首页 > 最新文献

International Journal of Fracture最新文献

英文 中文
Modelling of ductile fracture considering the effect of stress triaxiality and the energy partition theory in thin high-strength steel sheets 考虑高强度薄钢板应力三轴性和能量分配理论影响的韧性断裂建模
IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-03-01 DOI: 10.1007/s10704-025-00844-4
I. Tarhouni, P. Maimí, D. Frómeta, D. Casellas

It is well recognized in the literature that the fracture process of thin metal sheets involves three energy dissipation mechanisms i.e., plasticity, necking and surface separation. However, the complex stress state in thin structures hinders the experimental assessment of these quantities and, consequently, the failure modelling. This work evaluates the contribution of these mechanisms to the ductile damage of a thin advanced high strength steel sheet under different stress triaxiality ranges. The essential work of fracture test was carried out on a set of different notch geometry specimens that cover a wide range of stress states. The experimental trend of these specimens was simulated in ABAQUS/Explicit using a VUSDFLD subroutine. Bai and Wierzbicki uncoupled fracture model, which is a function of fracture plastic strain to stress triaxiality (η) and normalized Lode angle ((overline{theta })), was selected as damage initiation criterion. A quantitative relationship of the fracture energy (G0) as a function of (η) was proposed in this work and implemented in the model as a damage evolution law. The model captures well the experimental response and the influence of (η) on the softening behavior of the material. It was found that the sensitivity of G0 to η is significant between 0.7 and 1.5. Above this rage, it seems that (η) has no influence on G0. The model showed also the relationship between the two local damage parameters (G0) and the necking (Gn) with respect to the stress state. G0 represents less than 10% of the total work of fracture, while the largest contribution comes from (Gn).

文献表明,金属薄板的断裂过程涉及塑性、颈缩和表面分离三种能量耗散机制。然而,薄结构中复杂的应力状态阻碍了这些量的实验评估,从而阻碍了破坏建模。本文研究了不同应力三轴性范围下这些机制对高强度薄钢板延性损伤的影响。断裂试验的基本工作是在一组不同缺口几何形状的试样上进行的,这些试样涵盖了广泛的应力状态。在ABAQUS/Explicit中使用VUSDFLD子程序模拟了这些试样的实验趋势。选取Bai和Wierzbicki不耦合断裂模型作为损伤起裂判据,该模型是断裂塑性应变对应力三轴性(η)和归一化Lode角((overline{theta })))的函数。本文提出了断裂能(G0)与η的定量关系,并将其作为损伤演化规律在模型中实现。该模型较好地反映了实验响应和(η)对材料软化行为的影响。结果表明,G0对η的敏感性在0.7 ~ 1.5之间具有显著性。在此范围以上,(η)似乎对G0没有影响。该模型还显示了两个局部损伤参数(G0)和颈缩(Gn)与应力状态的关系。G0表示小于10% of the total work of fracture, while the largest contribution comes from (Gn).
{"title":"Modelling of ductile fracture considering the effect of stress triaxiality and the energy partition theory in thin high-strength steel sheets","authors":"I. Tarhouni,&nbsp;P. Maimí,&nbsp;D. Frómeta,&nbsp;D. Casellas","doi":"10.1007/s10704-025-00844-4","DOIUrl":"10.1007/s10704-025-00844-4","url":null,"abstract":"<div><p>It is well recognized in the literature that the fracture process of thin metal sheets involves three energy dissipation mechanisms i.e., plasticity, necking and surface separation. However, the complex stress state in thin structures hinders the experimental assessment of these quantities and, consequently, the failure modelling. This work evaluates the contribution of these mechanisms to the ductile damage of a thin advanced high strength steel sheet under different stress triaxiality ranges. The essential work of fracture test was carried out on a set of different notch geometry specimens that cover a wide range of stress states. The experimental trend of these specimens was simulated in ABAQUS/Explicit using a VUSDFLD subroutine. Bai and Wierzbicki uncoupled fracture model, which is a function of fracture plastic strain to stress triaxiality (<i>η</i>) and normalized Lode angle (<span>(overline{theta }))</span>, was selected as damage initiation criterion. A quantitative relationship of the fracture energy (<i>G</i><sub><i>0</i></sub>) as a function of (<i>η</i>) was proposed in this work and implemented in the model as a damage evolution law. The model captures well the experimental response and the influence of (<i>η</i>) on the softening behavior of the material. It was found that the sensitivity of <i>G</i><sub><i>0</i></sub> to <i>η</i> is significant between 0.7 and 1.5. Above this rage, it seems that (<i>η</i>) has no influence on <i>G</i><sub><i>0</i></sub>. The model showed also the relationship between the two local damage parameters (<i>G</i><sub><i>0</i></sub>) and the necking (<i>G</i><sub><i>n</i></sub>) with respect to the stress state. <i>G</i><sub><i>0</i></sub> represents less than 10% of the total work of fracture, while the largest contribution comes from (<i>G</i><sub><i>n</i></sub>).</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00844-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase field approach for managing multi-fragment interactions in load-bearing fractured media 相场法处理承载裂缝介质中多碎片相互作用
IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-24 DOI: 10.1007/s10704-025-00843-5
A. Chao Correas, D. Acquesta, M. Corrado

