Pub Date : 2023-08-29DOI: 10.3390/agronomy13092270
S. A. Corinzia, Elena Crapio, G. Testa, S. Cosentino, C. Patané, D. Scordia
The aim of the present work was to assess the leaf area duration (LAD) and the radiation use efficiency (RUE) of six warm-season perennial biomass grasses (PBGs) in a two-year field trial in the semiarid Mediterranean climate under different soil water availability. Two ecotypes of giant reed (Arundo donax L., ARCT and ARMO), one ecotype of African fodder cane (Saccharum spontaneum L. subsp. aegyptiacum (Willd.) Hack., SAC) and three hybrids of Miscanthus (the commercial M. × giganteus J.M. Greef, Deuter ex Hodk., Renvoize, M × G, and two new seed-based hybrids, GNT9 and GNT10) were compared under three levels of soil water availability: rainfed, 50% and 100% of maximum crop evapotranspiration (ETm) restoration. The determination of RUE of perennial plants is controversial and has led to contrasting results in past studies. In the present work, LAD and RUE differed among crops and irrigation regimes, being positively affected by supplemental water inputs. SAC, ARCT and ARMO showed both high LAD and RUE, which determined the high biomass yield than both the commercial M × G and the improved Miscanthus hybrids GNT9 and GNT10. RUE was particularly high and less affected by soil water availability during the mid-season, while the effect of irrigation and the differences among the genotypes were larger during the late season Miscanthus. Adequate biomass yield can be achieved by sub-optimal soil water availability, thus reducing the water footprint and increasing the sustainability of these biomass perennial grasses selected for the Mediterranean climate.
本工作的目的是在地中海半干旱气候下,在不同土壤水分有效性下,通过为期两年的田间试验,评估六种暖季多年生生物量草的叶面积持续时间(LAD)和辐射利用效率(RUE)。两种生态型的巨型芦苇(Arundo donax L.,ARCT和ARMO),一种生态型的非洲饲料甘蔗(Saccharum spontanium L.埃及亚种(Willd.)Hack。,SAC)和芒属的三个杂交种(商业化的M.×giganteus J.M.Greef,Deuter ex Hodk.,Renvoize,M×G和两个新的种子杂交种GNT9和GNT10)在三个土壤水分有效性水平下进行了比较:降雨、50%和100%的最大作物蒸发蒸腾量(ETm)恢复。多年生植物RUE的测定是有争议的,并且在过去的研究中导致了对比结果。在目前的工作中,LAD和RUE在作物和灌溉制度之间存在差异,受到补充水输入的积极影响。SAC、ARCT和ARMO均表现出较高的LAD和RUE,这决定了其生物量产量高于商品M×G和改良芒属杂交种GNT9和GNT10。RUE在季中特别高,受土壤水分有效性的影响较小,而灌溉的影响和基因型之间的差异在晚季芒中更大。适当的生物量产量可以通过次优土壤水资源来实现,从而减少水足迹,提高这些为地中海气候选择的生物量多年生草的可持续性。
{"title":"Leaf Area Duration and Crop Radiation Use Efficiency Determine Biomass Yield of Lignocellulosic Perennial Grasses under Different Soil Water Content","authors":"S. A. Corinzia, Elena Crapio, G. Testa, S. Cosentino, C. Patané, D. Scordia","doi":"10.3390/agronomy13092270","DOIUrl":"https://doi.org/10.3390/agronomy13092270","url":null,"abstract":"The aim of the present work was to assess the leaf area duration (LAD) and the radiation use efficiency (RUE) of six warm-season perennial biomass grasses (PBGs) in a two-year field trial in the semiarid Mediterranean climate under different soil water availability. Two ecotypes of giant reed (Arundo donax L., ARCT and ARMO), one ecotype of African fodder cane (Saccharum spontaneum L. subsp. aegyptiacum (Willd.) Hack., SAC) and three hybrids of Miscanthus (the commercial M. × giganteus J.M. Greef, Deuter ex Hodk., Renvoize, M × G, and two new seed-based hybrids, GNT9 and GNT10) were compared under three levels of soil water availability: rainfed, 50% and 100% of maximum crop evapotranspiration (ETm) restoration. The determination of RUE of perennial plants is controversial and has led to contrasting results in past studies. In the present work, LAD and RUE differed among crops and irrigation regimes, being positively affected by supplemental water inputs. SAC, ARCT and ARMO showed both high LAD and RUE, which determined the high biomass yield than both the commercial M × G and the improved Miscanthus hybrids GNT9 and GNT10. RUE was particularly high and less affected by soil water availability during the mid-season, while the effect of irrigation and the differences among the genotypes were larger during the late season Miscanthus. Adequate biomass yield can be achieved by sub-optimal soil water availability, thus reducing the water footprint and increasing the sustainability of these biomass perennial grasses selected for the Mediterranean climate.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45591560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil salinization is a common abiotic stress that seriously affects soybean growth and yield, underscoring the need to enhance plant salt tolerance for sustainable agriculture development. Selenium is a beneficial element that has been shown to promote plant growth, development and stress resistance. This study employed pot experiments to investigate the effects of different salt levels (0, 50, 100 and 150 mM NaCl) on salt-tolerant (Zhonghuang 13) and salt-sensitive soybean (Dongnong 63) varieties. Additionally, the critical salt concentration (100 mM NaCl) was selected to explore the effects of exogenous selenium (0, 0.5, 1 and 3 mg·kg−1) on improving salt tolerance in salt-tolerant and salt-sensitive soybeans under salt stress. Results showed that as salt concentration increased, plant height, shoot and root fresh weight, SPAD value and enzyme activity of both salt-tolerant and salt-sensitive soybeans significantly decreased. The increasing concentration of exogenous selenium significantly decreased the proline content of salt-sensitive and salt-tolerant soybeans by 40.65–58.87% and 38.51–50.46%, respectively, and the MDA content by 19.33–30.36% and 16.94–37.48%, respectively. Selenium supplementation also reduced the content of Na+ in salt-sensitive and salt-tolerant soybeans and improved K+ absorption in soybeans, which increased the K+/Na+ ratio. Moreover, high-throughput sequencing of the 16S ribosomal RNA gene demonstrated that selenium application optimized the rhizosphere microecology structure of salt-tolerant and salt-sensitive soybean varieties and enhanced functional genes related to lipid metabolism, energy metabolism and cell motility of rhizosphere microorganisms. In summary, selenium application improved the salt tolerance of the two soybean varieties by enhancing the physiological resistance to salt stress and optimizing the structure and function of the rhizosphere microbial community.
