for large elastic deformations, coupled with species diffusion and thermal effects. This chemo-thermo-mechanical material model shows three key aspects regarding its numerical formulation. Firstly, a multiplicative split of the deformation gradient into a mechanical, a swelling and a thermal part. Secondly, temperature-scaled gradients for a numerical design comprising symmetric tangents and, thirdly, dissipation potentials for the modelling of dissipative effects. Additionally, the derived general material model is specialised to thermoresponsive hydrogels to study its predictive capabilities for a relevant example material class. An appropriate finite element formulation is established and its implementation discussed. Numerical examples are investigated, including phase transition and stability phenomena, to verify the ability of the derived chemo-thermo-mechanical material model to predict relevant physical effects properly. We compare our results to established models in the literature and discuss emerging deviations.
{"title":"A numerical model for chemo-thermo-mechanical coupling at large strains with an application to thermoresponsive hydrogels","authors":"Florian Brunner, Tristan Seidlhofer, Manfred H. Ulz","doi":"10.1007/s00466-024-02443-x","DOIUrl":"https://doi.org/10.1007/s00466-024-02443-x","url":null,"abstract":"<p>The aim of this work is the derivation and examination of a material model, accounting for large elastic deformations, coupled with species diffusion and thermal effects. This chemo-thermo-mechanical material model shows three key aspects regarding its numerical formulation. Firstly, a multiplicative split of the deformation gradient into a mechanical, a swelling and a thermal part. Secondly, temperature-scaled gradients for a numerical design comprising symmetric tangents and, thirdly, dissipation potentials for the modelling of dissipative effects. Additionally, the derived general material model is specialised to thermoresponsive hydrogels to study its predictive capabilities for a relevant example material class. An appropriate finite element formulation is established and its implementation discussed. Numerical examples are investigated, including phase transition and stability phenomena, to verify the ability of the derived chemo-thermo-mechanical material model to predict relevant physical effects properly. We compare our results to established models in the literature and discuss emerging deviations.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"347 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.1007/s00466-024-02441-z
Wei Zhang, Yihui Liu, Jinhui Li, Weihai Yuan
The Smoothed Particle Finite Element Method (SPFEM) has gained popularity as an effective numerical method for modelling geotechnical problems involving large deformations. To promote the research and application of SPFEM in geotechnical engineering, we present ESPFEM2D, an open-source two-dimensional SPFEM solver developed using MATLAB. ESPFEM2D discretizes the problem domain into computable particle clouds and generates the finite element mesh using Delaunay triangulation and the ( alpha )-shape technique to resolve mesh distortion issues. Additionally, it incorporates a nodal integration technique based on strain smoothing, effectively eliminating defects associated with the state variable mapping after remeshing. Furthermore, the solver adopts a simple yet robust approach to prevent the rank-deficiency problem due to under-integration by using only nodes as integration points. The Drucker-Prager model is adopted to describe the soil’s constitutive behavior as a demonstration. Implemented in MATLAB, this open-source solver ensures easy accessibility and readability for researchers interested in utilizing SPFEM. ESPFEM2D can be easily extended and effectively coupled with other existing codes, enabling its application to simulate a wide range of large geomechanical deformation problems. Through rigorous validation using four numerical examples, namely the oscillation of an elastic cantilever beam, non-cohesive soil collapse, cohesive soil collapse, and slope stability analysis, the accuracy, effectiveness and stability of this open-source solver have been thoroughly confirmed.