This work introduces a novel approach for characterizing the residual load bearing capacity of fractured components based on the Phase Field fracture model. The underlying idea involves exploiting this well-established framework for fracturing materials and applying it to mechanically loaded domains in which fracture has already occurred. Hence, the continuous phase field here portrays the smeared representation of known crack patterns, based on which the unilateral contact interactions between the crack lips are enforced through a suitable strain energy decomposition. This allows for a theoretically robust and implicit treatment of the originally discontinuous problem while remaining in a continuum framework. As such, the proposed approach avoids the numerically challenging definition and management of conventional contact pairs, thus proving to be especially promising for its application to domains with multiple fragments. Besides presenting the theoretical foundation and algorithmic convenience of the approach, its accuracy and representativeness are proven against theoretical predictions and numerical results from Finite Element models featuring conventional contact interactions.

本文介绍了一种基于相场断裂模型表征断裂构件剩余承载能力的新方法。潜在的想法包括利用这一成熟的压裂材料框架,并将其应用于已经发生裂缝的机械加载区域。因此,这里的连续相场描绘了已知裂纹模式的模糊表示,在此基础上,裂纹唇之间的单边接触相互作用通过适当的应变能分解来加强。这允许在保留连续体框架的同时,对原来的不连续问题进行理论上的鲁棒性和隐式处理。因此,所提出的方法避免了传统接触对的定义和管理的数值挑战,因此证明了其在具有多片段的领域中的应用特别有希望。除了给出该方法的理论基础和算法便捷性外,还通过传统接触相互作用有限元模型的理论预测和数值结果证明了该方法的准确性和代表性。
{"title":"Phase field approach for managing multi-fragment interactions in load-bearing fractured media","authors":"A. Chao Correas,&nbsp;D. Acquesta,&nbsp;M. Corrado","doi":"10.1007/s10704-025-00843-5","DOIUrl":"10.1007/s10704-025-00843-5","url":null,"abstract":"<div><p>This work introduces a novel approach for characterizing the residual load bearing capacity of fractured components based on the Phase Field fracture model. The underlying idea involves exploiting this well-established framework for fracturing materials and applying it to mechanically loaded domains in which fracture has already occurred. Hence, the continuous phase field here portrays the smeared representation of known crack patterns, based on which the unilateral contact interactions between the crack lips are enforced through a suitable strain energy decomposition. This allows for a theoretically robust and implicit treatment of the originally discontinuous problem while remaining in a continuum framework. As such, the proposed approach avoids the numerically challenging definition and management of conventional contact pairs, thus proving to be especially promising for its application to domains with multiple fragments. Besides presenting the theoretical foundation and algorithmic convenience of the approach, its accuracy and representativeness are proven against theoretical predictions and numerical results from Finite Element models featuring conventional contact interactions.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00843-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting free edge delamination induced by thermal loading using finite fracture mechanics 用有限断裂力学预测热载荷引起的自由边缘分层
IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-17 DOI: 10.1007/s10704-024-00817-z
Mohammad Burhan, Zahur Ullah, Zafer Kazancı, Giuseppe Catalanotti

The material mismatch between the dissimilarly oriented plies within laminated structures induces localised singular interlaminar stresses at free edges, under various loading conditions such as mechanical, moisture, or thermal. These interlaminar stresses lead to premature interlaminar cracking. This study introduces the application of Finite Fracture Mechanics (FFM) for predicting free edge delamination in angle-ply laminates under uniform thermal loading. The current framework assumes nucleation of semi-elliptically shaped crack at the dissimilar interface, resulting in a 3D FFM criterion. For a given material intrinsic properties, e.g. interlaminar fracture toughness and strength, calculation of quantities such as interlaminar stresses and incremental energy release rates are required. These quantities, necessary for the evaluation of the FFM criterion, are determined semi-analytically through expressions derived from dimensional analysis and finite element models. Dimensional analysis facilitates the finding of these quantities only once using non-dimensionalised functions. The resulting non-dimensionalised functions for stresses and energy release rates are not a function of thermal load and ply thickness. This eliminates the requirement to re-solve the underlying boundary value problem for varying loads and ply thicknesses. The accuracy of finite element models is confirmed against results from models available in literature and dimensional analysis is validated against numerical solutions. The 3D FFM system is solved by assuming a homothetic crack extension and is implemented as a standard constrained nonlinear optimisation problem. In addition to the 3D FFM, another model based on the Theory of Critical Distances (TCD) is employed for validation purposes. The predictions from both the 3D FFM and TCD are compared to those from models available in the literature.

