Pub Date : 2024-06-17DOI: 10.1007/s10698-024-09512-2
Cristina Spolti Lorenzetti, Anabel Cardoso Raicik, Luiz O. Q. Peduzzi
The theme surrounding scientific discoveries is quite neglected in and about the sciences, especially in terms of historical and epistemological understanding. Discoveries are often treated as simple information about dates, places, and people. This work presents discussions centered on historical episodes related to chemical elements and the Periodic Law, based on reflections by Thomas Kuhn and Norwood Hanson, aiming to highlight and contextualize specific scientific discoveries' conceptual and epistemological structure. With that in mind, issues related to the inseparability of the contexts of discovery and justification are recovered, along with the complex intrinsic structures of the genesis of scientific knowledge and distinct types and categories of scientific discoveries.
{"title":"Periodic law, chemical elements and scientific discoveries: considerations from Norwood Hanson and Thomas Kuhn","authors":"Cristina Spolti Lorenzetti, Anabel Cardoso Raicik, Luiz O. Q. Peduzzi","doi":"10.1007/s10698-024-09512-2","DOIUrl":"https://doi.org/10.1007/s10698-024-09512-2","url":null,"abstract":"<p>The theme surrounding scientific discoveries is quite neglected in and about the sciences, especially in terms of historical and epistemological understanding. Discoveries are often treated as simple information about dates, places, and people. This work presents discussions centered on historical episodes related to chemical elements and the Periodic Law, based on reflections by Thomas Kuhn and Norwood Hanson, aiming to highlight and contextualize specific scientific discoveries' conceptual and epistemological structure. With that in mind, issues related to the inseparability of the contexts of discovery and justification are recovered, along with the complex intrinsic structures of the genesis of scientific knowledge and distinct types and categories of scientific discoveries.</p>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1007/s10698-024-09509-x
Kamna Sharma, Deepak Kumar Das, Saibal Ray
In this paper, we present a bibliometric analysis of the Periodic Table. We have conducted a comprehensive analysis of Scopus based database using the keyword “Mendeleev Periodic Table". Our findings suggest that the Periodic Table is an influential topic in the field of Inorganic as well as Organic Chemistry. Areas for future research could include on expanding our analysis to include other bibliometric indicators to gain a more comprehensive understanding of the impact of the Periodic Table in the chemistry-based scientific investigations and even in the field of astrochemistry, which explores chemical processes in space, is intricately linked to fundamental chemistry. In this context, the quote of Carl Sagan is relevant where he eloquently expressed an inherent connection between chemistry and astrophysics: “The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars.” In the ongoing study we have presented a ground level investigation of the conjecture of Sagan via Periodic Table based on bibliometric analysis whereas in the next level our aim is to present the stellar connection of it through Hertzsprung-Russel diagram as well as cluster of stars. The Periodic Table holistically serves as a foundational platform for understanding chemical elements both on the Earth and in celestial bodies. The present investigation fundamentally identifies the main working field of research and lays the groundwork for potential connections to astrochemical studies.
在本文中,我们对元素周期表进行了文献计量分析。我们使用关键词 "门捷列夫周期表 "对基于 Scopus 的数据库进行了全面分析。我们的研究结果表明,元素周期表在无机化学和有机化学领域都是一个有影响力的主题。今后的研究领域可以包括扩大我们的分析范围,纳入其他文献计量指标,以便更全面地了解元素周期表在以化学为基础的科学研究中的影响,甚至在探索空间化学过程的天体化学领域的影响。在这方面,卡尔-萨根(Carl Sagan)的一句话很有意义,他雄辩地表达了化学与天体物理学之间的内在联系:"我们 DNA 中的氮、我们牙齿中的钙、我们血液中的铁、我们苹果派中的碳都是在坍缩恒星的内部产生的"。在正在进行的研究中,我们通过基于文献计量学分析的元素周期表对萨根的猜想进行了基础研究,而在下一阶段,我们的目标是通过赫兹普朗-鲁塞尔图和星团来展示其与恒星的联系。从整体上看,元素周期表是了解地球和天体中化学元素的基础平台。本次调查从根本上确定了研究的主要工作领域,并为与天体化学研究的潜在联系奠定了基础。
{"title":"Research status of the periodic table: a bibliometric analysis","authors":"Kamna Sharma, Deepak Kumar Das, Saibal Ray","doi":"10.1007/s10698-024-09509-x","DOIUrl":"10.1007/s10698-024-09509-x","url":null,"abstract":"<div><p>In this paper, we present a bibliometric analysis of the Periodic Table. We have conducted a comprehensive analysis of Scopus based database using the keyword “Mendeleev Periodic Table\". Our findings suggest that the Periodic Table is an influential topic in the field of Inorganic as well as Organic Chemistry. Areas for future research could include on expanding our analysis to include other bibliometric indicators to gain a more comprehensive understanding of the impact of the Periodic Table