Pub Date : 2025-03-25DOI: 10.1007/s10704-024-00829-9
T. Virazels, S. Lister, O. Levano-Blanch, M. Jackson, J. A. Rodríguez-Martínez, J. C. Nieto-Fuentes
This paper explores the mechanics of high-velocity impact fragmentation in titanium alloys produced by Field-Assisted Sintering Technology. For that purpose, we have utilized the experimental setups recently developed by Nieto-Fuentes et al. (J Mech Phys Solids 174:105248, 2023a; Int J Impact Eng 180:104556, 2023b) for conducting dynamic expansion tests on rings and cylinders. The experiments involve firing a conical-nosed cylindrical projectile using a single-stage ight-gas gun against the stationary ring/cylinder at velocities ranging from (approx 248~text {m}/text {s}) to (approx 390~text {m}/text {s}), corresponding to estimated strain rates in the specimen varying from (approx 10050~text {s}^{-1}) to (approx 19125~text {s}^{-1}). The diameter of the cylindrical part of the projectile exceeds the inner diameter of the ring/cylinder, causing the latter to expand as the projectile moves forward, resulting in the formation of multiple necks and fragments. Two different alloys have been tested: Ti6Al4V and Ti5Al5V5Mo3Cr. These materials are widely utilized in aeronautical and aerospace industries for constructing structural elements such as compressor parts (discs and blades) and Whipple shields, which are frequently exposed to intense mechanical loading, including high-velocity impacts. However, despite the scientific and technological significance of Ti6Al4V and Ti5Al5V5Mo3Cr, and the extensive research on their mechanical and fracture behaviors, to the best of the authors’ knowledge, no systematic study has been conducted thus far on the dynamic fragmentation behavior of these alloys. Hence, this paper presents an ambitious fragmentation testing program, encompassing a total of 27 and 29 experiments on rings and cylinders, respectively. Monolithic and multimaterial samples—half specimen of Ti6Al4V and half specimen of Ti5Al5V5Mo3Cr—have been tested, taking advantage of the ability of Field-Assisted Sintering Technology to produce multimaterial parts. The fragments have been collected, weighed, sized, and analyzed using scanning electron microscopy. The experiments have shown that the number of necks, the number of fragments, and the proportion of necks developing into fragments generally increase with expansion velocity. The average distance between necks has been assessed against the predictions of a linear stability analysis (Zhou et al. in Int J Impact Eng 33:880–891 2006; Vaz-Romero et al. in Int J Solids Struct 125:232–243, 2017), revealing satisfactory agreement between theoretical predictions and experimental results. In addition, the experimental results have been compared with tests reported in the literature for various metals and alloys (Nieto-Fuentes et al. in J Mech Phys Solids 174:105248, 2023a; Zhang and Ravi-Chandar in Int J Fract 142:183–217, 2006, Zhang and Ravi-Chandar in Int J Fract 150:3–36, 2008) to examine the influence of material behavior on the statistics of
本文探讨了现场辅助烧结技术生产的钛合金中高速冲击破碎的力学原理。为此,我们采用了 Nieto-Fuentes 等人最近开发的实验装置(J Mech Phys Solids 174:105248, 2023a;Int J Impact Eng 180:104556, 2023b),对圆环和圆柱体进行动态膨胀试验。实验包括使用单级轻型气枪对静止的圆环/圆柱体发射锥鼻圆柱形弹丸,速度范围为(约248~/text {m}//text {s}/)到(约390~/text {m}//text {s}/)、对应于试样中的估计应变率从10050到19125不等。弹丸圆柱形部分的直径超过了圆环/圆柱体的内径,导致后者在弹丸前进时膨胀,从而形成多个颈部和碎片。已对两种不同的合金进行了测试:Ti6Al4V 和 Ti5Al5V5Mo3Cr。这些材料广泛应用于航空和航天工业,用于制造压缩机部件(盘和叶片)和惠普尔防护罩等结构件,这些部件经常暴露在高强度的机械负荷下,包括高速撞击。然而,尽管 Ti6Al4V 和 Ti5Al5V5Mo3Cr 具有重要的科学和技术意义,并且对其机械和断裂行为进行了广泛研究,但据作者所知,迄今为止还没有对这些合金的动态破碎行为进行过系统研究。因此,本文提出了一个雄心勃勃的碎裂测试计划,分别在环和圆柱体上进行了 27 次和 29 次实验。利用现场辅助烧结技术生产多材料部件的能力,测试了整体和多材料样品--一半是 Ti6Al4V 样品,一半是 Ti5Al5V5Mo3Cr 样品。对碎片进行了收集、称重、确定尺寸,并使用扫描电子显微镜进行了分析。实验结果表明,颈部数量、碎片数量以及颈部变成碎片的比例一般会随着膨胀速度的增加而增加。根据线性稳定性分析(Zhou 等人,载于 Int J Impact Eng 33:880-891 2006;Vaz-Romero 等人,载于 Int J Solids Struct 125:232-243, 2017)的预测,对颈部之间的平均距离进行了评估,结果显示理论预测与实验结果之间的一致性令人满意。此外,实验结果还与文献(Nieto-Fuentes et al. in J Mech Phys Solids 174:105248, 2023a;Zhang and Ravi-Chandar in Int J Fract 142:183-217, 2006;Zhang and Ravi-Chandar in Int J Fract 150:3-36, 2008)中报道的各种金属和合金的测试结果进行了比较,以研究材料行为对碎片尺寸和颈部间距统计的影响。