土壤盐碱化是一种常见的非生物胁迫,严重影响大豆的生长和产量,强调了提高植物耐盐性以促进农业可持续发展的必要性。硒是一种有益的元素,已被证明可以促进植物的生长、发育和抗逆性。本研究采用盆栽试验研究了不同含盐量(0、50、100和150mM NaCl)对耐盐大豆(中黄13号)和耐盐大豆品种(东农63号)的影响。此外,选择临界盐浓度(100 mM NaCl),探讨外源硒(0、0.5、1和3 mg·kg−1)在盐胁迫下提高耐盐和耐盐大豆耐盐性的作用。结果表明,随着盐浓度的增加,耐盐大豆和耐盐大豆的株高、茎根鲜重、SPAD值和酶活性均显著降低。外源硒浓度的增加显著降低了盐敏大豆和耐盐大豆的脯氨酸含量,分别降低了40.65–58.87%和38.51–50.46%,MDA含量分别降低了19.33–30.36%和16.94–37.48%。补硒还降低了对盐敏感和耐盐大豆中Na+的含量,改善了大豆对K+的吸收,从而提高了K+/Na+的比例。此外,16S核糖体RNA基因的高通量测序表明,硒的施用优化了耐盐和耐盐大豆品种的根际微生态结构,增强了与根际微生物脂质代谢、能量代谢和细胞运动相关的功能基因。总之,施硒通过增强对盐胁迫的生理抗性和优化根际微生物群落的结构和功能,提高了两个大豆品种的耐盐性。
{"title":"Exogenous Selenium Endows Salt-Tolerant and Salt-Sensitive Soybeans with Salt Tolerance through Plant-Microbial Coactions","authors":"Yin Wang, Chao Xu, H. Wuriyanghan, Zheng Lei, Yanni Tang, Huang Zhang, Xiaohu Zhao","doi":"10.3390/agronomy13092271","DOIUrl":"https://doi.org/10.3390/agronomy13092271","url":null,"abstract":"Soil salinization is a common abiotic stress that seriously affects soybean growth and yield, underscoring the need to enhance plant salt tolerance for sustainable agriculture development. Selenium is a beneficial element that has been shown to promote plant growth, development and stress resistance. This study employed pot experiments to investigate the effects of different salt levels (0, 50, 100 and 150 mM NaCl) on salt-tolerant (Zhonghuang 13) and salt-sensitive soybean (Dongnong 63) varieties. Additionally, the critical salt concentration (100 mM NaCl) was selected to explore the effects of exogenous selenium (0, 0.5, 1 and 3 mg·kg−1) on improving salt tolerance in salt-tolerant and salt-sensitive soybeans under salt stress. Results showed that as salt concentration increased, plant height, shoot and root fresh weight, SPAD value and enzyme activity of both salt-tolerant and salt-sensitive soybeans significantly decreased. The increasing concentration of exogenous selenium significantly decreased the proline content of salt-sensitive and salt-tolerant soybeans by 40.65–58.87% and 38.51–50.46%, respectively, and the MDA content by 19.33–30.36% and 16.94–37.48%, respectively. Selenium supplementation also reduced the content of Na+ in salt-sensitive and salt-tolerant soybeans and improved K+ absorption in soybeans, which increased the K+/Na+ ratio. Moreover, high-throughput sequencing of the 16S ribosomal RNA gene demonstrated that selenium application optimized the rhizosphere microecology structure of salt-tolerant and salt-sensitive soybean varieties and enhanced functional genes related to lipid metabolism, energy metabolism and cell motility of rhizosphere microorganisms. In summary, selenium application improved the salt tolerance of the two soybean varieties by enhancing the physiological resistance to salt stress and optimizing the structure and function of the rhizosphere microbial community.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49129975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to assess the feasibility of a novel weeding and fertilization scheme, namely, mechanical weeding plus a one-time deep application of a reduced amount of slow-release fertilizer for rice cultivation. The effects of the weeding and fertilization method on rice yield and quality were investigated using a split plot test as the research method. Two weeding methods, namely, chemical weeding (CW) and mechanical weeding (MW), and four fertilization methods were tested, including the conventional fertilization method (quantitative split broadcast application of fast-release N fertilizer (CK)), the quantitative split broadcast application of 80% fast-release N fertilizer (LCK), the one-time base application of slow-release fertilizer (SR), and the one-time deep application of 80% slow-release fertilizer (LSR). The results showed that the rice yield under MW with LSR treatment can maintain a high level—higher than 9.2 t ha−1 per year. This was attributed to the slow-release fertilizer and deep fertilization, which increased the number of stems and tillers in the pre-fertility and spike rate, respectively, resulting in a high panicle number with a 20% reduction of N fertilizer. Furthermore, mechanical weeding improved the seed-setting rate, resulting in a higher number of grains per panicle, a higher panicle number, and an increased thousand-grain weight, thereby maintaining a high yield. At the same time, the quality of rice under MW with LSR treatment improved, specifically reflected in the significant improvement of the processing and appearance quality of rice, a slight increase in protein content, and a reduction in the amylose content, thereby improving its nutritional quality while maintaining good cooking quality.