{"title":"ESPFEM2D: A MATLAB 2D explicit smoothed particle finite element method code for geotechnical large deformation analysis","authors":"Wei Zhang, Yihui Liu, Jinhui Li, Weihai Yuan","doi":"10.1007/s00466-024-02441-z","DOIUrl":"https://doi.org/10.1007/s00466-024-02441-z","url":null,"abstract":"<p>The Smoothed Particle Finite Element Method (SPFEM) has gained popularity as an effective numerical method for modelling geotechnical problems involving large deformations. To promote the research and application of SPFEM in geotechnical engineering, we present ESPFEM2D, an open-source two-dimensional SPFEM solver developed using MATLAB. ESPFEM2D discretizes the problem domain into computable particle clouds and generates the finite element mesh using Delaunay triangulation and the <span>( alpha )</span>-shape technique to resolve mesh distortion issues. Additionally, it incorporates a nodal integration technique based on strain smoothing, effectively eliminating defects associated with the state variable mapping after remeshing. Furthermore, the solver adopts a simple yet robust approach to prevent the rank-deficiency problem due to under-integration by using only nodes as integration points. The Drucker-Prager model is adopted to describe the soil’s constitutive behavior as a demonstration. Implemented in MATLAB, this open-source solver ensures easy accessibility and readability for researchers interested in utilizing SPFEM. ESPFEM2D can be easily extended and effectively coupled with other existing codes, enabling its application to simulate a wide range of large geomechanical deformation problems. Through rigorous validation using four numerical examples, namely the oscillation of an elastic cantilever beam, non-cohesive soil collapse, cohesive soil collapse, and slope stability analysis, the accuracy, effectiveness and stability of this open-source solver have been thoroughly confirmed.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"11 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-12DOI: 10.1007/s00466-023-02419-3
Yang Liu, Kenji Takizawa, Tayfun E. Tezduyar
The Carrier-Domain Method was introduced for high-resolution computation of time-periodic long-wake flows. The cost-effectiveness of the method makes such computations practical in 3D. A short segment of the wake domain, the carrier domain, moves in the free-stream direction, from the beginning of the long wake domain to the end. The data at the moving inflow plane comes from the time-periodic data computed at an earlier position of the carrier domain. With the high mesh resolution that can easily be afforded over the short domain segment, the wake flow patterns can be carried, with superior accuracy, far downstream. Computing the long-wake flow with a high-resolution moving mesh that covers a short segment of the wake domain at any instant during the computation would certainly be far more cost-effective than computing it with a high-resolution fixed mesh that covers the entire length. We present high-resolution 3D computation of time-periodic long-wake flow for a cylinder and a wind turbine, both computed with isogeometric discretization and the Space–Time Variational Multiscale method. In the isogeometric discretization, the basis functions are quadratic NURBS in space and linear in time. The cylinder flow is at Reynolds number 100. At this Reynolds number, the flow has an easily discernible vortex shedding period. The wake flow is computed up to 350 diameters downstream of the cylinder, far enough to see the secondary vortex street. In the wind turbine long-wake flow computation, the velocity data at the inflow boundary of the wake domain comes from an earlier wind turbine computation, with the turbine rotor having a diameter of ({126},hbox {m}), extracted by projection from a plane located ({10},hbox {m}) downstream of the turbine. The wake flow is computed up to ({482},hbox {m}) downstream of the wind turbine. In both the cylinder and wind turbine wake flow computations, the flow patterns obtained with the full domain and carrier domain show a near-perfect match, clearly demonstrating the effectiveness and practicality of the Carrier-Domain Method in high-resolution 3D computation of time-periodic long-wake flows.
{"title":"High-resolution 3D computation of time-periodic long-wake flows with the Carrier-Domain Method and Space–Time Variational Multiscale method with isogeometric discretization","authors":"Yang Liu, Kenji Takizawa, Tayfun E. Tezduyar","doi":"10.1007/s00466-023-02419-3","DOIUrl":"https://doi.org/10.1007/s00466-023-02419-3","url":null,"abstract":"<p>The Carrier-Domain Method was introduced for high-resolution computation of time-periodic long-wake flows. The cost-effectiveness of the method makes such computations practical in 3D. A short segment of the wake domain, the carrier domain, moves in the free-stream direction, from the beginning of the long wake domain to the end. The data at the moving inflow plane comes from the time-periodic data computed at an earlier position of the carrier domain. With the high mesh resolution that can easily be afforded over the short domain segment, the wake flow patterns can be carried, with superior accuracy, far downstream. Computing the long-wake flow with a high-resolution moving mesh that covers a short segment of the wake domain at any instant during the computation would certainly be far more cost-effective than computing it with a high-resolution fixed mesh that covers the entire length. We present high-resolution 3D computation of time-periodic long-wake flow for a cylinder and a wind turbine, both computed with isogeometric discretization and the Space–Time Variational Multiscale method. In the isogeometric discretization, the basis functions are quadratic NURBS in space and linear in time. The cylinder flow is at Reynolds number 100. At this Reynolds number, the flow has an easily discernible vortex shedding period. The wake flow is computed up to 350 diameters downstream of the cylinder, far enough to see the secondary vortex street. In the wind turbine long-wake flow computation, the velocity data at the inflow boundary of the wake domain comes from an earlier wind turbine computation, with the turbine rotor having a diameter of <span>({126},hbox {m})</span>, extracted by projection from a plane located <span>({10},hbox {m})</span> downstream of the turbine. The wake flow is computed up to <span>({482},hbox {m})</span> downstream of the wind turbine. In both the cylinder and wind turbine wake flow computations, the flow patterns obtained with the full domain and carrier domain show a near-perfect match, clearly demonstrating the effectiveness and practicality of the Carrier-Domain Method in high-resolution 3D computation of time-periodic long-wake flows.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"60 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-12DOI: 10.1007/s00466-023-02440-6