在不同的载荷条件下,如机械、湿气或热载荷,层合结构中不同取向层之间的材料不匹配会在自由边缘引起局部奇异层间应力。这些层间应力导致层间过早开裂。本文介绍了有限断裂力学在均匀热载荷作用下角层合板自由边缘剥落预测中的应用。目前的框架假设在不同界面处半椭圆形裂纹成核,从而得到三维FFM准则。对于给定材料的固有特性,例如层间断裂韧性和强度,需要计算层间应力和增量能量释放率等量。这些量是评价FFM准则所必需的,通过从量纲分析和有限元模型中导出的表达式来半解析地确定。量纲分析有助于使用非量纲函数找到这些量。由此产生的应力和能量释放率的无量纲函数不是热负荷和层厚的函数。这消除了重新解决不同载荷和厚度的潜在边值问题的需要。有限元模型的准确性与文献中可用模型的结果相比较,并与数值解相比较验证了量纲分析的准确性。三维FFM系统通过假设裂纹齐次扩展来求解,并作为一个标准的约束非线性优化问题来实现。除了3D FFM外,还采用了基于临界距离理论(TCD)的另一个模型进行验证。将3D FFM和TCD的预测与文献中可用的模型进行比较。
{"title":"Predicting free edge delamination induced by thermal loading using finite fracture mechanics","authors":"Mohammad Burhan,&nbsp;Zahur Ullah,&nbsp;Zafer Kazancı,&nbsp;Giuseppe Catalanotti","doi":"10.1007/s10704-024-00817-z","DOIUrl":"10.1007/s10704-024-00817-z","url":null,"abstract":"<div><p>The material mismatch between the dissimilarly oriented plies within laminated structures induces localised singular interlaminar stresses at free edges, under various loading conditions such as mechanical, moisture, or thermal. These interlaminar stresses lead to premature interlaminar cracking. This study introduces the application of Finite Fracture Mechanics (FFM) for predicting free edge delamination in angle-ply laminates under uniform thermal loading. The current framework assumes nucleation of semi-elliptically shaped crack at the dissimilar interface, resulting in a 3D FFM criterion. For a given material intrinsic properties, e.g. interlaminar fracture toughness and strength, calculation of quantities such as interlaminar stresses and incremental energy release rates are required. These quantities, necessary for the evaluation of the FFM criterion, are determined semi-analytically through expressions derived from dimensional analysis and finite element models. Dimensional analysis facilitates the finding of these quantities only once using non-dimensionalised functions. The resulting non-dimensionalised functions for stresses and energy release rates are not a function of thermal load and ply thickness. This eliminates the requirement to re-solve the underlying boundary value problem for varying loads and ply thicknesses. The accuracy of finite element models is confirmed against results from models available in literature and dimensional analysis is validated against numerical solutions. The 3D FFM system is solved by assuming a homothetic crack extension and is implemented as a standard constrained nonlinear optimisation problem. In addition to the 3D FFM, another model based on the Theory of Critical Distances (TCD) is employed for validation purposes. The predictions from both the 3D FFM and TCD are compared to those from models available in the literature.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00817-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cohesive instability in elastomers: insights from a crosslinked Van der Waals fluid model 弹性体的内聚不稳定性:来自交联范德华流体模型的见解
IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-04 DOI: 10.1007/s10704-025-00840-8
Samuel C. Lamont, Nikolaos Bouklas, Franck J. Vernerey

The resistance to volumetric deformations displayed by polymer networks is largely due to secondary and tertiary interactions between neighboring polymer chains. These interactions are both entropic and enthalpic in nature but are fundamentally different from the entropic forces that resist shearing in these networks. In this paper, we introduce a new depiction of elastomers as a crosslinked Van der Waals fluid. Starting from first principles, we develop constitutive equations that are implemented in a continuum model as well as a discrete network model. Our models predict that the failure of polymer networks may be driven by an instability in the underlying polymer bulk ‘fluid’ or by the breaking of polymer chains, depending on the loading path taken. The results of this study indicate that material failure in elastomers exposed to a purely triaxial state, such as in a poker chip experiment, may be driven by an entirely different mode of instability than those deformed in pure shear, such as in a uniaxial tension experiment.

聚合物网络对体积变形的抵抗很大程度上是由于邻近聚合物链之间的二级和三级相互作用。这些相互作用在本质上既是熵的,也是焓的,但与这些网络中抵抗剪切的熵力有着根本的不同。本文介绍了弹性体作为交联范德华流体的一种新描述。从第一原理出发,我们开发了在连续模型和离散网络模型中实现的本构方程。我们的模型预测,聚合物网络的失效可能是由底层聚合物体“流体”的不稳定性或聚合物链的断裂驱动的,这取决于所采取的加载路径。这项研究的结果表明,弹性体暴露在纯三轴状态下的材料失效,比如在扑克筹码实验中,可能是由一种完全不同的不稳定模式驱动的,而不是那些在纯剪切状态下变形的材料,比如在单轴拉伸实验中。
{"title":"Cohesive instability in elastomers: insights from a crosslinked Van der Waals fluid model","authors":"Samuel C. Lamont,&nbsp;Nikolaos Bouklas,&nbsp;Franck J. Vernerey","doi":"10.1007/s10704-025-00840-8","DOIUrl":"10.1007/s10704-025-00840-8","url":null,"abstract":"<div><p>The resistance to volumetric deformations displayed by polymer networks is largely due to secondary and tertiary interactions between neighboring polymer chains. These interactions are both entropic and enthalpic in nature but are fundamentally different from the entropic forces that resist shearing in these networks. In this paper, we introduce a new depiction of elastomers as a crosslinked Van der Waals fluid. Starting from first principles, we develop constitutive equations that are implemented in a continuum model as well as a discrete network model. Our models predict that the failure of polymer networks may be driven by an instability in the underlying polymer bulk ‘fluid’ or by the breaking of polymer chains, depending on the loading path taken. The results of this study indicate that material failure in elastomers exposed to a purely triaxial state, such as in a poker chip experiment, may be driven by an entirely different mode of instability than those deformed in pure shear, such as in a uniaxial tension experiment.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00840-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase field modeling of anisotropic silicon crystalline cracking in 3D thin-walled photovoltaic laminates 三维薄壁光伏层压板各向异性硅晶裂纹的相场模拟
IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-31 DOI: 10.1007/s10704-024-00821-3
Z. Liu, P. Lenarda, J. Reinoso, M. Paggi