{"title":"High-velocity fragmentation of titanium alloy rings and cylinders produced using Field-Assisted Sintering Technology","authors":"T. Virazels, S. Lister, O. Levano-Blanch, M. Jackson, J. A. Rodríguez-Martínez, J. C. Nieto-Fuentes","doi":"10.1007/s10704-024-00829-9","DOIUrl":"10.1007/s10704-024-00829-9","url":null,"abstract":"<div><p>This paper explores the mechanics of high-velocity impact fragmentation in titanium alloys produced by Field-Assisted Sintering Technology. For that purpose, we have utilized the experimental setups recently developed by Nieto-Fuentes et al. (J Mech Phys Solids 174:105248, 2023a; Int J Impact Eng 180:104556, 2023b) for conducting dynamic expansion tests on rings and cylinders. The experiments involve firing a conical-nosed cylindrical projectile using a single-stage ight-gas gun against the stationary ring/cylinder at velocities ranging from <span>(approx 248~text {m}/text {s})</span> to <span>(approx 390~text {m}/text {s})</span>, corresponding to estimated strain rates in the specimen varying from <span>(approx 10050~text {s}^{-1})</span> to <span>(approx 19125~text {s}^{-1})</span>. The diameter of the cylindrical part of the projectile exceeds the inner diameter of the ring/cylinder, causing the latter to expand as the projectile moves forward, resulting in the formation of multiple necks and fragments. Two different alloys have been tested: Ti6Al4V and Ti5Al5V5Mo3Cr. These materials are widely utilized in aeronautical and aerospace industries for constructing structural elements such as compressor parts (discs and blades) and Whipple shields, which are frequently exposed to intense mechanical loading, including high-velocity impacts. However, despite the scientific and technological significance of Ti6Al4V and Ti5Al5V5Mo3Cr, and the extensive research on their mechanical and fracture behaviors, to the best of the authors’ knowledge, no systematic study has been conducted thus far on the dynamic fragmentation behavior of these alloys. Hence, this paper presents an ambitious fragmentation testing program, encompassing a total of 27 and 29 experiments on rings and cylinders, respectively. Monolithic and multimaterial samples—half specimen of Ti6Al4V and half specimen of Ti5Al5V5Mo3Cr—have been tested, taking advantage of the ability of Field-Assisted Sintering Technology to produce multimaterial parts. The fragments have been collected, weighed, sized, and analyzed using scanning electron microscopy. The experiments have shown that the number of necks, the number of fragments, and the proportion of necks developing into fragments generally increase with expansion velocity. The average distance between necks has been assessed against the predictions of a linear stability analysis (Zhou et al. in Int J Impact Eng 33:880–891 2006; Vaz-Romero et al. in Int J Solids Struct 125:232–243, 2017), revealing satisfactory agreement between theoretical predictions and experimental results. In addition, the experimental results have been compared with tests reported in the literature for various metals and alloys (Nieto-Fuentes et al. in J Mech Phys Solids 174:105248, 2023a; Zhang and Ravi-Chandar in Int J Fract 142:183–217, 2006, Zhang and Ravi-Chandar in Int J Fract 150:3–36, 2008) to examine the influence of material behavior on the statistics of ","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00829-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-22DOI: 10.1007/s10704-025-00839-1
Surajit Dey, Ravi Kiran
The present study aims to configure and train a data-driven geometry-specific surrogate model (DD GSM) to simulate the load–displacement behavior until fracture in cylindrical notched specimens subjected to uniaxial monotonic tension tests. Plastic strain hardening that governs the load–displacement behavior and ductile fracture in metals are history-dependent phenomena. With this, the load–displacement response until ductile fracture in metals is hypothesized as time sequence data. To test our hypothesis, a long short-term memory (LSTM) based deep neural network was configured and trained. LSTM is a type of neural network that takes sequential data as input and forecasts the future based on the learned past sequential trend. In this study, the trained LSTM network is referred to as DD GSM as it is used to forecast the load–displacement behavior until ductile fracture for the cylindrical notched specimens. The DD GSM is trained using the