Ronak Shoghi, Lukas Morand, Dirk Helm, Alexander Hartmaier
In the field of materials engineering, the accurate prediction of material behavior under various loading conditions is crucial. Machine Learning (ML) methods have emerged as promising tools for generating constitutive models straight from data, capable of describing complex material behavior in a more flexible way than classical constitutive models. Yield functions, which serve as foundation of constitutive models for plasticity, can be properly described in a data-oriented manner using ML methods. However, the quality of these descriptions heavily relies on the availability of sufficient high-quality and representative training data that needs to be generated by fundamental numerical simulations, experiments, or a combination of both. The present paper addresses the issue of data selection, by introducing an active learning approach for Support Vector Classification (SVC) and its application in training an ML yield function with suitable data. In this regard, the Query-By-Committee (QBC) algorithm was employed, guiding the selection of new training data points in regions of the feature space where a committee of models shows significant disagreement. This approach resulted in a marked reduction in the variance of model predictions throughout the active learning process. It was also shown that the rate of decrease in the variance went along with an increase in the quality of the trained model, quantified by the Matthews Correlation Coefficient (MCC). This demonstrated the effectiveness of the approach and offered us the possibility to define a dynamic stopping criterion based on the variance in the committee results.
在材料工程领域,准确预测各种加载条件下的材料行为至关重要。机器学习(ML)方法已成为从数据中直接生成构成模型的有效工具,能够以比经典构成模型更灵活的方式描述复杂的材料行为。屈服函数是塑性构造模型的基础,可以使用 ML 方法以数据为导向的方式对其进行正确描述。然而,这些描述的质量在很大程度上取决于是否有足够的高质量、有代表性的训练数据,这些数据需要通过基本的数值模拟、实验或两者的结合来生成。本文针对数据选择问题,介绍了支持向量分类(SVC)的主动学习方法,并将其应用于使用合适数据训练 ML 收益函数。在这方面,采用了 "委员会查询"(QBC)算法,指导在模型委员会显示出明显分歧的特征空间区域选择新的训练数据点。这种方法显著降低了整个主动学习过程中模型预测的方差。研究还表明,方差降低的同时,训练模型的质量也在提高,这可以通过马修斯相关系数(MCC)来量化。这证明了该方法的有效性,并为我们提供了根据委员会结果的方差定义动态停止标准的可能性。
{"title":"Optimizing machine learning yield functions using query-by-committee for support vector classification with a dynamic stopping criterion","authors":"Ronak Shoghi, Lukas Morand, Dirk Helm, Alexander Hartmaier","doi":"10.1007/s00466-023-02440-6","DOIUrl":"https://doi.org/10.1007/s00466-023-02440-6","url":null,"abstract":"<p>In the field of materials engineering, the accurate prediction of material behavior under various loading conditions is crucial. Machine Learning (ML) methods have emerged as promising tools for generating constitutive models straight from data, capable of describing complex material behavior in a more flexible way than classical constitutive models. Yield functions, which serve as foundation of constitutive models for plasticity, can be properly described in a data-oriented manner using ML methods. However, the quality of these descriptions heavily relies on the availability of sufficient high-quality and representative training data that needs to be generated by fundamental numerical simulations, experiments, or a combination of both. The present paper addresses the issue of data selection, by introducing an active learning approach for Support Vector Classification (SVC) and its application in training an ML yield function with suitable data. In this regard, the Query-By-Committee (QBC) algorithm was employed, guiding the selection of new training data points in regions of the feature space where a committee of models shows significant disagreement. This approach resulted in a marked reduction in the variance of model predictions throughout the active learning process. It was also shown that the rate of decrease in the variance went along with an increase in the quality of the trained model, quantified by the Matthews Correlation Coefficient (MCC). This demonstrated the effectiveness of the approach and offered us the possibility to define a dynamic stopping criterion based on the variance in the committee results.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"12 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-12DOI: 10.1007/s00466-023-02439-z
Abstract
Standard non-local gradient damage methodology for fatigue analysis has an intrinsic drawback of unusual widening of the damage zone. This causes a rapid growth of crack in the simulations which often violate experimental evidences. In order to tackle this undesirable behaviour, the localizing gradient damage methodology has been formulated for high cycle fatigue crack growth simulations. The framework comprises of coupling damage and elasticity through continuum mechanics, a fatigue damage law and an interaction function which reduces the influence of damaged regions on the surrounding locality. The present scheme prevents the spurious widening of the damage-band around the critically damaged area and therefore the non-physical growth of fatigue crack in the simulations is successfully countered. The developed framework is tested on various standard specimens under mode-I and mixed-mode high cycle fatigue loads. Nonlinear finite element analysis is used for this purpose. The discretized form of solver equations for the localizing framework is mathematically derived. Numerical examples show that the simulated crack-growth curves using proposed localizing framework agree closely with the experimental data and has a higher accuracy than the standard non-local framework.
