Pub Date : 2017-04-03DOI: 10.4236/WJNST.2017.72006
A. Alzubadi, Duaa Majid Hameed
The nuclear structure for some target nuclei namely: 32S, 58Ni, 89Y, 90Zr, 100Mo and 197Au used for production of the therapeutic radionuclides; 32P, 58Co, 89Sr, 90Y, 99Mo, 100Tc, 197Pt and 197Hg has been investigated using Skyrme-Hartree-Fock method based on Skyrme effective two-body interaction. For these purpose, we have calculated the various nuclear densities, the corresponding root mean square radii and nuclear binding energies. The density dependent initial neutron and proton exciton numbers have been also calculated which give the ability to investigate the neutron and proton induced reaction cross-sections for these target nuclei using hybrid model for pre-equilibrium nuclear reactions. The calculated results are compared with available experimental data.
{"title":"Studying the Nuclear Structure of Some Target Nuclei Used for Radiotherapy Nuclei Production by Using Skyrme-Hartree-Fock Method","authors":"A. Alzubadi, Duaa Majid Hameed","doi":"10.4236/WJNST.2017.72006","DOIUrl":"https://doi.org/10.4236/WJNST.2017.72006","url":null,"abstract":"The nuclear structure for some target nuclei namely: 32S, 58Ni, 89Y, 90Zr, 100Mo and 197Au used for production of the therapeutic radionuclides; 32P, 58Co, 89Sr, 90Y, 99Mo, 100Tc, 197Pt and 197Hg has been investigated using Skyrme-Hartree-Fock method based on Skyrme effective two-body interaction. For these purpose, we have calculated the various nuclear densities, the corresponding root mean square radii and nuclear binding energies. The density dependent initial neutron and proton exciton numbers have been also calculated which give the ability to investigate the neutron and proton induced reaction cross-sections for these target nuclei using hybrid model for pre-equilibrium nuclear reactions. The calculated results are compared with available experimental data.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"07 1","pages":"67-83"},"PeriodicalIF":0.0,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44612871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-04-03DOI: 10.4236/WJNST.2017.72010
O. Ahmed, F. Habbani, A. M. Mustafa, E. Mohamed, A. M. Salih, Ftihia Seedig
The aim of this study is a quality assessment of X-ray fluorescence laboratory located at the University of Khartoum. The X-ray fluorescence spectrometer system consists, a set of three 109Cd sources of an initial nominal activity of 10 μCi, and Si(Li) detector Energy Dispersive XRF(EDXRF) systems. It is important to carry out this work because it has an effective contribution for a wide range of research and services. The assessment was carried out by measuring 8 NIST-2709a (soil) and 13 IAEA-155 (milk powder) standard reference material samples for repeatability examinations to test the measurement precision. The total combined standards uncertainty values for XRF lab were estimated by an error from repeatability measurements adding 2.6% for error propagation related to the method. For accuracy assessment, three standard statistic approaches were applied, i.e. the Bias %, zeta-score, and En-number. The bias of all elements for both standard materials was found to be within a deviation range from −28% to 7.8%. The results of all elements for both the zeta-score test and En-number have satisfactory results except Th (Thorium) and Zr (Zirconium) which consider as questionable results for NIST SRM 2709a and unsatisfactory results for En-number.