load–displacement data until fracture, extracted from the finite element analyses of notched cylindrical test specimens made of ASTM A992 steel. The damage leading to fracture was captured using the Gurson–Tvergaard–Needleman (GTN) model. Finally, the trained DD GSM is validated by predicting the overall load–displacement behavior, fracture displacement, and peak load-carrying capacity of cylindrical notched ASTM A992 structural steel specimens available in the literature that are not used for training purposes. The DD GSM was able to forecast some portions of the load–displacement curve and predict the fracture displacement and peak load-carrying capacity of the notched specimens. Furthermore, the geometric sensitivity of the trained DD GSM was demonstrated by simulating the load–displacement response of an ASTM A992 steel bar with a central hole.
{"title":"A data-driven geometry-specific surrogate model for forecasting the load–displacement behavior until ductile fracture","authors":"Surajit Dey, Ravi Kiran","doi":"10.1007/s10704-025-00839-1","DOIUrl":"10.1007/s10704-025-00839-1","url":null,"abstract":"<div><p>The present study aims to configure and train a data-driven geometry-specific surrogate model (DD GSM) to simulate the load–displacement behavior until fracture in cylindrical notched specimens subjected to uniaxial monotonic tension tests. Plastic strain hardening that governs the load–displacement behavior and ductile fracture in metals are history-dependent phenomena. With this, the load–displacement response until ductile fracture in metals is hypothesized as time sequence data. To test our hypothesis, a long short-term memory (LSTM) based deep neural network was configured and trained. LSTM is a type of neural network that takes sequential data as input and forecasts the future based on the learned past sequential trend. In this study, the trained LSTM network is referred to as DD GSM as it is used to forecast the load–displacement behavior until ductile fracture for the cylindrical notched specimens. The DD GSM is trained using the load–displacement data until fracture, extracted from the finite element analyses of notched cylindrical test specimens made of ASTM A992 steel. The damage leading to fracture was captured using the Gurson–Tvergaard–Needleman (GTN) model. Finally, the trained DD GSM is validated by predicting the overall load–displacement behavior, fracture displacement, and peak load-carrying capacity of cylindrical notched ASTM A992 structural steel specimens available in the literature that are not used for training purposes. The DD GSM was able to forecast some portions of the load–displacement curve and predict the fracture displacement and peak load-carrying capacity of the notched specimens. Furthermore, the geometric sensitivity of the trained DD GSM was demonstrated by simulating the load–displacement response of an ASTM A992 steel bar with a central hole.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-18DOI: 10.1007/s10704-025-00848-0
Sida Hao, Rui Huang, Gregory J. Rodin
Within the context of linear elasticity, approximate analytical solutions are developed for the energy release rate for axisymmetric planar cracks in elastic thin layers sandwiched between two rigid plates. These solutions are validated by comparing them with finite element solutions, and they are applicable to cracks in constrained thin layers made of compressible, nearly incompressible, or incompressible materials. These analytical solutions provide insights into the effects of geometry and material compressibility on fracture of thin layers. In particular, stability of crack growth is discussed under both displacement and force-controlled loading conditions, summarized in stability maps. Remarkably, it is found that, under force-controlled conditions, stable crack growth is possible in incompressible or nearly incompressible layers, but not in compressible layers. We compare the energy release rates for embedded and interfacial cracks, showing that they differ when the cracks are small but become approximately equal for large cracks. The analytical approach is further extended to non-axisymmetric planar cracks in compressible thin layers. However, a similar extension does not apply for cracks in incompressible or nearly incompressible layers.