摘要 用于疲劳分析的标准非局部梯度损伤方法有一个固有的缺点,即损伤区异常扩大。这会导致模拟中裂纹的快速增长,而这往往与实验证据相悖。为了解决这种不良行为,我们制定了用于高循环疲劳裂纹增长模拟的局部梯度损伤方法。该框架包括通过连续介质力学将损伤和弹性耦合、疲劳损伤规律和交互函数(可降低损伤区域对周围局部的影响)。本方案可防止严重受损区域周围的损伤带出现虚假扩大,因此可成功应对模拟中疲劳裂纹的非物理增长。在模式 I 和混合模式高循环疲劳载荷下,在各种标准试样上对所开发的框架进行了测试。为此采用了非线性有限元分析。从数学角度推导出了局部化框架求解方程的离散形式。数值实例表明,使用所提出的局部化框架模拟的裂纹生长曲线与实验数据非常吻合,而且比标准的非局部化框架具有更高的精度。
{"title":"A numerical framework based on localizing gradient damage methodology for high cycle fatigue crack growth simulations","authors":"","doi":"10.1007/s00466-023-02439-z","DOIUrl":"https://doi.org/10.1007/s00466-023-02439-z","url":null,"abstract":"<h3>Abstract</h3> <p>Standard non-local gradient damage methodology for fatigue analysis has an intrinsic drawback of unusual widening of the damage zone. This causes a rapid growth of crack in the simulations which often violate experimental evidences. In order to tackle this undesirable behaviour, the localizing gradient damage methodology has been formulated for high cycle fatigue crack growth simulations. The framework comprises of coupling damage and elasticity through continuum mechanics, a fatigue damage law and an interaction function which reduces the influence of damaged regions on the surrounding locality. The present scheme prevents the spurious widening of the damage-band around the critically damaged area and therefore the non-physical growth of fatigue crack in the simulations is successfully countered. The developed framework is tested on various standard specimens under mode-I and mixed-mode high cycle fatigue loads. Nonlinear finite element analysis is used for this purpose. The discretized form of solver equations for the localizing framework is mathematically derived. Numerical examples show that the simulated crack-growth curves using proposed localizing framework agree closely with the experimental data and has a higher accuracy than the standard non-local framework.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"17 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-05DOI: 10.1007/s00466-024-02442-y
Rolf Mahnken, Hendrik Westermann
ELDIRK methods are defined to have an Explicit Last stage in the general Butcher array of Diagonal Implicit Runge-Kutta methods, with the consequence, that no additional system of equations must be solved, compared to the embedded RK method. Two general formulations for second- and third-order ELDIRK methods have been obtained recently in Mahnken [21] with specific schemes, e.g. for the embedded implicit Euler method, the embedded trapezoidal-rule and the embedded Ellsiepen method. In the first part of this paper, we investigate some general stability characteristics of ELDIRK methods, and it will be shown that the above specific RK schemes are not A-stable. Therefore, in the second part, the above-mentioned general formulations are used for further stability investigations, with the aim to construct new second- and third-order ELDIRK methods which simultaneously are A-stable. Two numerical examples are concerned with the curing for a thermosetting material and phase-field RVE modeling for crystallinity and orientation. The numerical results confirm the theoretical results on convergence order and stability.