{"title":"Quality Assessment Statistic Evaluation of X-Ray Fluorescence via NIST and IAEA Standard Reference Materials","authors":"O. Ahmed, F. Habbani, A. M. Mustafa, E. Mohamed, A. M. Salih, Ftihia Seedig","doi":"10.4236/WJNST.2017.72010","DOIUrl":"https://doi.org/10.4236/WJNST.2017.72010","url":null,"abstract":"The aim of this study is a quality assessment of X-ray fluorescence laboratory located at the University of Khartoum. The X-ray fluorescence spectrometer system consists, a set of three 109Cd sources of an initial nominal activity of 10 μCi, and Si(Li) detector Energy Dispersive XRF(EDXRF) systems. It is important to carry out this work because it has an effective contribution for a wide range of research and services. The assessment was carried out by measuring 8 NIST-2709a (soil) and 13 IAEA-155 (milk powder) standard reference material samples for repeatability examinations to test the measurement precision. The total combined standards uncertainty values for XRF lab were estimated by an error from repeatability measurements adding 2.6% for error propagation related to the method. For accuracy assessment, three standard statistic approaches were applied, i.e. the Bias %, zeta-score, and En-number. The bias of all elements for both standard materials was found to be within a deviation range from −28% to 7.8%. The results of all elements for both the zeta-score test and En-number have satisfactory results except Th (Thorium) and Zr (Zirconium) which consider as questionable results for NIST SRM 2709a and unsatisfactory results for En-number.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"07 1","pages":"121-128"},"PeriodicalIF":0.0,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48109602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-09DOI: 10.4236/WJNST.2017.71004
R. Hashemi-Nezhad, R. Brandt, V. Ditlov, M. Haiduc, E. Firu, A. Neagu, E. Ganssauge, W. Westmeier
Aspects of BURSTS and Spallation reactions induced by high-energy heavy ions in thick targets (>10 cm thick) will be investigated: BURSTS are reviewed from a historical and phenomenological point-of-view. Details of interactions in nuclear emulsions will be compared for irradiations of 72 GeV 22Ne-ions from Dubna with irradiations of 72 GeV 40Ar-ions from Berkeley. Measured correlations in individual interactions between multiplicities of “minimum ionizing particles”, ns, and “black prongs”, nb, will be shown as “ns-vs.-nb” per event for BURSTS and separately for Spallation in interactions of 72 GeV 22Ne-ions. Monte Carlo calculations, based on the MCNPX 2.7 code, have been carried out for 72 GeV 22Ne interacting in nuclear emulsions: The correlation between ns and nb in Spallation reactions could be understood. However, “ns-vs.-nb” correlations from BURST-interactions could not be reproduced with this model for events with small numbers of heavy prongs nh ≤ 10. For large numbers of heavy prongs with nh > 10 one could find some agreement between experiments and calculations, however, not in all details. Further experimental and theoretical studies are necessary before one has a complete understanding of BURST interactions in high-energy heavy ion reactions.
{"title":"Further Studies of BURSTS and Spallation in High-Energy Heavy Ion Reactions","authors":"R. Hashemi-Nezhad, R. Brandt, V. Ditlov, M. Haiduc, E. Firu, A. Neagu, E. Ganssauge, W. Westmeier","doi":"10.4236/WJNST.2017.71004","DOIUrl":"https://doi.org/10.4236/WJNST.2017.71004","url":null,"abstract":"Aspects of BURSTS and Spallation reactions induced by high-energy heavy ions in thick targets (>10 cm thick) will be investigated: BURSTS are reviewed from a historical and phenomenological point-of-view. Details of interactions in nuclear emulsions will be compared for irradiations of 72 GeV 22Ne-ions from Dubna with irradiations of 72 GeV 40Ar-ions from Berkeley. Measured correlations in individual interactions between multiplicities of “minimum ionizing particles”, ns, and “black prongs”, nb, will be shown as “ns-vs.-nb” per event for BURSTS and separately for Spallation in interactions of 72 GeV 22Ne-ions. Monte Carlo calculations, based on the MCNPX 2.7 code, have been carried out for 72 GeV 22Ne interacting in nuclear emulsions: The correlation between ns and nb in Spallation reactions could be understood. However, “ns-vs.-nb” correlations from BURST-interactions could not be reproduced with this model for events with small numbers of heavy prongs nh ≤ 10. For large numbers of heavy prongs with nh > 10 one could find some agreement between experiments and calculations, however, not in all details. Further experimental and theoretical studies are necessary before one has a complete understanding of BURST interactions in high-energy heavy ion reactions.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"7 1","pages":"35-57"},"PeriodicalIF":0.0,"publicationDate":"2017-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45553005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.4236/WJNST.2017.71003
Rubina Nasir, S. Mirza, N. M. Mirza
Effect of flow rate perturbations has been studied using the modified computer program CPAIR-P for time dependent corrosion rates in Pressurized Water Reactors (PWRs) having extended cycles. In these simulations, a decrease in the corresponding saturation values of corrosion product activity (CPA) is observed for higher pH values. Comparison of CPA’s behavior has been done for constant flow-rate case as well as for transients with elevated 10B levels (~40%) in dissolved boric acid in coolant in two operating cycles. When the flow rate is decreased in the first cycle, the saturation value of CPA attains new higher values. Also, in the second operating cycle, the saturation values are about 12% higher when compared with the values in the first cycle.