A novel computational framework integrating the phase field approach with the solid shell formulation at finite deformation is proposed to model the anisotropic fracture of silicon solar cells in the thin-walled photovoltaic laminates. To alleviate the locking effects, both the enhanced assumed strain and assumed natural strain methods are incorporated in the solid shell element formulation. Aiming at tackling the poor convergence performance of standard Newton schemes, the efficient and robust quasi-Newton scheme is adopted for the solution of phase field modeling with enhanced shell formulation in a monolithic manner. Due to fracture anisotropy of the brittle silicon solar cells, the second-order structural tensor that is defined by the normal of preferential crack plane is introduced into the crack energy density function in the phase field modeling. On the other hand, to efficiently predict the crack growth of silicon solar cells, a global–local approach in the 3D setting proposed in the previous work is adopted here for the fracture modeling. In this approach, both mechanical deformation and phase field fracture are accounted for at the local model, while only mechanical deformation is addressed at the global level. At each time step, the solution of the global model is used to drive the local model, which corresponds to the one-way coupling in line with experimental evidence that the silicon cell cracking has negligible influence on the stiffness of photovoltaic modules. The capability of the modeling framework is demonstrated through numerical simulation of silicon solar cell cracking in the photovoltaic modules when subjected to different loading cases.

提出了一种将相场法与有限变形固壳公式相结合的计算框架,用于模拟硅太阳电池在薄壁光伏板中的各向异性断裂。为了减轻锁紧效应,在实体壳单元公式中同时采用了增强假设应变法和假设自然应变法。针对标准牛顿格式收敛性能差的问题,采用高效鲁棒的拟牛顿格式整体求解增强壳型相场建模问题。由于脆性硅太阳电池的断裂各向异性,在相场建模中,将优先裂纹面法向定义的二阶结构张量引入裂纹能量密度函数中。另一方面,为了有效地预测硅太阳能电池的裂纹扩展,本文采用了前人在三维环境下提出的全局-局部方法进行断裂建模。在这种方法中,机械变形和相场断裂都是在局部模型中考虑的,而在全局水平上只考虑机械变形。在每个时间步,用全局模型的解来驱动局部模型,对应于单向耦合,符合硅电池裂纹对光伏组件刚度影响可以忽略的实验证据。通过对光伏组件中硅太阳能电池在不同载荷情况下开裂的数值模拟,验证了该模型框架的能力。
{"title":"Phase field modeling of anisotropic silicon crystalline cracking in 3D thin-walled photovoltaic laminates","authors":"Z. Liu,&nbsp;P. Lenarda,&nbsp;J. Reinoso,&nbsp;M. Paggi","doi":"10.1007/s10704-024-00821-3","DOIUrl":"10.1007/s10704-024-00821-3","url":null,"abstract":"<div><p>A novel computational framework integrating the phase field approach with the solid shell formulation at finite deformation is proposed to model the anisotropic fracture of silicon solar cells in the thin-walled photovoltaic laminates. To alleviate the locking effects, both the enhanced assumed strain and assumed natural strain methods are incorporated in the solid shell element formulation. Aiming at tackling the poor convergence performance of standard Newton schemes, the efficient and robust quasi-Newton scheme is adopted for the solution of phase field modeling with enhanced shell formulation in a monolithic manner. Due to fracture anisotropy of the brittle silicon solar cells, the second-order structural tensor that is defined by the normal of preferential crack plane is introduced into the crack energy density function in the phase field modeling. On the other hand, to efficiently predict the crack growth of silicon solar cells, a global–local approach in the 3D setting proposed in the previous work is adopted here for the fracture modeling. In this approach, both mechanical deformation and phase field fracture are accounted for at the local model, while only mechanical deformation is addressed at the global level. At each time step, the solution of the global model is used to drive the local model, which corresponds to the one-way coupling in line with experimental evidence that the silicon cell cracking has negligible influence on the stiffness of photovoltaic modules. The capability of the modeling framework is demonstrated through numerical simulation of silicon solar cell cracking in the photovoltaic modules when subjected to different loading cases.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00821-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peeling an architected interface: roles of softness and fractoadhesive length in adhesion toughening 剥离和结构界面:柔软度和断裂胶粘剂长度在粘合增韧中的作用
IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-29 DOI: 10.1007/s10704-024-00835-x
Zumrat Usmanova, Ruobing Bai