本研究旨在评估一种新的除草和施肥方案的可行性,即机械除草加上一次性深层施用少量缓释肥料用于水稻种植。以裂区试验为研究方法,研究了除草施肥对水稻产量和品质的影响。试验了两种除草方法,即化学除草(CW)和机械除草(MW),以及四种施肥方法,包括常规施肥方法(速释氮肥(CK)的定量分播施用)、80%速释氮肥,以及一次性深层施用80%缓释肥料(LSR)。结果表明,LSR处理在MW条件下的水稻产量可以保持较高水平,每年高于9.2 t ha−1。这归因于缓释肥和深施肥,分别增加了预育期和穗率中的茎数和分蘖数,导致穗数高,氮肥减少20%。此外,机械除草提高了结实率,使每穗粒数增加,穗数增加,千粒重增加,从而保持了高产。同时,经过LSR处理的MW下的大米质量有所改善,具体表现为大米的加工和外观质量显著提高,蛋白质含量略有增加,直链淀粉含量降低,从而在保持良好烹饪质量的同时提高了其营养质量。
{"title":"Effects of a Novel Weeding and Fertilization Scheme on Yield and Quality of Rice","authors":"Yangjie Shi, Xinhui Cheng, Xiaobo Xi, Wenan Weng, Baofeng Zhang, Jianfeng Zhang, Ruihong Zhang","doi":"10.3390/agronomy13092269","DOIUrl":"https://doi.org/10.3390/agronomy13092269","url":null,"abstract":"This study aimed to assess the feasibility of a novel weeding and fertilization scheme, namely, mechanical weeding plus a one-time deep application of a reduced amount of slow-release fertilizer for rice cultivation. The effects of the weeding and fertilization method on rice yield and quality were investigated using a split plot test as the research method. Two weeding methods, namely, chemical weeding (CW) and mechanical weeding (MW), and four fertilization methods were tested, including the conventional fertilization method (quantitative split broadcast application of fast-release N fertilizer (CK)), the quantitative split broadcast application of 80% fast-release N fertilizer (LCK), the one-time base application of slow-release fertilizer (SR), and the one-time deep application of 80% slow-release fertilizer (LSR). The results showed that the rice yield under MW with LSR treatment can maintain a high level—higher than 9.2 t ha−1 per year. This was attributed to the slow-release fertilizer and deep fertilization, which increased the number of stems and tillers in the pre-fertility and spike rate, respectively, resulting in a high panicle number with a 20% reduction of N fertilizer. Furthermore, mechanical weeding improved the seed-setting rate, resulting in a higher number of grains per panicle, a higher panicle number, and an increased thousand-grain weight, thereby maintaining a high yield. At the same time, the quality of rice under MW with LSR treatment improved, specifically reflected in the significant improvement of the processing and appearance quality of rice, a slight increase in protein content, and a reduction in the amylose content, thereby improving its nutritional quality while maintaining good cooking quality.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49212149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.3390/agronomy13092277
Ewa Ropelewska, A. Skwiercz, M. Sobczak
Cyst nematodes are plant parasitic nematodes infecting crops, causing extensive crop damage and annual losses, and affecting food production. The precise species identification is significant to initiate their control. The repeatable, less expensive, and less laborious distinguishing cyst nematode species using image processing and artificial intelligence can be advantageous. The objective of this study was to distinguish cyst nematodes belonging to the species Globodera pallida, Globodera rostochiensis, and Heterodera schachtii based on image parameters using artificial neural networks (ANN). The application of parameters selected from a set of 2172 textures of images in color channels L, a, b, X, Y, Z, R, G, B, V, U, and S to build classification models using a narrow neural network, medium neural network, wide neural network, trilayered neural network, WiSARD, multilayer perceptron, and RBF network is a great novelty of the present study. Algorithms allowed for distinguishing cyst nematode species with an average accuracy reaching 89.67% for a model developed using WiSARD. The highest correctness was obtained for H. schachtii and this species was distinguished from each other with the highest accuracy of 95–98% depending on the classifier. Whereas the highest number of misclassified cases occurred between G. pallida, G. rostochiensis belonging to the same genus Globodera. The developed procedure involving image parameters and artificial neural networks can be useful for non-destructive and objective distinguishing cyst nematode species.