{"title":"Approximate analytical solutions for the energy release rate of planar cracks in constrained elastic thin layers","authors":"Sida Hao, Rui Huang, Gregory J. Rodin","doi":"10.1007/s10704-025-00848-0","DOIUrl":"10.1007/s10704-025-00848-0","url":null,"abstract":"<div><p>Within the context of linear elasticity, approximate analytical solutions are developed for the energy release rate for axisymmetric planar cracks in elastic thin layers sandwiched between two rigid plates. These solutions are validated by comparing them with finite element solutions, and they are applicable to cracks in constrained thin layers made of compressible, nearly incompressible, or incompressible materials. These analytical solutions provide insights into the effects of geometry and material compressibility on fracture of thin layers. In particular, stability of crack growth is discussed under both displacement and force-controlled loading conditions, summarized in stability maps. Remarkably, it is found that, under force-controlled conditions, stable crack growth is possible in incompressible or nearly incompressible layers, but not in compressible layers. We compare the energy release rates for embedded and interfacial cracks, showing that they differ when the cracks are small but become approximately equal for large cracks. The analytical approach is further extended to non-axisymmetric planar cracks in compressible thin layers. However, a similar extension does not apply for cracks in incompressible or nearly incompressible layers.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-17DOI: 10.1007/s10704-025-00847-1
Lei Zhang, Erik van der Giessen, Francesco Maresca
Crack-tip dislocation emission is often considered to be the key mechanism that controls the so-called “intrinsically ductile” fracture behaviour. Yet, high fracture toughness and ductility in metals are determined by extensive plastic deformation that dissipates much more energy than solely due to the crack-tip emission process. Thus, there is a gap between intrinsically ductile behaviour and large toughness. Here, we implement the dislocation emission process within a 2D discrete dislocation plasticity (DDP) framework. The framework, which includes anisotropic elasticity and a cohesive-zone model to simulate crack propagation, enables to investigate the interplay between dislocation emission and near-crack-tip plasticity associated with activation of dislocation sources. Guided by dimensional analysis and a sensitivity study, we identify the main variables controlling the fracture process, including dislocation source and obstacle density, dislocation emission strength and the associated dwelling time-scales. DDP simulations are conducted with a range of parameters under mode-I loading. The initiation fracture toughness and the crack-growth resistance curve (R-curve) are calculated accounting for the statistics of dislocation and obstacle distributions. Comparison is performed with cases where no dislocation emission is enabled. Our findings show that dislocation emission can slow down crack growth considerably, resulting in a significant increase in slope of the R-curve. This phenomenon is due to crack-tip shielding caused by the emitted dislocations. Thus, intrinsic ductility can enhance crack-growth resistance and fracture toughness. However, we find that the extent of shielding can also be negligible for some emission planes, making the connection between intrinsic ductility and fracture toughness not straightforward.
{"title":"The influence of crack tip dislocation emission on the fracture toughness","authors":"Lei Zhang, Erik van der Giessen, Francesco Maresca","doi":"10.1007/s10704-025-00847-1","DOIUrl":"10.1007/s10704-025-00847-1","url":null,"abstract":"<div><p>Crack-tip dislocation emission is often considered to be the key mechanism that controls the so-called “intrinsically ductile” fracture behaviour. Yet, high fracture toughness and ductility in metals are determined by extensive plastic deformation that dissipates much more energy than solely due to the crack-tip emission process. Thus, there is a gap between intrinsically ductile behaviour and large toughness. Here, we implement the dislocation emission process within a 2D discrete dislocation plasticity (DDP) framework. The framework, which includes anisotropic elasticity and a cohesive-zone model to simulate crack propagation, enables to investigate the interplay between dislocation emission and near-crack-tip plasticity associated with activation of dislocation sources. Guided by dimensional analysis and a sensitivity study, we identify the main variables controlling the fracture process, including dislocation source and obstacle density, dislocation emission strength and the associated dwelling time-scales. DDP simulations are conducted with a range of parameters under mode-I loading. The initiation fracture toughness and the crack-growth resistance curve (R-curve) are calculated accounting for the statistics of dislocation and obstacle distributions. Comparison is performed with cases where no dislocation emission is enabled. Our findings show that dislocation emission can slow down crack growth considerably, resulting in a significant increase in slope of the R-curve. This phenomenon is due to crack-tip shielding caused by the emitted dislocations. Thus, intrinsic ductility can enhance crack-growth resistance and fracture toughness. However, we find that the extent of shielding can also be negligible for some emission planes, making the connection between intrinsic ductility and fracture toughness not straightforward.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00847-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-13DOI: 10.1007/s10704-025-00845-3
