Buckwheat plant height is an important indicator for producers. Due to the decline in agricultural labor, the automatic and real-time acquisition of crop growth information will become a prominent issue for farms in the future. To address this problem, we focused on stereo vision and a regression convolutional neural network (CNN) in order to estimate buckwheat plant height. MobileNet V3 Small, NasNet Mobile, RegNet Y002, EfficientNet V2 B0, MobileNet V3 Large, NasNet Large, RegNet Y008, and EfficientNet V2 L were modified into regression CNNs. Through a five-fold cross-validation of the modeling data, the modified RegNet Y008 was selected as the optimal estimation model. Based on the depth and contour information of buckwheat depth image, the mean absolute error (MAE), root mean square error (RMSE), mean square error (MSE), and mean relative error (MRE) when estimating plant height were 0.56 cm, 0.73 cm, 0.54 cm, and 1.7%, respectively. The coefficient of determination (R2) value between the estimated and measured results was 0.9994. Combined with the LabVIEW software development platform, this method can estimate buckwheat accurately, quickly, and automatically. This work contributes to the automatic management of farms.
{"title":"Buckwheat Plant Height Estimation Based on Stereo Vision and a Regression Convolutional Neural Network under Field Conditions","authors":"Jianlong Zhang, Wenwen Xing, Xuefeng Song, Yulong Cui, Wang Li, Decong Zheng","doi":"10.3390/agronomy13092312","DOIUrl":"https://doi.org/10.3390/agronomy13092312","url":null,"abstract":"Buckwheat plant height is an important indicator for producers. Due to the decline in agricultural labor, the automatic and real-time acquisition of crop growth information will become a prominent issue for farms in the future. To address this problem, we focused on stereo vision and a regression convolutional neural network (CNN) in order to estimate buckwheat plant height. MobileNet V3 Small, NasNet Mobile, RegNet Y002, EfficientNet V2 B0, MobileNet V3 Large, NasNet Large, RegNet Y008, and EfficientNet V2 L were modified into regression CNNs. Through a five-fold cross-validation of the modeling data, the modified RegNet Y008 was selected as the optimal estimation model. Based on the depth and contour information of buckwheat depth image, the mean absolute error (MAE), root mean square error (RMSE), mean square error (MSE), and mean relative error (MRE) when estimating plant height were 0.56 cm, 0.73 cm, 0.54 cm, and 1.7%, respectively. The coefficient of determination (R2) value between the estimated and measured results was 0.9994. Combined with the LabVIEW software development platform, this method can estimate buckwheat accurately, quickly, and automatically. This work contributes to the automatic management of farms.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47811887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.3390/agronomy13092308
Ana I. López-Sesé
Recent progress in plant genomic technologies has amounted to a revolution, making a huge set of molecular tools available for use in plant breeding [...]
植物基因组技术的最新进展相当于一场革命,使一套巨大的分子工具可用于植物育种〔…〕
{"title":"Special Issue “Recent Advances in Genomics, Genetic Resources Evaluation and Breeding of Cucurbitaceae Crops”","authors":"Ana I. López-Sesé","doi":"10.3390/agronomy13092308","DOIUrl":"https://doi.org/10.3390/agronomy13092308","url":null,"abstract":"Recent progress in plant genomic technologies has amounted to a revolution, making a huge set of molecular tools available for use in plant breeding [...]","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44339894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.3390/agronomy13092309
Christos Lykas, I. Vagelas
Agriculture has changed dramatically and has been improved due to new technologies [...]