{"title":"Construction of A-stable explicit last-stage diagonal implicit Runge–Kutta (ELDIRK) methods","authors":"Rolf Mahnken, Hendrik Westermann","doi":"10.1007/s00466-024-02442-y","DOIUrl":"https://doi.org/10.1007/s00466-024-02442-y","url":null,"abstract":"<p>ELDIRK methods are defined to have an <i>Explicit Last</i> stage in the general Butcher array of <i>Diagonal Implicit Runge-Kutta</i> methods, with the consequence, that no additional system of equations must be solved, compared to the embedded RK method. Two general formulations for second- and third-order ELDIRK methods have been obtained recently in Mahnken [21] with specific schemes, e.g. for the embedded implicit Euler method, the embedded trapezoidal-rule and the embedded Ellsiepen method. In the first part of this paper, we investigate some general stability characteristics of ELDIRK methods, and it will be shown that the above specific RK schemes are not A-stable. Therefore, in the second part, the above-mentioned general formulations are used for further stability investigations, with the aim to construct new second- and third-order ELDIRK methods which simultaneously are A-stable. Two numerical examples are concerned with the curing for a thermosetting material and phase-field RVE modeling for crystallinity and orientation. The numerical results confirm the theoretical results on convergence order and stability.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"15 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139689903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-04DOI: 10.1007/s00466-023-02438-0
Abstract
A recent mixed formulation of the Virtual Element Method in 2D elastostatics, based on the Hu-Washizu variational principle, is here extended to 2D elastodynamics. The independent modeling of the strain field, allowed by the mixed formulation, is exploited to derive first order quadrilateral Virtual Elements (VEs) not requiring a stabilization (namely, self-stabilized VEs), in contrast to the standard VEs, where an artificial stabilization is always required for first order quads. Lumped mass matrices are derived using a novel approach, based on an integration scheme that makes use of nodal values only, preserving the correct mass in the case of rigid-body modes. In the case of implicit time integration, it is shown how the combination of a self-stabilized stiffness matrix with a self-stabilized lumped mass matrix can produce excellent performances both in the compressible and quasi-incompressible regimes with almost negligible sensitivity to element distortion. Finally, in the case of explicit dynamics, the performances of the different types of derived VEs are analyzed in terms of their critical time-step size.
摘要 基于Hu-Washizu变分原理的二维弹性力学中虚拟元素法的最新混合公式在此被扩展到二维弹性力学中。混合公式允许应变场的独立建模,利用这种独立建模可以推导出不需要稳定化的一阶四边形虚拟元素(VE)(即自稳定虚拟元素),与标准虚拟元素相反,一阶四边形虚拟元素总是需要人工稳定化。我们采用一种新方法导出了集合质量矩阵,该方法基于一种仅使用节点值的积分方案,在刚体模态情况下保留了正确的质量。在隐式时间积分的情况下,演示了自稳定刚度矩阵与自稳定块状质量矩阵的结合如何在可压缩和准不可压缩状态下产生出色的性能,对元素变形的敏感性几乎可以忽略不计。最后,在显式动力学情况下,根据临界时间步长分析了不同类型衍生 VE 的性能。
{"title":"A Hu-Washizu variational approach to self-stabilized quadrilateral Virtual Elements: 2D linear elastodynamics","authors":"","doi":"10.1007/s00466-023-02438-0","DOIUrl":"https://doi.org/10.1007/s00466-023-02438-0","url":null,"abstract":"<h3>Abstract</h3> <p>A recent mixed formulation of the Virtual Element Method in 2D elastostatics, based on the Hu-Washizu variational principle, is here extended to 2D elastodynamics. The independent modeling of the strain field, allowed by the mixed formulation, is exploited to derive first order quadrilateral Virtual Elements (VEs) not requiring a stabilization (namely, self-stabilized VEs), in contrast to the standard VEs, where an artificial stabilization is always required for first order quads. Lumped mass matrices are derived using a novel approach, based on an integration scheme that makes use of nodal values only, preserving the correct mass in the case of rigid-body modes. In the case of implicit time integration, it is shown how the combination of a self-stabilized stiffness matrix with a self-stabilized lumped mass matrix can produce excellent performances both in the compressible and quasi-incompressible regimes with almost negligible sensitivity to element distortion. Finally, in the case of explicit dynamics, the performances of the different types of derived VEs are analyzed in terms of their critical time-step size. </p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"58 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139677408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.1007/s00466-023-02402-y