Xiaokai Huang, Nan Li, Yunpeng Zhang, Qiming Zhang, Enyuan Wang, Weichen Sun, Jincheng Qiu, Lihong Sun
Hydraulic fracturing has been widely applied in underground mines for disaster prevention. The effectiveness is highly depended on the morphology of hydraulic fracture (HF), which, however, greatly affected by mining activities. Revealing the propagation behaviors of HF is of profound significance to understand the coupling of coal mining and hydraulic fracturing. In this paper, HF propagation was conducted based on lattice-spring method (LSM) after the analysis of mining-induced triaxial stress. The effects of mining stage, injection rate, and fracturing interval on HF propagation are investigated. The results show that mining-induced triaxial stress is beneficial to the formation of HF network. Once beyond rock failure pressure, increasing injection rate emphasized the stress shadow effect regardless of high or low stress state, resulting in crossing and diversion HFs. However, this effect was mitigated by broadening fracturing intervals which beneficial for vertical cessation HFs. Due to the complicated stress state in severely-affected stress region, the propagation length and angle of HF were influenced significantly, contributing to the occurrence of distortional HFs, HFs connection, and cross-layer phenomenon. Therefore, in the severely-affected stress region, an interlaced fracture network is likely to emerge, particularly in the case of narrow fracturing intervals and high injection rates. The research is committed to provide constructive suggestions for optimizing hydraulic fracturing under mining.
{"title":"Numerical study of multi-stage hydraulic fracture propagation behaviors in triaxial stress state under different mining stages","authors":"Xiaokai Huang, Nan Li, Yunpeng Zhang, Qiming Zhang, Enyuan Wang, Weichen Sun, Jincheng Qiu, Lihong Sun","doi":"10.1007/s10704-025-00845-3","DOIUrl":"10.1007/s10704-025-00845-3","url":null,"abstract":"<div><p>Hydraulic fracturing has been widely applied in underground mines for disaster prevention. The effectiveness is highly depended on the morphology of hydraulic fracture (HF), which, however, greatly affected by mining activities. Revealing the propagation behaviors of HF is of profound significance to understand the coupling of coal mining and hydraulic fracturing. In this paper, HF propagation was conducted based on lattice-spring method (LSM) after the analysis of mining-induced triaxial stress. The effects of mining stage, injection rate, and fracturing interval on HF propagation are investigated. The results show that mining-induced triaxial stress is beneficial to the formation of HF network. Once beyond rock failure pressure, increasing injection rate emphasized the stress shadow effect regardless of high or low stress state, resulting in crossing and diversion HFs. However, this effect was mitigated by broadening fracturing intervals which beneficial for vertical cessation HFs. Due to the complicated stress state in severely-affected stress region, the propagation length and angle of HF were influenced significantly, contributing to the occurrence of distortional HFs, HFs connection, and cross-layer phenomenon. Therefore, in the severely-affected stress region, an interlaced fracture network is likely to emerge, particularly in the case of narrow fracturing intervals and high injection rates. The research is committed to provide constructive suggestions for optimizing hydraulic fracturing under mining.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-11DOI: 10.1007/s10704-025-00842-6
E. Kahle, R. Alberini, A. E. Ehret, E. Mazza, A. Spagnoli
Fracture toughness describes a material’s ability to resist failure in the presence of defects. In case of soft biological tissues, a reliable determination and interpretation of the fracture properties is essential to estimate the risk of fracture after clinical interventions. Here we perform a comparative computational study between soft biological tissues and compliant elastomers to discuss the influence of material non-linearity on the crack tip nearfield. Using detailed finite element simulations, singular near-tip stress fields are obtained, and a so-called nonlinear region is identified. Additional focus is put on the effect of material nonlinearity on the phenomenon of elastic crack blunting, by analysing the deformed crack profile and extracting a radius of curvature at the tip. Through concepts of traditional fracture mechanics, we identify the size of the process zone and nonlinear elastic zone in biological tissues, juxtaposed with that of elastomers, demonstrating the limitations of the traditional metrics in capturing the remarkable defect tolerance of this highly nonlinear material class.