{"title":"Distinguishing Cyst Nematode Species Using Image Textures and Artificial Neural Networks","authors":"Ewa Ropelewska, A. Skwiercz, M. Sobczak","doi":"10.3390/agronomy13092277","DOIUrl":"https://doi.org/10.3390/agronomy13092277","url":null,"abstract":"Cyst nematodes are plant parasitic nematodes infecting crops, causing extensive crop damage and annual losses, and affecting food production. The precise species identification is significant to initiate their control. The repeatable, less expensive, and less laborious distinguishing cyst nematode species using image processing and artificial intelligence can be advantageous. The objective of this study was to distinguish cyst nematodes belonging to the species Globodera pallida, Globodera rostochiensis, and Heterodera schachtii based on image parameters using artificial neural networks (ANN). The application of parameters selected from a set of 2172 textures of images in color channels L, a, b, X, Y, Z, R, G, B, V, U, and S to build classification models using a narrow neural network, medium neural network, wide neural network, trilayered neural network, WiSARD, multilayer perceptron, and RBF network is a great novelty of the present study. Algorithms allowed for distinguishing cyst nematode species with an average accuracy reaching 89.67% for a model developed using WiSARD. The highest correctness was obtained for H. schachtii and this species was distinguished from each other with the highest accuracy of 95–98% depending on the classifier. Whereas the highest number of misclassified cases occurred between G. pallida, G. rostochiensis belonging to the same genus Globodera. The developed procedure involving image parameters and artificial neural networks can be useful for non-destructive and objective distinguishing cyst nematode species.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41636270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chinese cabbage (Brassica rapa L. ssp. Pekinensis) in the genus Brassica of the family Brassicaceae (Cruciferae) originates from China and is one of the most consumed leafy vegetables in East Asian countries. The leaf color is tightly linked with its growth, development, and yield. By screening an EMS mutagenized population of Chinese cabbage inbred line A03, we identified a yellowgreen leaf mutant ygl. This mutant developed abnormal ultrastructure in chloroplasts. Transcriptome and Gene Ontology (GO) analyses unveiled that abiotic stress response and glucan metabolism pathways were enriched in ygl compared to A03. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis reveals that differentially expressed genes were mainly associated with plant hormone signal transduction, photosynthesis, and starch and sucrose metabolism. In ygl, the expression of some photosynthetic pathway genes was significantly up-regulated, while the transcription of key genes related to carbon fixation, starch syntheses, and sugar metabolism pathways, such as RBCS1A, APS1, APL3, and SUS1, was markedly down-regulated. We also found a similar reduction trend in mRNA levels of IAA19, IAA29, and ARR4 associated with auxin and cytokinin pathways. Taken together, we uncovered transcriptional profiles for some important genes that may be responsible for leaf color development, and such gene expression repertoire may be useful for further investigation into the phenotype-to-genotype link in the ygl mutant Chinese cabbage.
{"title":"Transcriptome Analysis Reveals Association of Photosynthesis and Phytohormone Pathways with Leaf Color in Chinese Cabbage","authors":"Guanghuan Li, Hao Liang, Xiaowei Ren, Wei Ma, Yin Lu, Ziyang Zhang, Zengfeng Wang, Tiantian Zhao, Jianjun Zhao","doi":"10.3390/agronomy13092273","DOIUrl":"https://doi.org/10.3390/agronomy13092273","url":null,"abstract":"Chinese cabbage (Brassica rapa L. ssp. Pekinensis) in the genus Brassica of the family Brassicaceae (Cruciferae) originates from China and is one of the most consumed leafy vegetables in East Asian countries. The leaf color is tightly linked with its growth, development, and yield. By screening an EMS mutagenized population of Chinese cabbage inbred line A03, we identified a yellowgreen leaf mutant ygl. This mutant developed abnormal ultrastructure in chloroplasts. Transcriptome and Gene Ontology (GO) analyses unveiled that abiotic stress response and glucan metabolism pathways were enriched in ygl compared to A03. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis reveals that differentially expressed genes were mainly associated with plant hormone signal transduction, photosynthesis, and starch and sucrose metabolism. In ygl, the expression of some photosynthetic pathway genes was significantly up-regulated, while the transcription of key genes related to carbon fixation, starch syntheses, and sugar metabolism pathways, such as RBCS1A, APS1, APL3, and SUS1, was markedly down-regulated. We also found a similar reduction trend in mRNA levels of IAA19, IAA29, and ARR4 associated with auxin and cytokinin pathways. Taken together, we uncovered transcriptional profiles for some important genes that may be responsible for leaf color development, and such gene expression repertoire may be useful for further investigation into the phenotype-to-genotype link in the ygl mutant Chinese cabbage.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42389640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.3390/agronomy13092272
Xiaojuan Wang, L. Wang, Tianle Wang
The long-term and excessive use of mineral fertilizers in a semi-arid region with severe water shortage will lead to soil compaction and poor water-holding capacity. The fertilization method of manure instead of mineral fertilizer has attracted wide attention. It has adverse consequences for the growth and development of crops. Hence, the objective of this study was to determine how replacing mineral fertilizer with manure affects the soil water retention curve, soil water constant, soil water availability, and soil equivalent pore size distribution, and to seek the best scheme of applying manure in semi-arid area and provide theoretical a basis for improving soil water retention capacity. Here, 0% (CK), 25% (M25), 50% (M50), 75% (M75), and 100% (M100) of 225 kg ha−1 nitrogen from mineral fertilizer were replaced with equivalent nitrogen from manure in the Loess Plateau of China under semi-arid conditions. The centrifuge method was used to determine the soil volumetric water content under different water suction levels, and the Gardner model was used to fit and draw its soil water retention curve, and then calculate the soil water constant and equivalent pore size distribution. The results showed that the Gardner model fitted well. The soil saturated water content with the M100 treatment was the highest, whereas the specific water capacity, water availability, and soil porosity with the M75 treatment were the highest. The soil saturated water content showed a downward trend with the increase in nitrogen from manure instead of nitrogen from mineral fertilizer in the partial replacement treatments. This downward trend slowed down over time. The M75 treatment increased field capacity. The M100 treatment increased soil capillary porosity, soil available water porosity, and soil water availability compared with CK from the fifth fertilization. Replacement treatments increased the specific water capacity, soil saturated water content, soil water availability, soil porosity, and reduced the wilting point over time. In the replacement treatments, specific soil water capacity, soil water availability, and soil porosity first rose and then declined with the increase in nitrogen provided by manure replacing that provided by mineral fertilizer. Therefore, the soil water holding capacity and water supply capacity with the M75 treatment were the best.