Zhao Yin, Zhiqiang Hu, Hangduo Gao, Gao Lin
In this study, a novel approach is proposed by integrating the finite element tearing and interconnecting (FETI) method into the B-differentiable equations (BDEs) method for the analysis of 3D elastic frictional contact problem with small deformations. The contact blocks are divided into several nonoverlapping substructures with nonconforming meshes on the contact surface and the interface between two adjacent substructures. The enforcement of contact conditions and interface continuity conditions is achieved by using dual Lagrange multipliers discretized on the slave surface, typically defined with fine meshes. The modified Boolean transformation matrix is utilized to convert the contact stress into the equivalent nodal force. For large-scale elastic contact problems, the equilibrium equations for substructures and the relationship between the relative displacements and contact stresses on the contact surfaces and interfaces (i.e., the contact flexibility matrix) are efficiently computed using the FETI method. Subsequently, the governing equations consisting of the contact equations, interface continuity equations, and equilibrium equations for each floating substructure are uniformly formulated as the BDEs. These BDEs can be solved using the B-differentiable damped Newton method (BDNM). The proposed method harnesses the parallel scalability of the FETI method and extends the applicability of the BDEs algorithm, benefiting from its ability to precisely satisfy the contact constraints and theoretically ensure convergence when solving large-scale contact problems. The Hilber/Hughes/Taylor (HHT) time integration scheme is employed to investigate elastic dynamic contact problems. Numerical examples demonstrate the accuracy, convergence rate, and parallel scalability of the proposed algorithm.
本研究提出了一种新方法,将有限元撕裂和互连(FETI)方法集成到 B 微分方程(BDEs)方法中,用于分析具有微小变形的三维弹性摩擦接触问题。接触块被划分为多个不重叠的子结构,接触面和相邻两个子结构之间的界面上有不符合网格。接触条件和界面连续性条件是通过在从表面上离散化的双拉格朗日乘法器来实现的,通常使用细网格来定义。修正布尔变换矩阵用于将接触应力转换为等效节点力。对于大尺度弹性接触问题,可使用 FETI 方法高效计算子结构的平衡方程以及接触面和界面上的相对位移和接触应力之间的关系(即接触弹性矩阵)。随后,由每个浮动子结构的接触方程、界面连续性方程和平衡方程组成的控制方程被统一表述为 BDE。这些 BDE 可使用 B 微分阻尼牛顿法(BDNM)求解。所提出的方法利用了 FETI 方法的并行可扩展性,并扩展了 BDEs 算法的适用性,在解决大规模接触问题时能够精确满足接触约束条件并从理论上确保收敛性。在研究弹性动态接触问题时,采用了 Hilber/Hughes/Taylor (HHT) 时间积分方案。数值示例证明了所提算法的准确性、收敛速度和并行可扩展性。
{"title":"A FETI B-differentiable equation method for elastic frictional contact problem with nonconforming mesh","authors":"Zhao Yin, Zhiqiang Hu, Hangduo Gao, Gao Lin","doi":"10.1007/s00466-023-02402-y","DOIUrl":"https://doi.org/10.1007/s00466-023-02402-y","url":null,"abstract":"<p>In this study, a novel approach is proposed by integrating the finite element tearing and interconnecting (FETI) method into the B-differentiable equations (BDEs) method for the analysis of 3D elastic frictional contact problem with small deformations. The contact blocks are divided into several nonoverlapping substructures with nonconforming meshes on the contact surface and the interface between two adjacent substructures. The enforcement of contact conditions and interface continuity conditions is achieved by using dual Lagrange multipliers discretized on the slave surface, typically defined with fine meshes. The modified Boolean transformation matrix is utilized to convert the contact stress into the equivalent nodal force. For large-scale elastic contact problems, the equilibrium equations for substructures and the relationship between the relative displacements and contact stresses on the contact surfaces and interfaces (i.e., the contact flexibility matrix) are efficiently computed using the FETI method. Subsequently, the governing equations consisting of the contact equations, interface continuity equations, and equilibrium equations for each floating substructure are uniformly formulated as the BDEs. These BDEs can be solved using the B-differentiable damped Newton method (BDNM). The proposed method harnesses the parallel scalability of the FETI method and extends the applicability of the BDEs algorithm, benefiting from its ability to precisely satisfy the contact constraints and theoretically ensure convergence when solving large-scale contact problems. The Hilber/Hughes/Taylor (HHT) time integration scheme is employed to investigate elastic dynamic contact problems. Numerical examples demonstrate the accuracy, convergence rate, and parallel scalability of the proposed algorithm.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"308 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}