{"title":"Length scales in the tear resistance of soft tissues and elastomers: a comparative study based on computational models","authors":"E. Kahle, R. Alberini, A. E. Ehret, E. Mazza, A. Spagnoli","doi":"10.1007/s10704-025-00842-6","DOIUrl":"10.1007/s10704-025-00842-6","url":null,"abstract":"<div><p>Fracture toughness describes a material’s ability to resist failure in the presence of defects. In case of soft biological tissues, a reliable determination and interpretation of the fracture properties is essential to estimate the risk of fracture after clinical interventions. Here we perform a comparative computational study between soft biological tissues and compliant elastomers to discuss the influence of material non-linearity on the crack tip nearfield. Using detailed finite element simulations, singular near-tip stress fields are obtained, and a so-called nonlinear region is identified. Additional focus is put on the effect of material nonlinearity on the phenomenon of elastic crack blunting, by analysing the deformed crack profile and extracting a radius of curvature at the tip. Through concepts of traditional fracture mechanics, we identify the size of the process zone and nonlinear elastic zone in biological tissues, juxtaposed with that of elastomers, demonstrating the limitations of the traditional metrics in capturing the remarkable defect tolerance of this highly nonlinear material class.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00842-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-06DOI: 10.1007/s10704-025-00841-7
F. Tankoua, C. Jacquemoud, M. B. Le, G. Roussel
This work focuses on the effects of hydrogen flakes on the fracture toughness of forged ferritic steel under uniaxial or biaxial loading conditions. The fracture toughness under uniaxial loading was investigated on CT specimens and cruciform specimens were used for the biaxial loading conditions representative of a thermal shock in a Reactor Pressure Vessel. The observed decrease in fracture toughness in the flaked material was related to the higher carbon content near the hydrogen flake. Moreover, the nature of the initial defect (fatigue crack or hydrogen flake) did not significantly affect the fracture toughness. The cruciform specimen exhibited higher fracture toughness compared to CT specimens, even in the presence of flakes. This confirmed the conservatism of standard fracture analyses used for structure integrity assessment based on a lower bound fracture toughness curve obtained from CT specimens.
{"title":"The impact of hydrogen flakes on the uniaxial and biaxial fracture toughness of a forged ferritic steel","authors":"F. Tankoua, C. Jacquemoud, M. B. Le, G. Roussel","doi":"10.1007/s10704-025-00841-7","DOIUrl":"10.1007/s10704-025-00841-7","url":null,"abstract":"<div><p>This work focuses on the effects of hydrogen flakes on the fracture toughness of forged ferritic steel under uniaxial or biaxial loading conditions. The fracture toughness under uniaxial loading was investigated on CT specimens and cruciform specimens were used for the biaxial loading conditions representative of a thermal shock in a Reactor Pressure Vessel. The observed decrease in fracture toughness in the flaked material was related to the higher carbon content near the hydrogen flake. Moreover, the nature of the initial defect (fatigue crack or hydrogen flake) did not significantly affect the fracture toughness. The cruciform specimen exhibited higher fracture toughness compared to CT specimens, even in the presence of flakes. This confirmed the conservatism of standard fracture analyses used for structure integrity assessment based on a lower bound fracture toughness curve obtained from CT specimens.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00841-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-03DOI: 10.1007/s10704-024-00823-1
Miroslav Hrstka, Michal Kotoul, Tomáš Profant, Marta Kianicová
Assuming a scenario of small-scale domain switching, the dimensions and configuration of the domain switching region preceding a clearly defined primarily monoclinic piezoelectric bi-material notch are determined by embracing the energetic switching principle and micromechanical domain switching framework proposed by Hwang et al. (Acta Metall Mater 43(5):2073–2084, 1995. https://doi.org/10.1016/0956-7151(94)00379-V) for a given set of materials, structure, and polarization alignment. The piezoelectric bi-material under consideration comprises piezoelectric ceramics PZT-5H and BaTiO3. The analysis of the asymptotic in-plane field around a bi-material sharp notch is conducted utilizing the extended Lekhnitskii–Eshelby–Stroh formalism (Ting in Anisotropic elasticity, Oxford University Press. 1996. https://doi.org/10.1093/oso/9780195074475.001.0001). Subsequently, the boundary value problem with the prescribed spontaneous strain and polarization within the switching domain is solved and their influence on the in-plane intensity of singularity at the tip of interface crack is computed. The effects of the initial poling direction on the resulting variation of the energy release rates are discussed.