in the chemistry-based scientific investigations and even in the field of astrochemistry, which explores chemical processes in space, is intricately linked to fundamental chemistry. In this context, the quote of Carl Sagan is relevant where he eloquently expressed an inherent connection between chemistry and astrophysics: “The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars.” In the ongoing study we have presented a ground level investigation of the conjecture of Sagan via Periodic Table based on bibliometric analysis whereas in the next level our aim is to present the stellar connection of it through Hertzsprung-Russel diagram as well as cluster of stars. The Periodic Table holistically serves as a foundational platform for understanding chemical elements both on the Earth and in celestial bodies. The present investigation fundamentally identifies the main working field of research and lays the groundwork for potential connections to astrochemical studies.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1007/s10698-024-09508-y
Ricardo Vivas-Reyes
In this contribution, the role of epistemology in understanding quantum chemistry is discussed. Quantum chemistry is the study of the behavior of atoms and molecules using the principles of quantum mechanics. Epistemology helps us evaluate claims to knowledge, distinguish between justified and unjustified beliefs, and assess the reliability of scientific methods. In quantum chemistry, the epistemology of knowledge is heavily influenced by the mathematical nature of quantum mechanics, and models can be tested, proven, and validated through experimentation. This paper also discusses key concepts used in quantum chemistry, such as the wave-particle duality of matter and the uncertainty principle. This work utilizes Kant’s philosophy of science to frame debates and discussions in quantum chemistry, particularly with regard to the interplay between empirical observation and theory. Additionally, the text explores how Kant’s ideas about the role of the mind in constructing our understanding of the world can help us comprehend the counterintuitive phenomena of quantum mechanics and its applications in quantum chemistry theory.
{"title":"Clashing perspectives: Kantian epistemology and quantum chemistry theory","authors":"Ricardo Vivas-Reyes","doi":"10.1007/s10698-024-09508-y","DOIUrl":"10.1007/s10698-024-09508-y","url":null,"abstract":"<div><p>In this contribution, the role of epistemology in understanding quantum chemistry is discussed. Quantum chemistry is the study of the behavior of atoms and molecules using the principles of quantum mechanics. Epistemology helps us evaluate claims to knowledge, distinguish between justified and unjustified beliefs, and assess the reliability of scientific methods. In quantum chemistry, the epistemology of knowledge is heavily influenced by the mathematical nature of quantum mechanics, and models can be tested, proven, and validated through experimentation. This paper also discusses key concepts used in quantum chemistry, such as the wave-particle duality of matter and the uncertainty principle. This work utilizes Kant’s philosophy of science to frame debates and discussions in quantum chemistry, particularly with regard to the interplay between empirical observation and theory. Additionally, the text explores how Kant’s ideas about the role of the mind in constructing our understanding of the world can help us comprehend the counterintuitive phenomena of quantum mechanics and its applications in quantum chemistry theory.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-024-09508-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1007/s10698-024-09504-2
Marabel Riesmeier
From organic synthesis to quantum chemical calculation, chemists interact with chemical substances in a wide variety of ways. But what even is a chemical substance? My aim is to propose a notion of chemical substance that is consistent with the way in which chemical substances are individuated in chemistry, addressing gaps in previous conceptions of chemical substance. Water is employed as a case study to develop the account, not only because it is a familiar example of a chemical substance, but also because its structural peculiarities make it an ideal test case for drawing out potential issues and limitations. Examining four distinct views of chemical substance—the microstructural, thermodynamic, purification, and a functional/relational account—I conclude that each has considerable drawbacks when used as a standalone concept. However, these accounts are not rendered obsolete, but are combined into a semi-pluralist conceptual patchwork. My interactive account of chemical substance is consistent with existing substance descriptions and chemical practice.