Soft adhesion has been rapidly studied and developed for various applications in recent years. Compared to existing toughening mechanisms based on the adherend or adhesive materials themselves, building architectures or patterns in soft adhesion offers an attractive way of enhancing adhesion without modifying the intrinsic material properties. However, despite the recent progress in soft architected adhesion, the fundamental interplay between the geometry and material properties remains largely unexplored. This results in questions about the geometric conditions for effective toughening and the roles of intrinsic material parameters in governing these conditions. Here we explore the geometry-elasticity interplay in toughening a soft architected bilayer with one-dimensional rectangular interfacial pillars. Using finite element simulations on 90-degree peel, we investigate effects of the adherend modulus, pillar aspect ratio, and interfacial contact ratio on the peel strength. We show that compared to a uniform interface, soft interfacial pillars (shear modulus ~ 0.6 MPa) with a high aspect ratio (> 4) can enhance the peel strength to more than 4 times, while stiff pillars (shear modulus ~ 1.5 MPa) only provide a limited enhancement (up to 1.5 times). Such enhancement is further amplified by increasing the interfacial contact ratio, where the best enhancement occurs when pillars are closely packed like a cross-cut surface (100% in contact yet architected). We develop a theory and scaling for the effective adhesion toughness and identify the fractoadhesive length of architected adhesion. We show that the fractoadhesive length provides a lower bound of the architecture feature size for effective toughening, while a large stretch at debonding in pillars further amplifies the toughening. Using an Ashby plot of the relevant architecture feature size and the fractoadhesive length in various architected adhesion systems, we conclude that macroscale architectures are necessary for effective toughening of soft adhesion with large fractoadhesive lengths.

近年来,软粘接技术在各种应用领域得到了迅速的研究和发展。与现有的基于粘附物或粘附材料本身的增韧机制相比,在软粘附中构建结构或模式提供了一种有吸引力的方法,可以在不改变材料固有特性的情况下增强粘附性。然而,尽管最近在软结构粘合方面取得了进展,但几何形状和材料性能之间的基本相互作用在很大程度上仍未被探索。这就产生了关于有效增韧的几何条件和控制这些条件的固有材料参数的作用的问题。在这里,我们探讨了几何弹性在增韧具有一维矩形界面柱的软结构双层中的相互作用。通过90度剥离的有限元模拟,我们研究了附着模量、柱长径比和界面接触比对剥离强度的影响。研究表明,与均匀界面相比,高纵横比(> 4)的软质界面柱(剪切模量~ 0.6 MPa)可以将剥离强度提高4倍以上,而刚性界面柱(剪切模量~ 1.5 MPa)只能提供有限的增强(最多1.5倍)。界面接触比的增加进一步放大了这种增强效果,当柱状体紧密排列成一个横切面(100%接触但仍有结构)时,这种增强效果最好。我们建立了有效粘接韧性的理论和标度,并确定了结构粘接的断裂粘接长度。我们发现,断裂胶粘剂长度为有效增韧提供了结构特征尺寸的下界,而柱中脱粘时的大拉伸进一步放大了增韧。利用不同体系结构中相关体系结构特征尺寸和断裂胶长度的Ashby图,我们得出结论,宏观体系结构对于大断裂胶长度的软粘接的有效增韧是必要的。
{"title":"Peeling an architected interface: roles of softness and fractoadhesive length in adhesion toughening","authors":"Zumrat Usmanova,&nbsp;Ruobing Bai","doi":"10.1007/s10704-024-00835-x","DOIUrl":"10.1007/s10704-024-00835-x","url":null,"abstract":"<div><p>Soft adhesion has been rapidly studied and developed for various applications in recent years. Compared to existing toughening mechanisms based on the adherend or adhesive materials themselves, building architectures or patterns in soft adhesion offers an attractive way of enhancing adhesion without modifying the intrinsic material properties. However, despite the recent progress in soft architected adhesion, the fundamental interplay between the geometry and material properties remains largely unexplored. This results in questions about the geometric conditions for effective toughening and the roles of intrinsic material parameters in governing these conditions. Here we explore the geometry-elasticity interplay in toughening a soft architected bilayer with one-dimensional rectangular interfacial pillars. Using finite element simulations on 90-degree peel, we investigate effects of the adherend modulus, pillar aspect ratio, and interfacial contact ratio on the peel strength. We show that compared to a uniform interface, soft interfacial pillars (shear modulus ~ 0.6 MPa) with a high aspect ratio (&gt; 4) can enhance the peel strength to more than 4 times, while stiff pillars (shear modulus ~ 1.5 MPa) only provide a limited enhancement (up to 1.5 times). Such enhancement is further amplified by increasing the interfacial contact ratio, where the best enhancement occurs when pillars are closely packed like a cross-cut surface (100% in contact yet architected). We develop a theory and scaling for the effective adhesion toughness and identify the fractoadhesive length of architected adhesion. We show that the fractoadhesive length provides a lower bound of the architecture feature size for effective toughening, while a large stretch at debonding in pillars further amplifies the toughening. Using an Ashby plot of the relevant architecture feature size and the fractoadhesive length in various architected adhesion systems, we conclude that macroscale architectures are necessary for effective toughening of soft adhesion with large fractoadhesive lengths.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00835-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous fracture toughness of human cortical bone tissue 人皮质骨组织的非均匀断裂韧性
IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-24 DOI: 10.1007/s10704-024-00836-w
Maxime Levy, Zohar Yosibash