由于新技术的出现,农业发生了巨大的变化,并得到了改善[…]
{"title":"Innovations in Agriculture for Sustainable Agro-Systems","authors":"Christos Lykas, I. Vagelas","doi":"10.3390/agronomy13092309","DOIUrl":"https://doi.org/10.3390/agronomy13092309","url":null,"abstract":"Agriculture has changed dramatically and has been improved due to new technologies [...]","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42429809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.3390/agronomy13092310
Xiaoqian Cheng, Youhui Gao, Ziyu Wang, Yafan Cai, Xiaofen Wang
Agricultural Jiaosu (AJ) is a method of recycling agricultural wastes for improving soil properties, promoting plant growth, and enhancing plant stress resistance. However, the underlying mechanism by which AJ improves plant stress resistance needs to be determined. Therefore, in this study, two treatments of AJ spraying and water spraying were set up to determine the enzyme activities related to the stress resistance of pak choi after 30 days of growth, and the potential mechanism of AJ’s influence on the stress resistance of pak choi was revealed by transcriptome, metabolome, and rhizome microbiome analyses. Microbial community analysis revealed that the application of AJ does not alter microbial abundance in the rhizosphere; however, it can improve microbial diversity and enrich Actinobacteriota, Proteobacteria, and Firmicutes in the pak choi rhizosphere. Metabolomic analysis revealed that these phyla were significantly positively correlated, with highly upregulated metabolites. Our findings suggest that AJ recruits beneficial microorganisms (BMs) in the rhizosphere and stimulates the expression of genes and metabolites involved in phenylpropanoid and glucosinolate biosynthesis, as well as glutathione and alpha-linolenic acid metabolism pathways. The use of AJ could considerably minimise the use of pesticides and fertilisers and improve the quality of the ecological environment.
{"title":"Agricultural Jiaosu Enhances the Stress Resistance of Pak Choi (Brassica rapa L. subsp. chinensis) by Recruiting Beneficial Rhizosphere Bacteria and Altering Metabolic Pathways","authors":"Xiaoqian Cheng, Youhui Gao, Ziyu Wang, Yafan Cai, Xiaofen Wang","doi":"10.3390/agronomy13092310","DOIUrl":"https://doi.org/10.3390/agronomy13092310","url":null,"abstract":"Agricultural Jiaosu (AJ) is a method of recycling agricultural wastes for improving soil properties, promoting plant growth, and enhancing plant stress resistance. However, the underlying mechanism by which AJ improves plant stress resistance needs to be determined. Therefore, in this study, two treatments of AJ spraying and water spraying were set up to determine the enzyme activities related to the stress resistance of pak choi after 30 days of growth, and the potential mechanism of AJ’s influence on the stress resistance of pak choi was revealed by transcriptome, metabolome, and rhizome microbiome analyses. Microbial community analysis revealed that the application of AJ does not alter microbial abundance in the rhizosphere; however, it can improve microbial diversity and enrich Actinobacteriota, Proteobacteria, and Firmicutes in the pak choi rhizosphere. Metabolomic analysis revealed that these phyla were significantly positively correlated, with highly upregulated metabolites. Our findings suggest that AJ recruits beneficial microorganisms (BMs) in the rhizosphere and stimulates the expression of genes and metabolites involved in phenylpropanoid and glucosinolate biosynthesis, as well as glutathione and alpha-linolenic acid metabolism pathways. The use of AJ could considerably minimise the use of pesticides and fertilisers and improve the quality of the ecological environment.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43952213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-31DOI: 10.3390/agronomy13092304
Xingkang Ma, Yuhong Gao, Bing Wu, Xingbang Ma, Y. Wang, B. Yan, Zhengjun Cui, Ming Wen, Xue Zhang, Haidi Wang
Organic fertilizers could be useful for agricultural sustainability. Therefore, this study explored green cultivation techniques to improve the grain yield of oilseed flax in dry areas of the Loess Plateau of China. With no fertilization (CK) as the control, the effects of sheep manure (S1: 12.5 t ha−1; S2: 25 t ha−1), poultry manure (C1: 5.8 t ha−1; C2: 11.6 t ha−1), and chemical fertilizers (F1: N 112 kg ha−1, P 75 kg ha−1, K 67.5 kg ha−1; F2: N 225 kg ha−1, P 150 kg ha−1, K 135 kg ha−1) on the growth and development, the grain filling characteristics, and the yield of the Zhangya 2 oilseed flax (Linum usitatisimum L.) variety were compared and analyzed based on a two-factor split plot experiment. The results showed that the application of manure significantly increased the emergence rate (ER) of oilseed flax. Poultry manure increased plant height while sheep manure increased stem diameter. The dry matter production was higher in the 25 t ha−1 sheep manure treatment by 2.47–40.11% compared with that of the other treatments, and it promoted the distribution ratio of dry matter to grains after anthesis. The observed relationship was in accordance with that presented by the logistic equation between grain weight and days after anthesis, and there were significant positive correlations between the 1000-grain weight and the average filling rate (V-ave), the maximum filling rate (V-max), and the growth at the maximum filling rate (W-max). The application of organic manure accelerated the grain filling rate (GFR); under the treatment with 25 t ha−1 sheep manure, V-ave, V-max, and W-max increased by 4.84–22.72%, 1.16–17.54%, and 4.58–22.63%, respectively, and the grain yield and the net income per unit area increased by 6.35–39.25% and 3.04–95.07%, respectively, compared with those under the other treatments. Consequently, the treatment with 25 t ha−1 sheep manure can significantly promote the growth and development of oilseed flax plants, optimize the grain filling characteristics, and increase the grain yield and net income, making it a suitable fertilization technique for oilseed flax in dry areas of the Loess Plateau of China.