{"title":"Evaluation of Corrosion Product Activity in a Typical PWR with Extended Cycles and Flow Rate Perturbations","authors":"Rubina Nasir, S. Mirza, N. M. Mirza","doi":"10.4236/WJNST.2017.71003","DOIUrl":"https://doi.org/10.4236/WJNST.2017.71003","url":null,"abstract":"Effect of flow rate perturbations has been studied using the modified computer program CPAIR-P for time dependent corrosion rates in Pressurized Water Reactors (PWRs) having extended cycles. In these simulations, a decrease in the corresponding saturation values of corrosion product activity (CPA) is observed for higher pH values. Comparison of CPA’s behavior has been done for constant flow-rate case as well as for transients with elevated 10B levels (~40%) in dissolved boric acid in coolant in two operating cycles. When the flow rate is decreased in the first cycle, the saturation value of CPA attains new higher values. Also, in the second operating cycle, the saturation values are about 12% higher when compared with the values in the first cycle.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"07 1","pages":"24-34"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.4236/WJNST.2017.71002
Nguyen An Son, N. Hoa, T. Nguyen, T. Tuan, Osvaldo Camueje Raul
Control rod is used to change the power in nuclear reactor. Certainly, the core at any moment can be made subcritical condition and shut downs when occurring to emergency instance in the core. The rod is grouped based on their function and located at different places in the core where their feature is maximized. Two methods of control rod calibration are the asymptotic period method and the rod-drop method, which were applied in this experiment. In the first method, the reactor is made supcritical by inserting the control rod to be calibrated a certain level. The rod drop method is to determine the subcritical; at the critical state, the rod to be calibrated is dropped into the core, and the resulting decay of neutron flux is observed and related to the reactivity. In this paper, the regulating rod will be calibrated according to the reactivity in OPR-1000 that corresponds to a certain control rod insert or withdraw, and the reactivity in power reactor depends on the integral and differential control rod group too. The core simulator OPR1000 is used to test those methods.
{"title":"Control Rod Calibration and Worth Calculation for Optimized Power Reactor 1000 (OPR-1000) Using Core Simulator OPR1000","authors":"Nguyen An Son, N. Hoa, T. Nguyen, T. Tuan, Osvaldo Camueje Raul","doi":"10.4236/WJNST.2017.71002","DOIUrl":"https://doi.org/10.4236/WJNST.2017.71002","url":null,"abstract":"Control rod is used to change the power in nuclear reactor. Certainly, the core at any moment can be made subcritical condition and shut downs when occurring to emergency instance in the core. The rod is grouped based on their function and located at different places in the core where their feature is maximized. Two methods of control rod calibration are the asymptotic period method and the rod-drop method, which were applied in this experiment. In the first method, the reactor is made supcritical by inserting the control rod to be calibrated a certain level. The rod drop method is to determine the subcritical; at the critical state, the rod to be calibrated is dropped into the core, and the resulting decay of neutron flux is observed and related to the reactivity. In this paper, the regulating rod will be calibrated according to the reactivity in OPR-1000 that corresponds to a certain control rod insert or withdraw, and the reactivity in power reactor depends on the integral and differential control rod group too. The core simulator OPR1000 is used to test those methods.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"07 1","pages":"15-23"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01DOI: 10.4236/WJNST.2017.71005
L. Folan, V. Tsifrinovich
We consider two possible schemes for generation and detection of a monoenergetic directed beam of neutrinos which may have application to neutrino communication. First, we consider generation of a directed neutrino beam using electron capture beta decay in hydrogen-like ions. Next, we suggest detection of a directed neutrino beam using resonant absorption of a neutrino by a bare nucleus with the generation of a bound electron. This reaction is inverse to electron capture beta decay, and we call it “Bound State Inverse Beta Decay (BSIBD)”. We show that the recoil effect can be eliminated by an appropriate choice of velocities for the ions and bare nuclei. Finally, we consider a combination of a solid state source of a directed mono-energetic neutrino beam and its detection using BSIBD.