CT-based finite element analysis (FEA) of human bones helps estimate fracture risk in clinical practice by linking bone ash density ((rho _{ash})) to mechanical parameters. However, phase field models for fracture prediction require the heterogeneous fracture toughness (G_{Ic}), which can be derived from the critical stress intensity factor (K_{Ic}), determined through various experimental methods. Due to a lack of standards for determining cortical bone’s (K_{Ic}), an experimental campaign is presented using 53 cortical specimens from two fresh frozen femurs to investigate whether a correlation exists between (K_{Ic}) and (rho _{ash}). We investigated various experimental techniques for correlating (K_{Ic}) with (rho _{ash}). We conducted FEAs employing the phase field method (PFM) to determine the most suitable correlation among the five possible ones stemming from the experimental methods. The ASTM standard using displacement at force application point was found to be the recommended experimental method for the estimation of (K_{Ic}) perpendicular to osteons’ direction

$$begin{aligned} K_{Ic} [MPasqrt{m}]{=}1.89left( rho _{ash} [gr/cc] right) ^{1.88} ,, R^2{=}0.5374. end{aligned}$$

The corresponding statistical critical energy release rate bounds were determined:

$$begin{aligned} G_{Ic}[N/m]= 321.94 (rho _{ash}[gr/cc])^{1.69} times exp(pm 2SD), end{aligned}$$

with a standard deviation (SD= 0.30) representing a 95.4% confidence interval. The average (G_{Ic}) resulted in good correlations between the predicted fracture force by PFM-FEA of four representative specimens and experimental fracture forces. The proposed correlations will be used in CT-based PFM FEA to estimate the risk of hip and humeral fractures.

基于ct的人骨有限元分析(FEA)通过将骨密度((rho _{ash}))与力学参数联系起来,有助于在临床实践中估计骨折风险。然而,用于断裂预测的相场模型需要非均质断裂韧性(G_{Ic}),该韧性可由各种实验方法确定的临界应力强度因子(K_{Ic})导出。由于缺乏确定皮质骨(K_{Ic})的标准,本文提出了一项实验,使用来自两个新鲜冷冻股骨的53个皮质标本来研究(K_{Ic})和(rho _{ash})之间是否存在相关性。我们研究了将(K_{Ic})与(rho _{ash})相关联的各种实验技术。我们采用相场法(PFM)进行了有限元分析,以确定从实验方法得出的五种可能的相关性中最合适的相关性。发现使用施力点位移的ASTM标准是估计(K_{Ic})垂直于骨方向$$begin{aligned} K_{Ic} [MPasqrt{m}]{=}1.89left( rho _{ash} [gr/cc] right) ^{1.88} ,, R^2{=}0.5374. end{aligned}$$的推荐实验方法。确定相应的统计临界能量释放率界限:$$begin{aligned} G_{Ic}[N/m]= 321.94 (rho _{ash}[gr/cc])^{1.69} times exp(pm 2SD), end{aligned}$$,标准差(SD= 0.30)代表95.4% confidence interval. The average (G_{Ic}) resulted in good correlations between the predicted fracture force by PFM-FEA of four representative specimens and experimental fracture forces. The proposed correlations will be used in CT-based PFM FEA to estimate the risk of hip and humeral fractures.
{"title":"Heterogeneous fracture toughness of human cortical bone tissue","authors":"Maxime Levy,&nbsp;Zohar Yosibash","doi":"10.1007/s10704-024-00836-w","DOIUrl":"10.1007/s10704-024-00836-w","url":null,"abstract":"<div><p>CT-based finite element analysis (FEA) of human bones helps estimate fracture risk in clinical practice by linking bone ash density (<span>(rho _{ash})</span>) to mechanical parameters. However, phase field models for fracture prediction require the heterogeneous fracture toughness <span>(G_{Ic})</span>, which can be derived from the critical stress intensity factor <span>(K_{Ic})</span>, determined through various experimental methods. Due to a lack of standards for determining cortical bone’s <span>(K_{Ic})</span>, an experimental campaign is presented using 53 cortical specimens from two fresh frozen femurs to investigate whether a correlation exists between <span>(K_{Ic})</span> and <span>(rho _{ash})</span>. We investigated various experimental techniques for correlating <span>(K_{Ic})</span> with <span>(rho _{ash})</span>. We conducted FEAs employing the phase field method (PFM) to determine the most suitable correlation among the five possible ones stemming from the experimental methods. The ASTM standard using displacement at force application point was found to be the recommended experimental method for the estimation of <span>(K_{Ic})</span> perpendicular to osteons’ direction </p><div><div><span>$$begin{aligned} K_{Ic} [MPasqrt{m}]{=}1.89left( rho _{ash} [gr/cc] right) ^{1.88} ,, R^2{=}0.5374. end{aligned}$$</span></div></div><p>The corresponding statistical critical energy release rate bounds were determined: </p><div><div><span>$$begin{aligned} G_{Ic}[N/m]= 321.94 (rho _{ash}[gr/cc])^{1.69} times exp(pm 2SD), end{aligned}$$</span></div></div><p>with a standard deviation <span>(SD= 0.30)</span> representing a 95.4% confidence interval. The average <span>(G_{Ic})</span> resulted in good correlations between the predicted fracture force by PFM-FEA of four representative specimens and experimental fracture forces. The proposed correlations will be used in CT-based PFM FEA to estimate the risk of hip and humeral fractures.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00836-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An investigation of crack propagation in porous quasi-brittle structures using isogeometric analysis and higher-order phase-field theory 用等几何分析和高阶相场理论研究多孔准脆性结构中的裂纹扩展
IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-22 DOI: 10.1007/s10704-024-00824-0
Khuong D. Nguyen, Tran Minh Thi