{"title":"Organic Manure Significantly Promotes the Growth of Oilseed Flax and Improves Its Grain Yield in Dry Areas of the Loess Plateau of China","authors":"Xingkang Ma, Yuhong Gao, Bing Wu, Xingbang Ma, Y. Wang, B. Yan, Zhengjun Cui, Ming Wen, Xue Zhang, Haidi Wang","doi":"10.3390/agronomy13092304","DOIUrl":"https://doi.org/10.3390/agronomy13092304","url":null,"abstract":"Organic fertilizers could be useful for agricultural sustainability. Therefore, this study explored green cultivation techniques to improve the grain yield of oilseed flax in dry areas of the Loess Plateau of China. With no fertilization (CK) as the control, the effects of sheep manure (S1: 12.5 t ha−1; S2: 25 t ha−1), poultry manure (C1: 5.8 t ha−1; C2: 11.6 t ha−1), and chemical fertilizers (F1: N 112 kg ha−1, P 75 kg ha−1, K 67.5 kg ha−1; F2: N 225 kg ha−1, P 150 kg ha−1, K 135 kg ha−1) on the growth and development, the grain filling characteristics, and the yield of the Zhangya 2 oilseed flax (Linum usitatisimum L.) variety were compared and analyzed based on a two-factor split plot experiment. The results showed that the application of manure significantly increased the emergence rate (ER) of oilseed flax. Poultry manure increased plant height while sheep manure increased stem diameter. The dry matter production was higher in the 25 t ha−1 sheep manure treatment by 2.47–40.11% compared with that of the other treatments, and it promoted the distribution ratio of dry matter to grains after anthesis. The observed relationship was in accordance with that presented by the logistic equation between grain weight and days after anthesis, and there were significant positive correlations between the 1000-grain weight and the average filling rate (V-ave), the maximum filling rate (V-max), and the growth at the maximum filling rate (W-max). The application of organic manure accelerated the grain filling rate (GFR); under the treatment with 25 t ha−1 sheep manure, V-ave, V-max, and W-max increased by 4.84–22.72%, 1.16–17.54%, and 4.58–22.63%, respectively, and the grain yield and the net income per unit area increased by 6.35–39.25% and 3.04–95.07%, respectively, compared with those under the other treatments. Consequently, the treatment with 25 t ha−1 sheep manure can significantly promote the growth and development of oilseed flax plants, optimize the grain filling characteristics, and increase the grain yield and net income, making it a suitable fertilization technique for oilseed flax in dry areas of the Loess Plateau of China.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48752064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-31DOI: 10.3390/agronomy13092305
A. Al-Saif, I. Elnaggar, A. N. A. Abd El-wahed, I. M. Taha, Hosny F. Abdel-Aziz, Mohammed H. Farouk, A. Hamdy
Pomegranate is one of the most important and widely distributed trees. Boron and zinc are important nutrients for plant growth and fruit quality. Nanotechnology has emerged as one of the most innovative scientific fields in agriculture. This study was conducted to describe the changes in the physiochemical characteristics (weight, diameter, length, firmness and color), as well as the phytochemicals attributes (total phenolics, total flavonoids, ascorbic acid, anthocyanin and antioxidant %) and minerals contents, of pomegranates fruits of the ‘Wonderful’ cultivar as a result of spraying pomegranate trees using nanomaterials (zinc oxide (ZnONPs) and boron oxide (B2O3NPs)). In three successive developmental stages (full bloom, 6 weeks after full bloom and one month before harvest time), the trees were sprayed with 0.25, 0.5 and 1 g/L ZnONPs, as well as 0.25, 0.5 and 1 g/L B2O3NPs during the 2021 and 2022 seasons. The application of ZnONPs and B2O3NPs influenced the qualitative characteristics of the fruits in the studied seasons. The highest marketable % was observed for the 0.50 and 1 g/L ZnONPs and 1 g/L B2O3NPs compared to the other treatments. Also, a positive effect was recorded for the ZnONPs and B2O3NPs on the fruits’ physical properties. All of the ZnONP and B2O3NP treatments resulted in increasing the total phenolic, flavonoid, anthocyanin and ascorbic acid contents and the antioxidant activity in the pomegranate juices. In conclusion, our results suggest that spraying pomegranate trees with ZnONPs and B2O3NPs improves the marketable fruit, enhances the fruit quality and increases the bioactive components and antioxidant activity.
