Pub Date : 2006-04-24DOI: 10.1109/ESIME.2006.1643995
A. Tay, Hua Li, Xiangyang Gao, J. Chen, V. Kripesh
Fluidic self-assembly processes have been recently demonstrated to be a feasible method of assembling tiny chips in a cost-effective manner. In order to successfully implement the fluidic self-assembly process, it is important to quantify the magnitudes of the restoring capillary force and torque between the chip and the binding site and to determine the fluid dynamic forces acting on the chip as fluid flows over the chip. This paper presents results of numerical simulations of these restoring capillary forces and torques, and discusses the effect of various parameters on them, such as lubricant volume, component orientation and contact angle. The results show that the restoring forces in both lift and shift directions decrease significantly with the volume of lubricant. Analysis of the sensitivity of the restoring torque to the contact angle between the lubricant and the self-assembled monolayer (SAM) in water is also carried out. It is observed that, at smaller contact angles, the maximum torque is insensitive to the contact angle between 0 to 40deg. It thus suggests that a lubricant with a contact angle less than 40 degrees can be used without loss of effectiveness. The equilibrium of the chip under the action of flow-induced and capillary forces has also been analysed
{"title":"Numerical Simulation of Capillary and Fluid Dynamic Forces on Tiny Chips in Fluidic Self-Assembly Process","authors":"A. Tay, Hua Li, Xiangyang Gao, J. Chen, V. Kripesh","doi":"10.1109/ESIME.2006.1643995","DOIUrl":"https://doi.org/10.1109/ESIME.2006.1643995","url":null,"abstract":"Fluidic self-assembly processes have been recently demonstrated to be a feasible method of assembling tiny chips in a cost-effective manner. In order to successfully implement the fluidic self-assembly process, it is important to quantify the magnitudes of the restoring capillary force and torque between the chip and the binding site and to determine the fluid dynamic forces acting on the chip as fluid flows over the chip. This paper presents results of numerical simulations of these restoring capillary forces and torques, and discusses the effect of various parameters on them, such as lubricant volume, component orientation and contact angle. The results show that the restoring forces in both lift and shift directions decrease significantly with the volume of lubricant. Analysis of the sensitivity of the restoring torque to the contact angle between the lubricant and the self-assembled monolayer (SAM) in water is also carried out. It is observed that, at smaller contact angles, the maximum torque is insensitive to the contact angle between 0 to 40deg. It thus suggests that a lubricant with a contact angle less than 40 degrees can be used without loss of effectiveness. The equilibrium of the chip under the action of flow-induced and capillary forces has also been analysed","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"20 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86419429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-04-24DOI: 10.1109/ESIME.2006.1643950
Y. Lai, T. Wang, Chang-Chi Lee, Hsuan-Yu Chen
In this paper, we evaluate the board-level thermal performance of QFP with an unattached drop-in heat spreader numerically and experimentally. The die is given a power dissipation and induced thermomechanical deformations and the gap distribution on the unattached interface are calculated through the three-dimensional thermal-mechanical coupling analysis incorporated with the contact methodology. The measured junction to ambient thermal resistance is used to validate the numerical results, which involve different interfacial thermal transfer conditions
{"title":"Numerical Examination and Experimental Verification of Thermal Performance of Board-level QFP with Unattached Drop-in Heat Spreader","authors":"Y. Lai, T. Wang, Chang-Chi Lee, Hsuan-Yu Chen","doi":"10.1109/ESIME.2006.1643950","DOIUrl":"https://doi.org/10.1109/ESIME.2006.1643950","url":null,"abstract":"In this paper, we evaluate the board-level thermal performance of QFP with an unattached drop-in heat spreader numerically and experimentally. The die is given a power dissipation and induced thermomechanical deformations and the gap distribution on the unattached interface are calculated through the three-dimensional thermal-mechanical coupling analysis incorporated with the contact methodology. The measured junction to ambient thermal resistance is used to validate the numerical results, which involve different interfacial thermal transfer conditions","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"24 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87689374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-04-24DOI: 10.1109/ESIME.2006.1644035