假设一个小尺度的畴开关场景,在一个明确定义的主要单斜压电双材料缺口之前的畴开关区域的尺寸和结构是通过采用Hwang等人提出的能量开关原理和微力学畴开关框架来确定的(Acta metalmater 43(5):2073 - 2084,1995)。https://doi.org/10.1016/0956-7151(94)00379-V)对于给定的一组材料、结构和偏振对准。所考虑的压电双材料包括压电陶瓷PZT-5H和BaTiO3。利用扩展的Lekhnitskii-Eshelby-Stroh形式(Ting in Anisotropic elasticity,牛津大学出版社,1996),对双材料尖锐缺口周围的渐近面内场进行了分析。https://doi.org/10.1093/oso/9780195074475.001.0001)。在此基础上,求解了开关域内具有规定自发应变和极化的边值问题,并计算了它们对界面裂纹尖端面内奇异强度的影响。讨论了初始极化方向对能量释放速率变化的影响。
{"title":"Small-scale domain switching near sharp piezoelectric bi-material notches","authors":"Miroslav Hrstka, Michal Kotoul, Tomáš Profant, Marta Kianicová","doi":"10.1007/s10704-024-00823-1","DOIUrl":"10.1007/s10704-024-00823-1","url":null,"abstract":"<div><p>Assuming a scenario of small-scale domain switching, the dimensions and configuration of the domain switching region preceding a clearly defined primarily monoclinic piezoelectric bi-material notch are determined by embracing the energetic switching principle and micromechanical domain switching framework proposed by Hwang et al. (Acta Metall Mater 43(5):2073–2084, 1995. https://doi.org/10.1016/0956-7151(94)00379-V) for a given set of materials, structure, and polarization alignment. The piezoelectric bi-material under consideration comprises piezoelectric ceramics PZT-5H and BaTiO<sub>3</sub>. The analysis of the asymptotic in-plane field around a bi-material sharp notch is conducted utilizing the extended Lekhnitskii–Eshelby–Stroh formalism (Ting in Anisotropic elasticity, Oxford University Press. 1996. https://doi.org/10.1093/oso/9780195074475.001.0001). Subsequently, the boundary value problem with the prescribed spontaneous strain and polarization within the switching domain is solved and their influence on the in-plane intensity of singularity at the tip of interface crack is computed. The effects of the initial poling direction on the resulting variation of the energy release rates are discussed.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00823-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01DOI: 10.1007/s10704-025-00844-4
I. Tarhouni, P. Maimí, D. Frómeta, D. Casellas
It is well recognized in the literature that the fracture process of thin metal sheets involves three energy dissipation mechanisms i.e., plasticity, necking and surface separation. However, the complex stress state in thin structures hinders the experimental assessment of these quantities and, consequently, the failure modelling. This work evaluates the contribution of these mechanisms to the ductile damage of a thin advanced high strength steel sheet under different stress triaxiality ranges. The essential work of fracture test was carried out on a set of different notch geometry specimens that cover a wide range of stress states. The experimental trend of these specimens was simulated in ABAQUS/Explicit using a VUSDFLD subroutine. Bai and Wierzbicki uncoupled fracture model, which is a function of fracture plastic strain to stress triaxiality (η) and normalized Lode angle ((overline{theta })), was selected as damage initiation criterion. A quantitative relationship of the fracture energy (G0) as a function of (η) was proposed in this work and implemented in the model as a damage evolution law. The model captures well the experimental response and the influence of (η) on the softening behavior of the material. It was found that the sensitivity of G0 to η is significant between 0.7 and 1.5. Above this rage, it seems that (η) has no influence on G0. The model showed also the relationship between the two local damage parameters (G0) and the necking (Gn) with respect to the stress state. G0 represents less than 10% of the total work of fracture, while the largest contribution comes from (Gn).
文献表明,金属薄板的断裂过程涉及塑性、颈缩和表面分离三种能量耗散机制。然而,薄结构中复杂的应力状态阻碍了这些量的实验评估,从而阻碍了破坏建模。本文研究了不同应力三轴性范围下这些机制对高强度薄钢板延性损伤的影响。断裂试验的基本工作是在一组不同缺口几何形状的试样上进行的,这些试样涵盖了广泛的应力状态。在ABAQUS/Explicit中使用VUSDFLD子程序模拟了这些试样的实验趋势。选取Bai和Wierzbicki不耦合断裂模型作为损伤起裂判据,该模型是断裂塑性应变对应力三轴性(η)和归一化Lode角((overline{theta })))的函数。本文提出了断裂能(G0)与η的定量关系,并将其作为损伤演化规律在模型中实现。该模型较好地反映了实验响应和(η)对材料软化行为的影响。结果表明,G0对η的敏感性在0.7 ~ 1.5之间具有显著性。在此范围以上,(η)似乎对G0没有影响。该模型还显示了两个局部损伤参数(G0)和颈缩(Gn)与应力状态的关系。G0表示小于10% of the total work of fracture, while the largest contribution comes from (Gn).