{"title":"Improvement of Fruit Quality and Phytochemical Components of Pomegranate by Spraying with B2O3 and ZnO Nanoparticles","authors":"A. Al-Saif, I. Elnaggar, A. N. A. Abd El-wahed, I. M. Taha, Hosny F. Abdel-Aziz, Mohammed H. Farouk, A. Hamdy","doi":"10.3390/agronomy13092305","DOIUrl":"https://doi.org/10.3390/agronomy13092305","url":null,"abstract":"Pomegranate is one of the most important and widely distributed trees. Boron and zinc are important nutrients for plant growth and fruit quality. Nanotechnology has emerged as one of the most innovative scientific fields in agriculture. This study was conducted to describe the changes in the physiochemical characteristics (weight, diameter, length, firmness and color), as well as the phytochemicals attributes (total phenolics, total flavonoids, ascorbic acid, anthocyanin and antioxidant %) and minerals contents, of pomegranates fruits of the ‘Wonderful’ cultivar as a result of spraying pomegranate trees using nanomaterials (zinc oxide (ZnONPs) and boron oxide (B2O3NPs)). In three successive developmental stages (full bloom, 6 weeks after full bloom and one month before harvest time), the trees were sprayed with 0.25, 0.5 and 1 g/L ZnONPs, as well as 0.25, 0.5 and 1 g/L B2O3NPs during the 2021 and 2022 seasons. The application of ZnONPs and B2O3NPs influenced the qualitative characteristics of the fruits in the studied seasons. The highest marketable % was observed for the 0.50 and 1 g/L ZnONPs and 1 g/L B2O3NPs compared to the other treatments. Also, a positive effect was recorded for the ZnONPs and B2O3NPs on the fruits’ physical properties. All of the ZnONP and B2O3NP treatments resulted in increasing the total phenolic, flavonoid, anthocyanin and ascorbic acid contents and the antioxidant activity in the pomegranate juices. In conclusion, our results suggest that spraying pomegranate trees with ZnONPs and B2O3NPs improves the marketable fruit, enhances the fruit quality and increases the bioactive components and antioxidant activity.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45721312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-31DOI: 10.3390/agronomy13092299
Oxana Vishnyakova, L. Ubugunov
Soil organic matter stability and transformation affected by agriculture is a global problem of great concern. This study aimed to reveal structural changes in humic molecules under conventional soil tillage in Cambisols of the Transbaikal area. Humic acids were isolated from the humus horizons of native and arable variants of Eutric Cambisol Cryic (gleyic, humic, loamic) from the forest steppe, and Haplic Cambisol (arenic, humic, protocalcic) from the steppe zone. The changes in the humic substances’ quality were evaluated by means of an elemental analysis and 13C nuclear magnetic resonance spectroscopy. The results indicate that different agronomic management affected the changes in the composition and molecular structure of humic acids. Soil tillage induced an increase in the carbon content, the proportion of aromatic compounds and carboxyl groups and the depletion in nitrogen. As measured by 13C NMR spectroscopy, the intensity of these changes was determined by soil properties and the hydrothermal regime. Organic matter from Eutric Cambisol Cryic was suggested as providing significant environmental resistance to the agricultural impact due to the optimization of the water regime and a loamy texture. Prolonged ploughing of sandy Haplic Cambisol under the arid conditions promoted deep changes in the humic substances’ composition and chemical structure.