M. Damnjanović, G. Stojanović, L. Zivanov
In this paper, modeling and simulation of electrical characteristics of EMI suppressors will be presented. Ferrite and varistor EMI suppressors consist of conductive layers embedded in ferrite or varistor monolithic structure, which make them very suitable for elimination of conducted EMI. In this paper software tool for calculation of electrical characteristics of ferrite and varistor EMI suppressor is given. A scalable analytical model of different EMI suppressor structures suitable for design and circuit simulations is presented. By using our algorithm, we are able to predict correctly all variations of electrical characteristics introduced by varying geometry parameters of EMI suppressor. These integrated passive devices were tested in the frequency range 1MHz-3GHz using an Agilent 4287A RF LCR meter. The measurements confirm the validity of the analytical model
{"title":"Modeling and Simulation of Ferrite and Varistor EMI Suppressors","authors":"M. Damnjanović, G. Stojanović, L. Zivanov","doi":"10.1109/ESIME.2006.1644035","DOIUrl":"https://doi.org/10.1109/ESIME.2006.1644035","url":null,"abstract":"In this paper, modeling and simulation of electrical characteristics of EMI suppressors will be presented. Ferrite and varistor EMI suppressors consist of conductive layers embedded in ferrite or varistor monolithic structure, which make them very suitable for elimination of conducted EMI. In this paper software tool for calculation of electrical characteristics of ferrite and varistor EMI suppressor is given. A scalable analytical model of different EMI suppressor structures suitable for design and circuit simulations is presented. By using our algorithm, we are able to predict correctly all variations of electrical characteristics introduced by varying geometry parameters of EMI suppressor. These integrated passive devices were tested in the frequency range 1MHz-3GHz using an Agilent 4287A RF LCR meter. The measurements confirm the validity of the analytical model","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"59 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87215309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-04-24DOI: 10.1109/ESIME.2006.1644034
X. Jordà, M. Vellvehí, F. Madrid, J. Gálvez, P. Godignon, J. Millán
Thermal simulation is nowadays the basic thermal management design tool to predict temperature distributions and power fluxes of complex assemblies. Nevertheless, the simulation results can be inaccurate due to the uncertainty of the values of the parameters involved in the modelisation, as it is the case of the dielectric layer of the IMS substrates. We propose a methodology for the in-situ measurement of the thermal conductivity of this dielectric layer. Two typical power assembly structures based on two types of substrates and a thermal assessment chip, have been simulated and their thermal resistance deduced. The corresponding experimental results have validated the simulations and, consequently, the thermal conductivity extraction method proposed
{"title":"Comparison Between Simulated and Experimental Thermal Resistances of Power Devices Using an Specific Test Chip","authors":"X. Jordà, M. Vellvehí, F. Madrid, J. Gálvez, P. Godignon, J. Millán","doi":"10.1109/ESIME.2006.1644034","DOIUrl":"https://doi.org/10.1109/ESIME.2006.1644034","url":null,"abstract":"Thermal simulation is nowadays the basic thermal management design tool to predict temperature distributions and power fluxes of complex assemblies. Nevertheless, the simulation results can be inaccurate due to the uncertainty of the values of the parameters involved in the modelisation, as it is the case of the dielectric layer of the IMS substrates. We propose a methodology for the in-situ measurement of the thermal conductivity of this dielectric layer. Two typical power assembly structures based on two types of substrates and a thermal assessment chip, have been simulated and their thermal resistance deduced. The corresponding experimental results have validated the simulations and, consequently, the thermal conductivity extraction method proposed","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"12 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81693914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-04-24DOI: 10.1109/ESIME.2006.1644037
Guangping Zhang, C. Volkert, R. Schwaiger, R. Mönig, Oliver Kraft