{"title":"Modelling of ductile fracture considering the effect of stress triaxiality and the energy partition theory in thin high-strength steel sheets","authors":"I. Tarhouni, P. Maimí, D. Frómeta, D. Casellas","doi":"10.1007/s10704-025-00844-4","DOIUrl":"10.1007/s10704-025-00844-4","url":null,"abstract":"<div><p>It is well recognized in the literature that the fracture process of thin metal sheets involves three energy dissipation mechanisms i.e., plasticity, necking and surface separation. However, the complex stress state in thin structures hinders the experimental assessment of these quantities and, consequently, the failure modelling. This work evaluates the contribution of these mechanisms to the ductile damage of a thin advanced high strength steel sheet under different stress triaxiality ranges. The essential work of fracture test was carried out on a set of different notch geometry specimens that cover a wide range of stress states. The experimental trend of these specimens was simulated in ABAQUS/Explicit using a VUSDFLD subroutine. Bai and Wierzbicki uncoupled fracture model, which is a function of fracture plastic strain to stress triaxiality (<i>η</i>) and normalized Lode angle (<span>(overline{theta }))</span>, was selected as damage initiation criterion. A quantitative relationship of the fracture energy (<i>G</i><sub><i>0</i></sub>) as a function of (<i>η</i>) was proposed in this work and implemented in the model as a damage evolution law. The model captures well the experimental response and the influence of (<i>η</i>) on the softening behavior of the material. It was found that the sensitivity of <i>G</i><sub><i>0</i></sub> to <i>η</i> is significant between 0.7 and 1.5. Above this rage, it seems that (<i>η</i>) has no influence on <i>G</i><sub><i>0</i></sub>. The model showed also the relationship between the two local damage parameters (<i>G</i><sub><i>0</i></sub>) and the necking (<i>G</i><sub><i>n</i></sub>) with respect to the stress state. <i>G</i><sub><i>0</i></sub> represents less than 10% of the total work of fracture, while the largest contribution comes from (<i>G</i><sub><i>n</i></sub>).</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00844-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-24DOI: 10.1007/s10704-025-00843-5
A. Chao Correas, D. Acquesta, M. Corrado
This work introduces a novel approach for characterizing the residual load bearing capacity of fractured components based on the Phase Field fracture model. The underlying idea involves exploiting this well-established framework for fracturing materials and applying it to mechanically loaded domains in which fracture has already occurred. Hence, the continuous phase field here portrays the smeared representation of known crack patterns, based on which the unilateral contact interactions between the crack lips are enforced through a suitable strain energy decomposition. This allows for a theoretically robust and implicit treatment of the originally discontinuous problem while remaining in a continuum framework. As such, the proposed approach avoids the numerically challenging definition and management of conventional contact pairs, thus proving to be especially promising for its application to domains with multiple fragments. Besides presenting the theoretical foundation and algorithmic convenience of the approach, its accuracy and representativeness are proven against theoretical predictions and numerical results from Finite Element models featuring conventional contact interactions.
{"title":"Phase field approach for managing multi-fragment interactions in load-bearing fractured media","authors":"A. Chao Correas, D. Acquesta, M. Corrado","doi":"10.1007/s10704-025-00843-5","DOIUrl":"10.1007/s10704-025-00843-5","url":null,"abstract":"<div><p>This work introduces a novel approach for characterizing the residual load bearing capacity of fractured components based on the Phase Field fracture model. The underlying idea involves exploiting this well-established framework for fracturing materials and applying it to mechanically loaded domains in which fracture has already occurred. Hence, the continuous phase field here portrays the smeared representation of known crack patterns, based on which the unilateral contact interactions between the crack lips are enforced through a suitable strain energy decomposition. This allows for a theoretically robust and implicit treatment of the originally discontinuous problem while remaining in a continuum framework. As such, the proposed approach avoids the numerically challenging definition and management of conventional contact pairs, thus proving to be especially promising for its application to domains with multiple fragments. Besides presenting the theoretical foundation and algorithmic convenience of the approach, its accuracy and representativeness are proven against theoretical predictions and numerical results from Finite Element models featuring conventional contact interactions.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00843-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}