{"title":"Changes in Molecular Structure of Humic Substances in Cambisols under Agricultural Use","authors":"Oxana Vishnyakova, L. Ubugunov","doi":"10.3390/agronomy13092299","DOIUrl":"https://doi.org/10.3390/agronomy13092299","url":null,"abstract":"Soil organic matter stability and transformation affected by agriculture is a global problem of great concern. This study aimed to reveal structural changes in humic molecules under conventional soil tillage in Cambisols of the Transbaikal area. Humic acids were isolated from the humus horizons of native and arable variants of Eutric Cambisol Cryic (gleyic, humic, loamic) from the forest steppe, and Haplic Cambisol (arenic, humic, protocalcic) from the steppe zone. The changes in the humic substances’ quality were evaluated by means of an elemental analysis and 13C nuclear magnetic resonance spectroscopy. The results indicate that different agronomic management affected the changes in the composition and molecular structure of humic acids. Soil tillage induced an increase in the carbon content, the proportion of aromatic compounds and carboxyl groups and the depletion in nitrogen. As measured by 13C NMR spectroscopy, the intensity of these changes was determined by soil properties and the hydrothermal regime. Organic matter from Eutric Cambisol Cryic was suggested as providing significant environmental resistance to the agricultural impact due to the optimization of the water regime and a loamy texture. Prolonged ploughing of sandy Haplic Cambisol under the arid conditions promoted deep changes in the humic substances’ composition and chemical structure.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45347141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-31DOI: 10.3390/agronomy13092298
Jun Chen, Pin Jiang, Jianfei Liu, Xiaocong Zhang, Yixin Shi
Today, the post-harvest root stubble treatment of kale in Hunan mostly uses manual pulling and centralized treatments, which are inefficient and labor-intensive. In this study, to realize the direct mechanical crushing of kale root stubble and return it to the field after harvesting, we established an accurate simulation model of kale root stubble by creating a model of the root stubble of kale and calibrating the parameters of the simulation. This study took Jingfeng No. 1 kale stubble as the research object and used EDEM2021.2 simulation software to study the parameters of the kale stubble-crushing simulation model. The peak shear force of the sheared kale root stubble was used as the test data, and the most significant factors affecting the shear force were screened out through the Plackett–Burman test for the Design-Expert design. In addition, the steepest climb test and Box–Behnken test were used to accurately assess the factor data to obtain the best simulation value, which was 861.02 N. The relative error between the simulated and measured values was 0.61%. Finally, an accurate simulation stubble model was established by combining the best simulation parameters with the measured stubble length and diameter. This model provides a theoretical basis and technical support for more in-depth research on stubble simulation and mechanized stubble return.
{"title":"Calibration and Modeling of Parameters for Kale Root Stubble Simulation Based on the Discrete Unit Method","authors":"Jun Chen, Pin Jiang, Jianfei Liu, Xiaocong Zhang, Yixin Shi","doi":"10.3390/agronomy13092298","DOIUrl":"https://doi.org/10.3390/agronomy13092298","url":null,"abstract":"Today, the post-harvest root stubble treatment of kale in Hunan mostly uses manual pulling and centralized treatments, which are inefficient and labor-intensive. In this study, to realize the direct mechanical crushing of kale root stubble and return it to the field after harvesting, we established an accurate simulation model of kale root stubble by creating a model of the root stubble of kale and calibrating the parameters of the simulation. This study took Jingfeng No. 1 kale stubble as the research object and used EDEM2021.2 simulation software to study the parameters of the kale stubble-crushing simulation model. The peak shear force of the sheared kale root stubble was used as the test data, and the most significant factors affecting the shear force were screened out through the Plackett–Burman test for the Design-Expert design. In addition, the steepest climb test and Box–Behnken test were used to accurately assess the factor data to obtain the best simulation value, which was 861.02 N. The relative error between the simulated and measured values was 0.61%. Finally, an accurate simulation stubble model was established by combining the best simulation parameters with the measured stubble length and diameter. This model provides a theoretical basis and technical support for more in-depth research on stubble simulation and mechanized stubble return.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45725006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-31DOI: 10.3390/agronomy13092300
S. Bursakov, P. Kroupin, G. Karlov, M. Divashuk
The optimization of all constituent conditions to obtain high and even maximum yields is a recent trend in agriculture. Legumes play a special role in this process, as they have unique characteristics with respect to storing protein and many other important components in their seeds that are useful for human and animal nutrition as well as industry and agriculture. A great advantage of legumes is the nitrogen fixation activity of their symbiotic nodule bacteria. This nitrogen self-sufficiency contributes directly to the challenging issue of feeding the world’s growing population. Molybdenum is one of the most sought-after nutrients because it provides optimal conditions for the maximum efficiency of the enzymes involved in nitrogen assimilation as well as other molybdenum-containing enzymes in the host plant and symbiotic nodule bacteria. In this review, we consider the most optimal way of providing legume plants with molybdenum, its distribution in ontogeny throughout the plant, and its accumulation at the end of the growing season in the seeds. Overall, molybdenum supply improves seed quality and allows for the efficient use of the micronutrient by molybdenum-containing enzymes in the plant and subsequently the nodules at the initial stages of growth after germination. A sufficient supply of molybdenum avoids competition for this trace element between nitrogenase and nodule nitrate reductase, which enhances the supply of nitrogen to the plant. Finally, we also consider the possibility of regulating molybdenum homeostasis using modern genetic approaches.