在缺水严重的半干旱地区,长期过度使用矿物肥料会导致土壤压实和持水能力差。肥料代替矿物肥料的施肥方法引起了广泛关注。它对作物的生长发育产生不利影响。因此,本研究的目的是确定以粪肥替代矿物肥对土壤保水曲线、土壤水分常数、土壤水分有效性和土壤等效孔径分布的影响,寻求半干旱地区施用粪肥的最佳方案,为提高土壤保水能力提供理论依据。在中国黄土高原半干旱条件下,225 kg ha−1矿物肥料中的氮分别为0%(CK)、25%(M25)、50%(M50)、75%(M75)和100%(M100)。采用离心法测定不同吸水水平下的土壤体积含水量,采用Gardner模型拟合绘制其土壤持水曲线,计算土壤水分常数和等效孔径分布。结果表明,Gardner模型拟合良好。M100处理的土壤饱和含水量最高,而M75处理的比水容量、水分有效性和土壤孔隙度最高。在部分替代处理中,土壤饱和含水量随肥料施氮量的增加而呈下降趋势。这种下降趋势随着时间的推移而减缓。M75处理增加了田间容量。从第五次施肥开始,M100处理与对照相比,增加了土壤毛细管孔隙度、土壤有效水孔隙度和土壤水分有效性。随着时间的推移,置换处理增加了土壤的比含水量、饱和含水量、土壤水分有效性、土壤孔隙度,并降低了枯萎点。在置换处理中,土壤比持水量、土壤水分有效性和土壤孔隙度随着肥料提供的氮的增加而先上升后下降。因此,M75处理的土壤持水能力和供水能力最好。
{"title":"Effect of Replacing Mineral Fertilizer with Manure on Soil Water Retention Capacity in a Semi-Arid Region","authors":"Xiaojuan Wang, L. Wang, Tianle Wang","doi":"10.3390/agronomy13092272","DOIUrl":"https://doi.org/10.3390/agronomy13092272","url":null,"abstract":"The long-term and excessive use of mineral fertilizers in a semi-arid region with severe water shortage will lead to soil compaction and poor water-holding capacity. The fertilization method of manure instead of mineral fertilizer has attracted wide attention. It has adverse consequences for the growth and development of crops. Hence, the objective of this study was to determine how replacing mineral fertilizer with manure affects the soil water retention curve, soil water constant, soil water availability, and soil equivalent pore size distribution, and to seek the best scheme of applying manure in semi-arid area and provide theoretical a basis for improving soil water retention capacity. Here, 0% (CK), 25% (M25), 50% (M50), 75% (M75), and 100% (M100) of 225 kg ha−1 nitrogen from mineral fertilizer were replaced with equivalent nitrogen from manure in the Loess Plateau of China under semi-arid conditions. The centrifuge method was used to determine the soil volumetric water content under different water suction levels, and the Gardner model was used to fit and draw its soil water retention curve, and then calculate the soil water constant and equivalent pore size distribution. The results showed that the Gardner model fitted well. The soil saturated water content with the M100 treatment was the highest, whereas the specific water capacity, water availability, and soil porosity with the M75 treatment were the highest. The soil saturated water content showed a downward trend with the increase in nitrogen from manure instead of nitrogen from mineral fertilizer in the partial replacement treatments. This downward trend slowed down over time. The M75 treatment increased field capacity. The M100 treatment increased soil capillary porosity, soil available water porosity, and soil water availability compared with CK from the fifth fertilization. Replacement treatments increased the specific water capacity, soil saturated water content, soil water availability, soil porosity, and reduced the wilting point over time. In the replacement treatments, specific soil water capacity, soil water availability, and soil porosity first rose and then declined with the increase in nitrogen provided by manure replacing that provided by mineral fertilizer. Therefore, the soil water holding capacity and water supply capacity with the M75 treatment were the best.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44516045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.3390/agronomy13092275
Karen Brigitte Mejía-Correal, Víctor Marcelo, E. Sanz‐Ablanedo, J. R. Rodríguez-Pérez
Total soluble solids (TSS) is a key variable taken into account in determining optimal grape maturity for harvest. In this work, partial least square (PLS) regression models were developed to estimate TSS content for Godello, Verdejo (white), Mencía, and Tempranillo (red) grape varieties based on diffuse spectroscopy measurements. To identify the most suitable spectral range for TSS prediction, the regression models were calibrated for four datasets that included the following spectral ranges: 400–700 nm (visible), 701–1000 nm (near infrared), 1001–2500 nm (short wave infrared) and 400–2500 nm (the entire spectral range). We also tested the standard normal variate transformation technique. Leave-one-out cross-validation was implemented to evaluate the regression models, using the root mean square error (RMSE), coefficient of determination (R2), ratio of performance to deviation (RPD), and the number of factors (F) as evaluation metrics. The regression models for the red varieties were generally more accurate than the models of those for the white varieties. The best regression model was obtained for Mencía (red): R2 = 0.72, RMSE = 0.55 °Brix, RPD = 1.87, and factors n = 7. For white grapes, the best result was achieved for Godello: R2 = 0.75, RMSE = 0.98 °Brix, RPD = 1.97, and factors n = 7. The methodology used and the results obtained show that it is possible to estimate TSS content in grapes using diffuse spectroscopy and regression models that use reflectance values as predictor variables. Spectroscopy is a non-invasive and efficient technique for determining optimal grape maturity for harvest.