This article introduces a novel method for investigating crack propagation in porous quasi-brittle structures. The method combines isogeometric analysis (IGA) with higher-order phase-field theory. IGA is particularly useful for representing complex geometries through high-order Non-Uniform Rational B-Spline (NURBS)-based elements. It gives it an advantage over conventional methods that rely on enriched nodes. The phase-field approach uses a scalar field to implicitly define the trajectory of cracks, eliminating the need to predefine an initial crack location. The study was conducted on a porous plate model with multiple perforations. The porosity level significantly affects the structural integrity of the domain under consideration. The degradation functions that characterize material softening concerning porosity are obtained through careful examination. These degradation functions are further implemented into numerical problems to observe the effect of porosity on crack initiation and propagation behavior. The results have demonstrated the proposed approach’s efficiency and accuracy in analyzing porous concrete’s failure behavior. The analysis results contribute to advancing our understanding of crack propagation and showcase the efficacy of the presented methodological framework in enhancing predictive capabilities in structural mechanics.

本文介绍了一种研究多孔准脆性结构裂纹扩展的新方法。该方法将等几何分析与高阶相场理论相结合。IGA对于通过基于高阶非均匀有理b样条(NURBS)的元素表示复杂几何图形特别有用。它比依赖于富节点的传统方法有一个优势。相场方法使用标量场来隐式定义裂纹的轨迹,从而消除了预先定义初始裂纹位置的需要。该研究是在多孔板模型上进行的。孔隙度水平对研究区域的结构完整性有显著影响。通过仔细研究,得到了表征材料软化与孔隙率关系的降解函数。将这些退化函数进一步应用到数值问题中,观察孔隙率对裂纹萌生和扩展行为的影响。结果表明,该方法对分析多孔混凝土的破坏行为具有较高的效率和准确性。分析结果有助于提高我们对裂纹扩展的理解,并展示了所提出的方法框架在增强结构力学预测能力方面的有效性。
{"title":"An investigation of crack propagation in porous quasi-brittle structures using isogeometric analysis and higher-order phase-field theory","authors":"Khuong D. Nguyen,&nbsp;Tran Minh Thi","doi":"10.1007/s10704-024-00824-0","DOIUrl":"10.1007/s10704-024-00824-0","url":null,"abstract":"<div><p>This article introduces a novel method for investigating crack propagation in porous quasi-brittle structures. The method combines isogeometric analysis (IGA) with higher-order phase-field theory. IGA is particularly useful for representing complex geometries through high-order Non-Uniform Rational B-Spline (NURBS)-based elements. It gives it an advantage over conventional methods that rely on enriched nodes. The phase-field approach uses a scalar field to implicitly define the trajectory of cracks, eliminating the need to predefine an initial crack location. The study was conducted on a porous plate model with multiple perforations. The porosity level significantly affects the structural integrity of the domain under consideration. The degradation functions that characterize material softening concerning porosity are obtained through careful examination. These degradation functions are further implemented into numerical problems to observe the effect of porosity on crack initiation and propagation behavior. The results have demonstrated the proposed approach’s efficiency and accuracy in analyzing porous concrete’s failure behavior. The analysis results contribute to advancing our understanding of crack propagation and showcase the efficacy of the presented methodological framework in enhancing predictive capabilities in structural mechanics.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable crack features for the representation of kinematic fields in the case of fatigue overloads 疲劳超载情况下运动场的可解释裂纹特征表示
IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-22 DOI: 10.1007/s10704-024-00830-2
Ghita Bahaj Filali, Michel Coret, Adrien Leygue, Julien Réthoré

Many engineering structures are subjected to variable amplitude loading. A number of studies investigate the effects of post overload, even-though it is crucial to describe what occurs during the overloading. The aim of this paper is to provide effective independent descriptors based on purely kinematic measurements for the analysis of overloading. Fatigue tests were conducted on a SENT specimen. Investigating crack propagation was through direct measurements using Digital Image Correlation and Linear Elastic Fracture Mechanics via Williams’ series expansion. The higher terms in Williams’ series expansion, referred to as crack features were analyzed in cycles with and without overload. In a case without overload, all features exhibit a proportional regime. Singular value decomposition (SVD) analysis confirms that a single feature is adequate to characterize the mechanism. In a cycle with overload, the regime changes during the overloading phase, making it a signature of this phase. In this case, the SVD analysis reveals that two descriptors are needed for these cycles. A subsequent analysis allows the definition of two physically interpretable features. This work presents a robust method to identify, based on kinematic measurements and SVD analysis, independent descriptors for the processes that occur during a cycle with overload.