{"title":"Tracing the Element: The Molecular Bases of Molybdenum Homeostasis in Legumes","authors":"S. Bursakov, P. Kroupin, G. Karlov, M. Divashuk","doi":"10.3390/agronomy13092300","DOIUrl":"https://doi.org/10.3390/agronomy13092300","url":null,"abstract":"The optimization of all constituent conditions to obtain high and even maximum yields is a recent trend in agriculture. Legumes play a special role in this process, as they have unique characteristics with respect to storing protein and many other important components in their seeds that are useful for human and animal nutrition as well as industry and agriculture. A great advantage of legumes is the nitrogen fixation activity of their symbiotic nodule bacteria. This nitrogen self-sufficiency contributes directly to the challenging issue of feeding the world’s growing population. Molybdenum is one of the most sought-after nutrients because it provides optimal conditions for the maximum efficiency of the enzymes involved in nitrogen assimilation as well as other molybdenum-containing enzymes in the host plant and symbiotic nodule bacteria. In this review, we consider the most optimal way of providing legume plants with molybdenum, its distribution in ontogeny throughout the plant, and its accumulation at the end of the growing season in the seeds. Overall, molybdenum supply improves seed quality and allows for the efficient use of the micronutrient by molybdenum-containing enzymes in the plant and subsequently the nodules at the initial stages of growth after germination. A sufficient supply of molybdenum avoids competition for this trace element between nitrogenase and nodule nitrate reductase, which enhances the supply of nitrogen to the plant. Finally, we also consider the possibility of regulating molybdenum homeostasis using modern genetic approaches.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48967283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-31DOI: 10.3390/agronomy13092307
Louise Winther, Søren Kjærsgaard Rasmussen, Gert Poulsen, C. B. A. Lange
We produced homogeneous lines of 227 pea accessions from the Nordic Genetic Resource Center via single seed descent. The genetic diversity among these, mostly Scandinavian accessions, was investigated using three microsatellite markers, A9, AC58 and AA5. The microsatellites were highly informative and separated 153 of 194 accessions on a Neighbor Joining topology. The high polymorphism information content (PIC) values between 0.87 and 0.91 indicated that the gene bank material contains a large number of pea accessions with different breeding histories. The peas were grown in the field for two years and seed protein content showed variation between 9.3% and 34.1% over the years and accessions, respectively. The mean thousand seed weight was 152.05 g. More than 10 accessions had a protein content above 28%, showing that the collection has potential as breeding nursery for high-protein pea cultivars.
{"title":"Assessment of Genetic Diversity and Protein Content of Scandinavian Peas (Pisum sativum)","authors":"Louise Winther, Søren Kjærsgaard Rasmussen, Gert Poulsen, C. B. A. Lange","doi":"10.3390/agronomy13092307","DOIUrl":"https://doi.org/10.3390/agronomy13092307","url":null,"abstract":"We produced homogeneous lines of 227 pea accessions from the Nordic Genetic Resource Center via single seed descent. The genetic diversity among these, mostly Scandinavian accessions, was investigated using three microsatellite markers, A9, AC58 and AA5. The microsatellites were highly informative and separated 153 of 194 accessions on a Neighbor Joining topology. The high polymorphism information content (PIC) values between 0.87 and 0.91 indicated that the gene bank material contains a large number of pea accessions with different breeding histories. The peas were grown in the field for two years and seed protein content showed variation between 9.3% and 34.1% over the years and accessions, respectively. The mean thousand seed weight was 152.05 g. More than 10 accessions had a protein content above 28%, showing that the collection has potential as breeding nursery for high-protein pea cultivars.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46457986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}