{"title":"Total Soluble Solids in Grape Must Estimation Using VIS-NIR-SWIR Reflectance Measured in Fresh Berries","authors":"Karen Brigitte Mejía-Correal, Víctor Marcelo, E. Sanz‐Ablanedo, J. R. Rodríguez-Pérez","doi":"10.3390/agronomy13092275","DOIUrl":"https://doi.org/10.3390/agronomy13092275","url":null,"abstract":"Total soluble solids (TSS) is a key variable taken into account in determining optimal grape maturity for harvest. In this work, partial least square (PLS) regression models were developed to estimate TSS content for Godello, Verdejo (white), Mencía, and Tempranillo (red) grape varieties based on diffuse spectroscopy measurements. To identify the most suitable spectral range for TSS prediction, the regression models were calibrated for four datasets that included the following spectral ranges: 400–700 nm (visible), 701–1000 nm (near infrared), 1001–2500 nm (short wave infrared) and 400–2500 nm (the entire spectral range). We also tested the standard normal variate transformation technique. Leave-one-out cross-validation was implemented to evaluate the regression models, using the root mean square error (RMSE), coefficient of determination (R2), ratio of performance to deviation (RPD), and the number of factors (F) as evaluation metrics. The regression models for the red varieties were generally more accurate than the models of those for the white varieties. The best regression model was obtained for Mencía (red): R2 = 0.72, RMSE = 0.55 °Brix, RPD = 1.87, and factors n = 7. For white grapes, the best result was achieved for Godello: R2 = 0.75, RMSE = 0.98 °Brix, RPD = 1.97, and factors n = 7. The methodology used and the results obtained show that it is possible to estimate TSS content in grapes using diffuse spectroscopy and regression models that use reflectance values as predictor variables. Spectroscopy is a non-invasive and efficient technique for determining optimal grape maturity for harvest.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43727031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.3390/agronomy13092282
Aleksandra Perčin, Ž. Zgorelec, T. Karažija, I. Kisić, Nikolina Župan, I. Šestak
According to the Scopus database, over the last five years, 91 scientific papers with the keyword “pXRF” (portable X-ray fluorescence) were published in indexed journals in the domain of environmental science and agricultural science, which indicates more frequent applications of this technique in scientific research. The pXRF method is characterized by speed, precision, accuracy, and the possibility of a simultaneous analysis of a large number of elements, albeit with higher limits of detection (LODs) as a major disadvantage. The presence of metals in certain phosphate fertilizers is well established, though not to the same extent as in mineral nitrogen fertilizers. The aim of this research was to determine the metal content (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sr, Th, U, Zn, Zr, and Y) in thirteen commercial mineral nitrogen fertilizers via the pXRF method. Six straight fertilizers (ammonium nitrate, ammonium sulphate nitrate, limestone ammonium, nitrate, and urea) and seven complex fertilizers (various NPK formulations), which are different even according to their production technology, produced in Croatia were analyzed using the handheld Vanta C (Olympus) XRF analyzer according to the loose powder method and “point and shoot” technique. Data quality control was performed by analyzing the reference fertilizer samples and certified and reference soil samples. The results revealed that the determined contents of Cd, Mn, and Th were relatively higher in the single-component fertilizers, while the contents of As, Cr, Fe, Ni, Si, Sr, Zn, Zr, Y, and U were relatively higher in the complex fertilizers. Due to the higher LODs of Co and Pb (3 mg/kg) and Mo (2 mg/kg), the pXRF method was not appropriate for the determination of these metals in the analyzed fertilizers. The quantified metal content in the analyzed fertilizers varied as follows: 2.0–8.0 mg As/kg; 11.5–31.3 mg Cd/kg; 29.8–118.5 mg Cr/kg; 7.8–26.3 mg Cu/kg; 16.5–2209 mg Fe/kg; 20.3–5290 mg Mn/kg; 6.2–27.8 mg Ni/kg; 1156–4581 mg Si/kg; 2.0–469.8 mg Sr/kg; 3.0–35.3 mg Th/kg; 2.0–82.8 mg U/kg; 1.4–166 mg Zn/kg; 9.7–15.3 mg Zr/kg; and 16.5–128.0 mg Y/kg. The results indicated that the pXRF method is particularly suitable for measurement and metal detection in complex nitrogen mineral fertilizers with higher amounts of metals, but it is not suitable for the detection and quantification of the lower amounts of As, Zr, Y, Cu, Ni, and Cr in single-component nitrogen fertilizers. Compared to all of the investigated fertilizers, the highest amounts of As, Cr, Cu, Fe, Ni, U, Zn, and Zr were quantified in the NPK 7-20-30 formulation.