In this paper, we summarize several testing methods that are currently available for the characterization of fatigue properties of thin metal films. Using these testing methods, a number of experimental investigations of the fatigue and thermal fatigue of metal films with thicknesses ranging from micrometers to sub-micrometers are described. Extensive experimental observations as well as theoretical analyses reveal that the damage behavior, i.e. typical fatigue extrusions and cracking, are quite different from that of bulk materials, and are controlled by the length scales of the materials. Due to the high surface to volume ratio of thin films interface-induced and diffusion-related damage are prevalent in these small length scale materials. As a result, interfaces pose a serious threat to the reliability of thin films
{"title":"Fatigue and Thermal Fatigue Damage Analysis of Thin Metal Films","authors":"Guangping Zhang, C. Volkert, R. Schwaiger, R. Mönig, Oliver Kraft","doi":"10.1109/ESIME.2006.1644037","DOIUrl":"https://doi.org/10.1109/ESIME.2006.1644037","url":null,"abstract":"In this paper, we summarize several testing methods that are currently available for the characterization of fatigue properties of thin metal films. Using these testing methods, a number of experimental investigations of the fatigue and thermal fatigue of metal films with thicknesses ranging from micrometers to sub-micrometers are described. Extensive experimental observations as well as theoretical analyses reveal that the damage behavior, i.e. typical fatigue extrusions and cracking, are quite different from that of bulk materials, and are controlled by the length scales of the materials. Due to the high surface to volume ratio of thin films interface-induced and diffusion-related damage are prevalent in these small length scale materials. As a result, interfaces pose a serious threat to the reliability of thin films","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"22 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90586863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-04-24DOI: 10.1109/ESIME.2006.1644050
Jiang Zhou, K. Sharan, S. Lahoti
Dynamic performance during drop impact is a great concern to semiconductor and electronic product manufacturers, especially for portable devices such as mobile phones. In this paper, the drop impact response of a mobile phone is investigated by an analytical dynamics model. In order to capture some most important affected factors, we decouple this problem to be a two-step analysis. First, finite element analysis is used to determine the effective stiffness for housing and PCB board, respectively. Second, a two-degree-of-freedom analytical dynamic model is developed to investigate the drop impact response. Such an approach allows parametric analysis to determine the important design parameters, which are important to the preliminary selection of geometries and materials of PCB boards and stiffness of housings so that the dynamic stability is maintained. Board level finite element analysis is also performed using input-acceleration model. The results are in good agreement with the analytical model results developed above. Finally, both methods are applied to evaluate the dynamic response of a commercially used cellular phone
{"title":"Analytical and Numerical Analysis of Drop Impact Behavior for a Portable Electronic Device","authors":"Jiang Zhou, K. Sharan, S. Lahoti","doi":"10.1109/ESIME.2006.1644050","DOIUrl":"https://doi.org/10.1109/ESIME.2006.1644050","url":null,"abstract":"Dynamic performance during drop impact is a great concern to semiconductor and electronic product manufacturers, especially for portable devices such as mobile phones. In this paper, the drop impact response of a mobile phone is investigated by an analytical dynamics model. In order to capture some most important affected factors, we decouple this problem to be a two-step analysis. First, finite element analysis is used to determine the effective stiffness for housing and PCB board, respectively. Second, a two-degree-of-freedom analytical dynamic model is developed to investigate the drop impact response. Such an approach allows parametric analysis to determine the important design parameters, which are important to the preliminary selection of geometries and materials of PCB boards and stiffness of housings so that the dynamic stability is maintained. Board level finite element analysis is also performed using input-acceleration model. The results are in good agreement with the analytical model results developed above. Finally, both methods are applied to evaluate the dynamic response of a commercially used cellular phone","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"60 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89700527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-04-24DOI: 10.1109/ESIME.2006.1644003
J. Anttonen, T. Kangasvieri, O. Nousiainen, J. Putaala, J. Vahakangas