{"title":"An interactive approach to the notion of chemical substance and the case of water","authors":"Marabel Riesmeier","doi":"10.1007/s10698-024-09504-2","DOIUrl":"https://doi.org/10.1007/s10698-024-09504-2","url":null,"abstract":"<p>From organic synthesis to quantum chemical calculation, chemists interact with chemical substances in a wide variety of ways. But what even is a chemical substance? My aim is to propose a notion of chemical substance that is consistent with the way in which chemical substances are individuated in chemistry, addressing gaps in previous conceptions of chemical substance. Water is employed as a case study to develop the account, not only because it is a familiar example of a chemical substance, but also because its structural peculiarities make it an ideal test case for drawing out potential issues and limitations. Examining four distinct views of chemical substance—the microstructural, thermodynamic, purification, and a functional/relational account—I conclude that each has considerable drawbacks when used as a standalone concept. However, these accounts are not rendered obsolete, but are combined into a semi-pluralist conceptual patchwork. My interactive account of chemical substance is consistent with existing substance descriptions and chemical practice.</p>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
∆Hrxn is the enthalpy change of reaction as measured in a reaction calorimeter and ∆Grxn the change in Gibbs energy as measured, if feasible, in an electrochemical cell by the voltage across the two half-cells. To Gibbs, reaction spontaneity corresponds to negative values of ∆Grxn. But what is T∆Srxn, absolute temperature times the change in entropy? Gibbs stated that this term quantifies the heating/cooling required to maintain constant temperature in an electrochemical cell. Seeking a deeper explanation than this, one involving the behaviors of atoms and molecules that cause these thermodynamic phenomena, I employed an “atoms first” approach to decipher the physical underpinning of T∆Srxn and, in so doing, developed the hypothesis that this term quantifies the change in “structural energy” of the system during a chemical reaction. This hypothesis now challenges me to similarly explain the physical underpinning of the Gibbs–Helmholtz equation
While this equation illustrates a relationship between ∆Grxn and ∆Srxn, I don’t understand how this is so, especially since orbital electron energies that I hypothesize are responsible for ∆Grxn are not directly involved in the entropy determination of atoms and molecules that are responsible for ∆Srxn. I write this paper to both share my progress and also to seek help from any who can clarify this for me.
{"title":"Deciphering the physical meaning of Gibbs’s maximum work equation","authors":"Robert T. Hanlon","doi":"10.1007/s10698-024-09503-3","DOIUrl":"10.1007/s10698-024-09503-3","url":null,"abstract":"<div><p>J. Willard Gibbs derived the following equation to quantify the maximum work possible for a chemical reaction</p><p><span>({text{Maximum work }} = , - Delta {text{G}}_{{{text{rxn}}}} = , - left( {Delta {text{H}}_{{{text{rxn}}}} {-}{text{ T}}Delta {text{S}}_{{{text{rxn}}}} } right) {text{ constant T}},{text{P}})</span></p><p>∆H<sub>rxn</sub> is the enthalpy change of reaction as measured in a reaction calorimeter and ∆G<sub>rxn</sub> the change in Gibbs energy as measured, if feasible, in an electrochemical cell by the voltage across the two half-cells. To Gibbs, reaction spontaneity corresponds to negative values of ∆G<sub>rxn</sub>. But what is T∆S<sub>rxn</sub>, absolute temperature times the change in entropy? Gibbs stated that this term quantifies the heating/cooling required to maintain constant temperature in an electrochemical cell. Seeking a deeper explanation than this, one involving the behaviors of atoms and molecules that cause these thermodynamic phenomena, I employed an “atoms first” approach to decipher the physical underpinning of T∆S<sub>rxn</sub> and, in so doing, developed the hypothesis that this term quantifies the change in “structural energy” of the system during a chemical reaction. This hypothesis now challenges me to similarly explain the physical underpinning of the Gibbs–Helmholtz equation</p><p><span>({text{d}}left( {Delta {text{G}}_{{{text{rxn}}}} } right)/{text{dT}} = - Delta {text{S}}_{{{text{rxn}}}} left( {text{constant P}} right))</span></p><p>While this equation illustrates a relationship between ∆G<sub>rxn</sub> and ∆S<sub>rxn</sub>, I don’t understand how this is so, especially since orbital electron energies that I hypothesize are responsible for ∆G<sub>rxn</sub> are not directly involved in the entropy determination of atoms and molecules that are responsible for ∆S<sub>rxn</sub>. I write this paper to both share my progress and also to seek help from any who can clarify this for me.</p></div>","PeriodicalId":568,"journal":{"name":"Foundations of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10698-024-09503-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-23DOI: 10.1007/s10698-024-09507-z
Mihalj Poša
The new mathematical connection of De Donder’s differential entropy production with the differential changes of thermodynamic potentials (Helmholtz free energy, enthalpy, and Gibbs free energy) was obtained through the linear sequence of equations (direct, straightforward path), in which we use rigorous thermodynamic definitions of the partial molar thermodynamic properties. This new connection uses a global approach to the problem of reversibility and irreversibility, which is vital to global learners’ view and standardizes the linking procedure for thermodynamic potentials (Helmholtz free energy, enthalpy, and and Gibbs free energy)—preferably to the sensing learners. It is shown that De Donder’s differential entropy production in an isolated composite system is equal to the differential change in total entropy and that De Donder’s equation agrees with Clausius’ inequality. The useful work of the irreversible process is discussed, which with the decrease of irreversibility tends towards the hypothetical maximum useful work of the reversible process.