{"title":"Metals Contained in Various Formulations of Mineral Nitrogen Fertilizers Determined Using Portable X-ray Fluorescence","authors":"Aleksandra Perčin, Ž. Zgorelec, T. Karažija, I. Kisić, Nikolina Župan, I. Šestak","doi":"10.3390/agronomy13092282","DOIUrl":"https://doi.org/10.3390/agronomy13092282","url":null,"abstract":"According to the Scopus database, over the last five years, 91 scientific papers with the keyword “pXRF” (portable X-ray fluorescence) were published in indexed journals in the domain of environmental science and agricultural science, which indicates more frequent applications of this technique in scientific research. The pXRF method is characterized by speed, precision, accuracy, and the possibility of a simultaneous analysis of a large number of elements, albeit with higher limits of detection (LODs) as a major disadvantage. The presence of metals in certain phosphate fertilizers is well established, though not to the same extent as in mineral nitrogen fertilizers. The aim of this research was to determine the metal content (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sr, Th, U, Zn, Zr, and Y) in thirteen commercial mineral nitrogen fertilizers via the pXRF method. Six straight fertilizers (ammonium nitrate, ammonium sulphate nitrate, limestone ammonium, nitrate, and urea) and seven complex fertilizers (various NPK formulations), which are different even according to their production technology, produced in Croatia were analyzed using the handheld Vanta C (Olympus) XRF analyzer according to the loose powder method and “point and shoot” technique. Data quality control was performed by analyzing the reference fertilizer samples and certified and reference soil samples. The results revealed that the determined contents of Cd, Mn, and Th were relatively higher in the single-component fertilizers, while the contents of As, Cr, Fe, Ni, Si, Sr, Zn, Zr, Y, and U were relatively higher in the complex fertilizers. Due to the higher LODs of Co and Pb (3 mg/kg) and Mo (2 mg/kg), the pXRF method was not appropriate for the determination of these metals in the analyzed fertilizers. The quantified metal content in the analyzed fertilizers varied as follows: 2.0–8.0 mg As/kg; 11.5–31.3 mg Cd/kg; 29.8–118.5 mg Cr/kg; 7.8–26.3 mg Cu/kg; 16.5–2209 mg Fe/kg; 20.3–5290 mg Mn/kg; 6.2–27.8 mg Ni/kg; 1156–4581 mg Si/kg; 2.0–469.8 mg Sr/kg; 3.0–35.3 mg Th/kg; 2.0–82.8 mg U/kg; 1.4–166 mg Zn/kg; 9.7–15.3 mg Zr/kg; and 16.5–128.0 mg Y/kg. The results indicated that the pXRF method is particularly suitable for measurement and metal detection in complex nitrogen mineral fertilizers with higher amounts of metals, but it is not suitable for the detection and quantification of the lower amounts of As, Zr, Y, Cu, Ni, and Cr in single-component nitrogen fertilizers. Compared to all of the investigated fertilizers, the highest amounts of As, Cr, Cu, Fe, Ni, U, Zn, and Zr were quantified in the NPK 7-20-30 formulation.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45576881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.3390/agronomy13092267
N. Song, Xiaojun Shen, Jinglei Wang, Pengxiang Wang, Ruochen Yi
The objective of this research was to improve the accuracy and representativeness of experimental plot studies by determining the optimum plot area and replication number for winter wheat with border irrigation. Considering the spatial distribution of soil water content, the border effect in relation to crop growth, and the lateral seepage of soil water, we sought to study and optimize the area and specifications of irrigation experiment plots with different levels and replicates. The results show that the experimental irrigation plot consisted of two parts—the core area and the guard area. The most suitable area for the experiment plot core area, with a single level and without replicates, was 60–80 m2. The core experimental area can be arranged with two replicates per 40 m2, with differences in soil moisture content between the treatments reaching more than 15% at the two experiment levels. Each plot comprised two replicates, or if they were 20 m2, then they contained three replicates; when the soil moisture contents differed between 10% and 15%, the area of each replicate plot was 80 m2, comprising two replicates, or 30 m2 with three replicates. When the difference in soil moisture content between the treatments exceeded 15% with the three experimental levels, the area of each plot was 30 m2 and they contained two replicates, or 20 m2 containing three replicates; at differences of 10% to 15%, each replicate plot was 50 m2 containing two replicates, or 30 m2 with three replicates. The experimental plots were rectangular, with irrigation furrows dug lengthwise; therefore, the plots had aspect ratios between 7:1 and 5:1. The width of the buffer area was over 60 cm. The effect of the border on plant height and LAI for winter wheat primarily emerged with one to three rows (20–60 cm) at the jointing stage, while the effect on grain yield and biomass in winter wheat mainly emerged with one to two rows (20–40 cm). The conclusions of this research will inform the development of surface irrigation methods for silt loam in northern Henan, as a reference for optimizing experiment plots employing border irrigation with different soil textures.