In this paper, a reliability modeling methodology for BGA solder joints with plastic-core solder balls (PCSBs) has been presented. The methodology is applied to predict the board-level reliability of LTCC/BGA modules under accelerated thermal cycling conditions. The model takes into account both time- and temperature-dependent as well as time-independent plasticity and provides a detailed number of cycles needed to crack initiation, propagation and eventual solder joint failure. To assess the feasibility of the presented modeling procedure, the model is validated against experimental temperature cycling data obtained from LTCC/BGA module assemblies on a printed wiring board. The results demonstrate that this procedure can be used for life-time prediction of BGA solder joints with PCSBs
{"title":"Thermo-Mechanical Modeling of Plastic-Core Solder Balls in LTCC/BGA Assemblies","authors":"J. Anttonen, T. Kangasvieri, O. Nousiainen, J. Putaala, J. Vahakangas","doi":"10.1109/ESIME.2006.1644003","DOIUrl":"https://doi.org/10.1109/ESIME.2006.1644003","url":null,"abstract":"In this paper, a reliability modeling methodology for BGA solder joints with plastic-core solder balls (PCSBs) has been presented. The methodology is applied to predict the board-level reliability of LTCC/BGA modules under accelerated thermal cycling conditions. The model takes into account both time- and temperature-dependent as well as time-independent plasticity and provides a detailed number of cycles needed to crack initiation, propagation and eventual solder joint failure. To assess the feasibility of the presented modeling procedure, the model is validated against experimental temperature cycling data obtained from LTCC/BGA module assemblies on a printed wiring board. The results demonstrate that this procedure can be used for life-time prediction of BGA solder joints with PCSBs","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"10 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88398483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-04-24DOI: 10.1109/ESIME.2006.1644024
J. Brufau-Penella, M. Puig-Vidal
In this paper the constituent equations that describe the behavior of a multi-layer piezoelectric cantilever on the coupled electronic and mechanical domain are presented. The study is based on the modal analysis of the partial differential equations governing the motion of an Euler-Bernoulli cantilever beam and on a pair of linearly coupled piezoelectric equations. An important element in the modelization of such materials is the energy loss term; in this paper a viscous damping contribution is considered which allows us to extract more realistic constituent equations for the material to work as sensor and actuator. The development of this equation as an infinite linear combination of each mode allows us to extract a compact lumped equivalent electrical circuit to work at any frequency region as sensor or actuator instead of the classical reduced models. Theory is reduced to study the dynamics of a triple-layer commercial cantilever and then is compared with experimental results
{"title":"Electromechanical Model of a Multi-Layer Piezoelectric Cantilever","authors":"J. Brufau-Penella, M. Puig-Vidal","doi":"10.1109/ESIME.2006.1644024","DOIUrl":"https://doi.org/10.1109/ESIME.2006.1644024","url":null,"abstract":"In this paper the constituent equations that describe the behavior of a multi-layer piezoelectric cantilever on the coupled electronic and mechanical domain are presented. The study is based on the modal analysis of the partial differential equations governing the motion of an Euler-Bernoulli cantilever beam and on a pair of linearly coupled piezoelectric equations. An important element in the modelization of such materials is the energy loss term; in this paper a viscous damping contribution is considered which allows us to extract more realistic constituent equations for the material to work as sensor and actuator. The development of this equation as an infinite linear combination of each mode allows us to extract a compact lumped equivalent electrical circuit to work at any frequency region as sensor or actuator instead of the classical reduced models. Theory is reduced to study the dynamics of a triple-layer commercial cantilever and then is compared with experimental results","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"39 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88425197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-04-24DOI: 10.1109/ESIME.2006.1643959
M. Boutaayamou, K. H. Nair, R. Sabariego, P. Dular