{"title":"Generation and Detection of a Directed Monoenergetic Neutrino Beam with Hydrogen-Like Ions","authors":"L. Folan, V. Tsifrinovich","doi":"10.4236/WJNST.2017.71005","DOIUrl":"https://doi.org/10.4236/WJNST.2017.71005","url":null,"abstract":"We consider two possible schemes for generation and detection of a monoenergetic directed beam of neutrinos which may have application to neutrino communication. First, we consider generation of a directed neutrino beam using electron capture beta decay in hydrogen-like ions. Next, we suggest detection of a directed neutrino beam using resonant absorption of a neutrino by a bare nucleus with the generation of a bound electron. This reaction is inverse to electron capture beta decay, and we call it “Bound State Inverse Beta Decay (BSIBD)”. We show that the recoil effect can be eliminated by an appropriate choice of velocities for the ions and bare nuclei. Finally, we consider a combination of a solid state source of a directed mono-energetic neutrino beam and its detection using BSIBD.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"07 1","pages":"58-66"},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-08DOI: 10.4236/WJNST.2016.64021
B. Schaeffer
After one century of nuclear physics, its underlying fundamental laws remain a puzzle. Rutherford scattering is well known to be electric at low kinetic energy. Nobody noticed that the Rutherford scattering formula works also at high kinetic energy, needing only to replace the repulsive electric -2 exponent by the also repulsive magnetic -6 exponent. A proton attracts a not so neutral neutron as amber attracts dust. The nucleons have magnetic moments that interact as magnets, equilibrating statically the electric attraction between a proton and a not so neutral neutron. In this paper, the electromagnetic potential energies of the deuteron 2H and the α particle 4He have been calculated statically, using only electromagnetic fundamental laws and constants. Nuclear scattering and binding energy are both electromagnetic.
{"title":"Electromagnetic Theory of the Nuclear Interaction","authors":"B. Schaeffer","doi":"10.4236/WJNST.2016.64021","DOIUrl":"https://doi.org/10.4236/WJNST.2016.64021","url":null,"abstract":"After one century of nuclear physics, its underlying fundamental laws remain a puzzle. Rutherford scattering is well known to be electric at low kinetic energy. Nobody noticed that the Rutherford scattering formula works also at high kinetic energy, needing only to replace the repulsive electric -2 exponent by the also repulsive magnetic -6 exponent. A proton attracts a not so neutral neutron as amber attracts dust. The nucleons have magnetic moments that interact as magnets, equilibrating statically the electric attraction between a proton and a not so neutral neutron. In this paper, the electromagnetic potential energies of the deuteron 2H and the α particle 4He have been calculated statically, using only electromagnetic fundamental laws and constants. Nuclear scattering and binding energy are both electromagnetic.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"06 1","pages":"199-205"},"PeriodicalIF":0.0,"publicationDate":"2016-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-08DOI: 10.4236/WJNST.2018.81001
L. O. Freire, D. A. Andrade
This work aimed at proposing a new combination of technologies to improve military performances and reduce costs of nuclear attack submarines, without overlooking safety constraints. The last generation of nuclear attack submarines increased size to meet safety and operational requirements, imposing huge burden on costs side, reducing fleet size. The limitations of current Technologies employed were qualitatively discussed, explaining their limitations. There are new technologies (plate and shell heat exchangers) and architectural choices, like passive safety, and segregation of safety and normal systems, which may lead to reduction of costs and size of submarines. A qualitative analysis was provided on this combination of technologies, stressing their commercial nature and maturity, which reduced risks. The qualitative analysis showed the strong and weak points of this proposal, which adopted the concept of strength in numbers. Concluding, new Technologies enabled the existence of 3800 t nuclear attack submarines with powerful propulsion systems and good acoustic discretion.
{"title":"Technological Perspectives for Propulsion on Nuclear Attack Submarines","authors":"L. O. Freire, D. A. Andrade","doi":"10.4236/WJNST.2018.81001","DOIUrl":"https://doi.org/10.4236/WJNST.2018.81001","url":null,"abstract":"This work aimed at proposing a new combination of technologies to improve military performances and reduce costs of nuclear attack submarines, without overlooking safety constraints. The last generation of nuclear attack submarines increased size to meet safety and operational requirements, imposing huge burden on costs side, reducing fleet size. The limitations of current Technologies employed were qualitatively discussed, explaining their limitations. There are new technologies (plate and shell heat exchangers) and architectural choices, like passive safety, and segregation of safety and normal systems, which may lead to reduction of costs and size of submarines. A qualitative analysis was provided on this combination of technologies, stressing their commercial nature and maturity, which reduced risks. The qualitative analysis showed the strong and weak points of this proposal, which adopted the concept of strength in numbers. Concluding, new Technologies enabled the existence of 3800 t nuclear attack submarines with powerful propulsion systems and good acoustic discretion.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"06 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2016-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-08DOI: 10.4236/WJNST.2016.64022
A. Boukhair, Laila Belahbib, Khadija Azkour, H. Nebdi, M. Benjelloun, A. Nourreddine
The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l.