{"title":"Plot Layout Method of Field Experiment for Wheat with Border Irrigation Based on Soil Water Content Heterogeneity","authors":"N. Song, Xiaojun Shen, Jinglei Wang, Pengxiang Wang, Ruochen Yi","doi":"10.3390/agronomy13092267","DOIUrl":"https://doi.org/10.3390/agronomy13092267","url":null,"abstract":"The objective of this research was to improve the accuracy and representativeness of experimental plot studies by determining the optimum plot area and replication number for winter wheat with border irrigation. Considering the spatial distribution of soil water content, the border effect in relation to crop growth, and the lateral seepage of soil water, we sought to study and optimize the area and specifications of irrigation experiment plots with different levels and replicates. The results show that the experimental irrigation plot consisted of two parts—the core area and the guard area. The most suitable area for the experiment plot core area, with a single level and without replicates, was 60–80 m2. The core experimental area can be arranged with two replicates per 40 m2, with differences in soil moisture content between the treatments reaching more than 15% at the two experiment levels. Each plot comprised two replicates, or if they were 20 m2, then they contained three replicates; when the soil moisture contents differed between 10% and 15%, the area of each replicate plot was 80 m2, comprising two replicates, or 30 m2 with three replicates. When the difference in soil moisture content between the treatments exceeded 15% with the three experimental levels, the area of each plot was 30 m2 and they contained two replicates, or 20 m2 containing three replicates; at differences of 10% to 15%, each replicate plot was 50 m2 containing two replicates, or 30 m2 with three replicates. The experimental plots were rectangular, with irrigation furrows dug lengthwise; therefore, the plots had aspect ratios between 7:1 and 5:1. The width of the buffer area was over 60 cm. The effect of the border on plant height and LAI for winter wheat primarily emerged with one to three rows (20–60 cm) at the jointing stage, while the effect on grain yield and biomass in winter wheat mainly emerged with one to two rows (20–40 cm). The conclusions of this research will inform the development of surface irrigation methods for silt loam in northern Henan, as a reference for optimizing experiment plots employing border irrigation with different soil textures.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43906884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.3390/agronomy13092276
Jinfeng Hu, F. Chen, Jun Wang, Wenhua Rao, Lei Lin, G. Fan
The green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is an economically devastating crop pest worldwide. The M. persicae (SEF-R) population of a cabbage field in China was tested for susceptibilities to 13 insecticides. Compared with the susceptible population (FFJ-S), extremely high and high resistance to beta-cypermethrin (324-fold) and imidacloprid (106.9-fold) was detected in SEF-R. More importantly, this is the first report of resistance in the field M. persicae population to sulfoxaflor (32.4-fold), flupyradifurone (9.5-fold), pymetrozine (34.8-fold), spirotetramat (8.1-fold), flonicamid (5.8-fold), and broflanilide (15.8-fold) in China when compared with FFJ-S. The resistance factor decayed to a low level to sulfoxaflor and pymetrozine after 15 generations without any selection pressure. The resistance-related mutations (R81T and kdr) detected in SEF indicated target-site resistance to neonicotinoids and pyrethroids, respectively. Biochemical assays revealed the involvement of monooxygenase, carboxylesterase, superoxide dismutase, and peroxidase in a multi-insecticide resistance mechanism. The overexpression of P450s, esterases, and a UDP-glycosyltransferase might be responsible for the multi-insecticide resistance in SEF-R. The knockdown of CYP6CY3 in SEF-R increased its susceptibility to imidacloprid, thiacloprid, and thiamethoxam, which verified that P450s play vital roles in neonicotinoid metabolism. Our findings provide guidance for the rational use of insecticides to delay resistance development in GPA.
{"title":"Multiple Insecticide Resistance and Associated Metabolic-Based Mechanisms in a Myzus Persicae (Sulzer) Population","authors":"Jinfeng Hu, F. Chen, Jun Wang, Wenhua Rao, Lei Lin, G. Fan","doi":"10.3390/agronomy13092276","DOIUrl":"https://doi.org/10.3390/agronomy13092276","url":null,"abstract":"The green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is an economically devastating crop pest worldwide. The M. persicae (SEF-R) population of a cabbage field in China was tested for susceptibilities to 13 insecticides. Compared with the susceptible population (FFJ-S), extremely high and high resistance to beta-cypermethrin (324-fold) and imidacloprid (106.9-fold) was detected in SEF-R. More importantly, this is the first report of resistance in the field M. persicae population to sulfoxaflor (32.4-fold), flupyradifurone (9.5-fold), pymetrozine (34.8-fold), spirotetramat (8.1-fold), flonicamid (5.8-fold), and broflanilide (15.8-fold) in China when compared with FFJ-S. The resistance factor decayed to a low level to sulfoxaflor and pymetrozine after 15 generations without any selection pressure. The resistance-related mutations (R81T and kdr) detected in SEF indicated target-site resistance to neonicotinoids and pyrethroids, respectively. Biochemical assays revealed the involvement of monooxygenase, carboxylesterase, superoxide dismutase, and peroxidase in a multi-insecticide resistance mechanism. The overexpression of P450s, esterases, and a UDP-glycosyltransferase might be responsible for the multi-insecticide resistance in SEF-R. The knockdown of CYP6CY3 in SEF-R increased its susceptibility to imidacloprid, thiacloprid, and thiamethoxam, which verified that P450s play vital roles in neonicotinoid metabolism. Our findings provide guidance for the rational use of insecticides to delay resistance development in GPA.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41371968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}