The numerical models describing the behaviour of electrostatically actuated microsystems often disregard fringing fields. However, taking the fringing fields into account is crucial for an accurate computation of the electrostatic forces. In this work, the finite element method is applied for modeling electrostatic actuators. The electrostatic force distribution is obtained by locally applying the virtual work method. A micro-beam and a comb drive are considered as test cases. The impact of the fringing field effects on the accuracy of electrostatic forces is shown through 2D and 3D parametric studies
{"title":"Finite Element Modeling of Electrostatic MEMS Including the Impact of Fringing Field Effects on Forces","authors":"M. Boutaayamou, K. H. Nair, R. Sabariego, P. Dular","doi":"10.1109/ESIME.2006.1643959","DOIUrl":"https://doi.org/10.1109/ESIME.2006.1643959","url":null,"abstract":"The numerical models describing the behaviour of electrostatically actuated microsystems often disregard fringing fields. However, taking the fringing fields into account is crucial for an accurate computation of the electrostatic forces. In this work, the finite element method is applied for modeling electrostatic actuators. The electrostatic force distribution is obtained by locally applying the virtual work method. A micro-beam and a comb drive are considered as test cases. The impact of the fringing field effects on the accuracy of electrostatic forces is shown through 2D and 3D parametric studies","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"22 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82508061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-04-24DOI: 10.1109/ESIME.2006.1643962
R. van Silfhout, O. van der Sluis, W. V. van Driel, J. Janssen, G.Q. Zhang
For Integrated Circuit (IC) wafer backend development, process developers have to design robust backend structures that guarantee both functionality and reliability during waferfab processes, packaging, qualification tests and lifetime. Figure 1 shows a simplified diagram for the design (and redesign) cycle forevelopment. Subsequently, package development IC development. Subsequently, package develop t . inherited runs a similar cycle. By using reliability modell relate it to the interaction of IC and package assembly, such as IC/compound delamination, we aim at integrating IC and packge prototyping in order to develop reliable IC packages faster. This paper presents parts of our research to approach thermo-mechanical IC reliability by virtually designing and quaifying IC backend structures in both IC processing, packaging and testing processes. By combining experimental and numerical results, targeted failure modes and mechanisms as well as their interactions are understood. It is found that delamination is the key trigger for passivation cracking and metal shift. Even more, the layout of interconnect metals in the backend of ICs has a major effect on under bond-pad wir delamination observed after wafer probing an wire ing. Reliable predictive modelling approaches enable IC package development towards a first-time-right practice.
{"title":"Virtual Design and Qualification of IC Backend Structures","authors":"R. van Silfhout, O. van der Sluis, W. V. van Driel, J. Janssen, G.Q. Zhang","doi":"10.1109/ESIME.2006.1643962","DOIUrl":"https://doi.org/10.1109/ESIME.2006.1643962","url":null,"abstract":"For Integrated Circuit (IC) wafer backend development, process developers have to design robust backend structures that guarantee both functionality and reliability during waferfab processes, packaging, qualification tests and lifetime. Figure 1 shows a simplified diagram for the design (and redesign) cycle forevelopment. Subsequently, package development IC development. Subsequently, package develop t . inherited runs a similar cycle. By using reliability modell relate it to the interaction of IC and package assembly, such as IC/compound delamination, we aim at integrating IC and packge prototyping in order to develop reliable IC packages faster. This paper presents parts of our research to approach thermo-mechanical IC reliability by virtually designing and quaifying IC backend structures in both IC processing, packaging and testing processes. By combining experimental and numerical results, targeted failure modes and mechanisms as well as their interactions are understood. It is found that delamination is the key trigger for passivation cracking and metal shift. Even more, the layout of interconnect metals in the backend of ICs has a major effect on under bond-pad wir delamination observed after wafer probing an wire ing. Reliable predictive modelling approaches enable IC package development towards a first-time-right practice.","PeriodicalId":60796,"journal":{"name":"微纳电子与智能制造","volume":"47 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2006-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78370379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}