许多工程结构都要承受变幅荷载。许多研究调查了超载后的影响,尽管描述超载期间发生的事情至关重要。本文的目的是为超载分析提供基于纯运动学测量的有效独立描述符。对SENT试样进行了疲劳试验。通过Williams级数扩展,使用数字图像相关和线弹性断裂力学直接测量裂缝扩展。威廉姆斯级数展开中的较高项,即裂纹特征,在有和没有过载的循环中进行了分析。在没有过载的情况下,所有的特征都呈现成比例。奇异值分解(SVD)分析证实单个特征足以表征该机制。在具有过载的循环中,状态在过载阶段发生变化,使其成为该阶段的签名。在这种情况下,SVD分析揭示了这些循环需要两个描述符。随后的分析允许定义两个物理上可解释的特征。这项工作提出了一种鲁棒的方法来识别,基于运动学测量和SVD分析,独立描述符的过程中发生的循环与过载。
{"title":"Interpretable crack features for the representation of kinematic fields in the case of fatigue overloads","authors":"Ghita Bahaj Filali,&nbsp;Michel Coret,&nbsp;Adrien Leygue,&nbsp;Julien Réthoré","doi":"10.1007/s10704-024-00830-2","DOIUrl":"10.1007/s10704-024-00830-2","url":null,"abstract":"<div><p>Many engineering structures are subjected to variable amplitude loading. A number of studies investigate the effects of post overload, even-though it is crucial to describe what occurs during the overloading. The aim of this paper is to provide effective independent descriptors based on purely kinematic measurements for the analysis of overloading. Fatigue tests were conducted on a SENT specimen. Investigating crack propagation was through direct measurements using Digital Image Correlation and Linear Elastic Fracture Mechanics via Williams’ series expansion. The higher terms in Williams’ series expansion, referred to as crack features were analyzed in cycles with and without overload. In a case without overload, all features exhibit a proportional regime. Singular value decomposition (SVD) analysis confirms that a single feature is adequate to characterize the mechanism. In a cycle with overload, the regime changes during the overloading phase, making it a signature of this phase. In this case, the SVD analysis reveals that two descriptors are needed for these cycles. A subsequent analysis allows the definition of two physically interpretable features. This work presents a robust method to identify, based on kinematic measurements and SVD analysis, independent descriptors for the processes that occur during a cycle with overload.\u0000</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dialogue between Finite Fracture Mechanics and Phase Field approaches to fracture for predicting crack nucleation at the microscale 有限断裂力学与相场断裂方法在微观尺度上预测裂纹成核的对话
IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-20 DOI: 10.1007/s10704-024-00819-x
Sara Jiménez-Alfaro, Dominique Leguillon, Corrado Maurini, José Reinoso

Unraveling the material behavior at the microscale is one of the challenges of this century, demanding progress in experimental and computational strategies. Among the latter, two approaches are commonly applied for predicting crack nucleation. The Coupled Criterion (CC) and the Phase Field (PF) model, both depending on a material length parameter. In brittle materials at the macroscale, this parameter is significantly smaller than the specimen size. However, when the scale decreases, this material length might approach the structural dimensions. In this context, a comprehensive comparison between the two models is conducted, changing the ratio between the material length parameter and the dimensions of the specimen. Results indicate that when this ratio is sufficiently small predictions from both models coincide, otherwise both the CC and the PF model predict different results. Despite their differences, an agreement with experiments reported in the literature have been observed.

揭示微观尺度下的材料行为是本世纪的挑战之一,需要在实验和计算策略方面取得进展。其中,裂纹形核预测常用两种方法。耦合准则(CC)和相场(PF)模型,两者都依赖于材料长度参数。在宏观尺度的脆性材料中,该参数明显小于试样尺寸。然而,当尺度减小时,该材料长度可能接近结构尺寸。在此背景下,对两种模型进行综合比较,改变材料长度参数与试件尺寸的比值。结果表明,当该比值足够小时,两种模型的预测结果一致,否则CC和PF模型的预测结果不同。尽管它们存在差异,但已观察到与文献中报告的实验一致。
{"title":"A dialogue between Finite Fracture Mechanics and Phase Field approaches to fracture for predicting crack nucleation at the microscale","authors":"Sara Jiménez-Alfaro,&nbsp;Dominique Leguillon,&nbsp;Corrado Maurini,&nbsp;José Reinoso","doi":"10.1007/s10704-024-00819-x","DOIUrl":"10.1007/s10704-024-00819-x","url":null,"abstract":"<div><p>Unraveling the material behavior at the microscale is one of the challenges of this century, demanding progress in experimental and computational strategies. Among the latter, two approaches are commonly applied for predicting crack nucleation. The Coupled Criterion (CC) and the Phase Field (PF) model, both depending on a material length parameter. In brittle materials at the macroscale, this parameter is significantly smaller than the specimen size. However, when the scale decreases, this material length might approach the structural dimensions. In this context, a comprehensive comparison between the two models is conducted, changing the ratio between the material length parameter and the dimensions of the specimen. Results indicate that when this ratio is sufficiently small predictions from both models coincide, otherwise both the CC and the PF model predict different results. Despite their differences, an agreement with experiments reported in the literature have been observed.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00819-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Fracture
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1