{"title":"Assessment of the Radiological Impact on the Environment near a Storage Site of Coal Ashes in a Thermal Power Plant","authors":"A. Boukhair, Laila Belahbib, Khadija Azkour, H. Nebdi, M. Benjelloun, A. Nourreddine","doi":"10.4236/WJNST.2016.64022","DOIUrl":"https://doi.org/10.4236/WJNST.2016.64022","url":null,"abstract":"The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"06 1","pages":"206-216"},"PeriodicalIF":0.0,"publicationDate":"2016-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70889257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-09-08DOI: 10.4236/WJNST.2016.64024
M. Silverman
A simple method employing a pair of pancake-style Geiger-Mueller (GM) counters for quantitative measurement of radon activity concentration (activity per unit volume) is described and demonstrated. The use of two GM counters, together with the basic theory derived in this paper, permit the detection of alpha particles from decay of and progeny ( 218Po, 214Po) and the conversion of the alpha count rate into a radon concentration. A unique feature of this method, in comparison with standard methodologies to measure radon concentration, is the absence of a fixed control volume. Advantages afforded by the reported GM method include: 1) it provides a direct in-situ value of radon level, thereby eliminating the need to send samples to an external testing laboratory; 2) it can be applied to monitoring radon levels exhibiting wide short-term variability; 3) it can yield short-term measurements of comparable accuracy and equivalent or higher precision than a commercial radon monitor sampling by passive diffusion; 4) it yields long-term measurements statistically equivalent to commercial radon monitors; 5) it uses the most commonly employed, overall least expensive, and most easily operated type of nuclear instrumentation. As such, the method is par-ticularly suitable for use by researchers, public health personnel, and home dwellers who prefer to monitor indoor radon levels themselves. The results of a consecutive 30-day sequence of 24 hour mean radon measurements by the proposed GM method and a commercial state-of-the-art radon monitor certified for radon testing are compared.
{"title":"Method to Measure Indoor Radon Concentration in an Open Volume with Geiger-Mueller Counters: Analysis from First Principles","authors":"M. Silverman","doi":"10.4236/WJNST.2016.64024","DOIUrl":"https://doi.org/10.4236/WJNST.2016.64024","url":null,"abstract":"A simple method employing a pair of pancake-style Geiger-Mueller (GM) counters for quantitative measurement of radon activity concentration (activity per unit volume) is described and demonstrated. The use of two GM counters, together with the basic theory derived in this paper, permit the detection of alpha particles from decay of and progeny ( 218Po, 214Po) and the conversion of the alpha count rate into a radon concentration. A unique feature of this method, in comparison with standard methodologies to measure radon concentration, is the absence of a fixed control volume. Advantages afforded by the reported GM method include: 1) it provides a direct in-situ value of radon level, thereby eliminating the need to send samples to an external testing laboratory; 2) it can be applied to monitoring radon levels exhibiting wide short-term variability; 3) it can yield short-term measurements of comparable accuracy and equivalent or higher precision than a commercial radon monitor sampling by passive diffusion; 4) it yields long-term measurements statistically equivalent to commercial radon monitors; 5) it uses the most commonly employed, overall least expensive, and most easily operated type of nuclear instrumentation. As such, the method is par-ticularly suitable for use by researchers, public health personnel, and home dwellers who prefer to monitor indoor radon levels themselves. The results of a consecutive 30-day sequence of 24 hour mean radon measurements by the proposed GM method and a commercial state-of-the-art radon monitor certified for radon testing are compared.","PeriodicalId":61566,"journal":{"name":"核科学与技术国际期刊(英文)","volume":"6 1","pages":"232-260"},"PeriodicalIF":0.0,"publicationDate":"2016-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70888951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}