首页 > 最新文献

Journal of Friction and Wear最新文献

英文 中文
Structure and Properties of Antifriction Pseudo-Alloys of the Powder Steel–Copper Alloy, Infiltrated with Materials of Various Compositions 渗入不同成分材料的粉末钢铜合金抗摩擦伪合金的结构和性能
IF 0.7 4区 工程技术 Q3 Engineering Pub Date : 2023-12-07 DOI: 10.3103/s1068366623040050
L. N. Dyachkova

Abstract

The structure and properties of powder steel–copper alloy antifriction pseudo-alloys infiltrated with materials of various compositions are studied, it is shown that mechanical and tribological properties are determined both by the composition and structure of the steel skeleton and, to a large extent, by the composition and structure of the infiltrate. It has been established that the limiting content of lead in the infiltrate, which ensures the absence of lead deposits on the sample surface and a large (10–15%) residual porosity, should not exceed 3%. The use of a mixture of copper powders and alloying additives for infiltration is more technologically advanced than atomized bronze powders. It is shown that the wear resistance of pseudo-alloys with a chromium steel skeleton depends to a lesser extent on the composition of the infiltrate, since the main contribution to wear resistance is made by a hard steel skeleton. The introduction of 3–5% ultrafine aluminum oxide powders into the infiltrate leads to an increase in the seizure pressure by 1.2 MPa and wear resistance by 20–30% due to the refinement of the copper alloy structure and the deceleration of dislocations that arise during deformation due to friction. It is shown that during the wear of pseudo-alloys in the surface layer the structure is refined, martensite is formed in the skeleton, and, accordingly, the microhardness increases by 720–760 MPa.

摘要 研究了渗入不同成分材料的粉末钢铜合金减摩伪合金的结构和性能,结果表明,机械性能和摩擦学性能既取决于钢骨架的成分和结构,也在很大程度上取决于渗入材料的成分和结构。为了确保试样表面没有铅沉积物和较大的残留孔隙率(10-15%),浸润液中铅的极限含量不应超过 3%。与雾化青铜粉相比,使用铜粉和合金添加剂的混合物进行浸渗的技术更为先进。研究表明,以铬钢为骨架的假合金的耐磨性在较小程度上取决于浸润料的成分,因为耐磨性的主要贡献来自于坚硬的钢骨架。在渗入液中加入 3-5% 的超细氧化铝粉末后,由于铜合金结构的细化和摩擦变形过程中产生的位错的减速,扣压压力提高了 1.2 兆帕,耐磨性提高了 20-30%。研究表明,在表层伪合金的磨损过程中,结构得到细化,骨架中形成了马氏体,因此显微硬度增加了 720-760 兆帕。
{"title":"Structure and Properties of Antifriction Pseudo-Alloys of the Powder Steel–Copper Alloy, Infiltrated with Materials of Various Compositions","authors":"L. N. Dyachkova","doi":"10.3103/s1068366623040050","DOIUrl":"https://doi.org/10.3103/s1068366623040050","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The structure and properties of powder steel–copper alloy antifriction pseudo-alloys infiltrated with materials of various compositions are studied, it is shown that mechanical and tribological properties are determined both by the composition and structure of the steel skeleton and, to a large extent, by the composition and structure of the infiltrate. It has been established that the limiting content of lead in the infiltrate, which ensures the absence of lead deposits on the sample surface and a large (10–15%) residual porosity, should not exceed 3%. The use of a mixture of copper powders and alloying additives for infiltration is more technologically advanced than atomized bronze powders. It is shown that the wear resistance of pseudo-alloys with a chromium steel skeleton depends to a lesser extent on the composition of the infiltrate, since the main contribution to wear resistance is made by a hard steel skeleton. The introduction of 3–5% ultrafine aluminum oxide powders into the infiltrate leads to an increase in the seizure pressure by 1.2 MPa and wear resistance by 20–30% due to the refinement of the copper alloy structure and the deceleration of dislocations that arise during deformation due to friction. It is shown that during the wear of pseudo-alloys in the surface layer the structure is refined, martensite is formed in the skeleton, and, accordingly, the microhardness increases by 720–760 MPa.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138558360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical Tribomechanics of Antifriction Materials Operating in Heavy-Loaded Friction Pairs in Active Lubricating Media 在活性润滑介质中重负载摩擦对中工作的抗摩擦材料的物理化学摩擦力学
IF 0.7 4区 工程技术 Q3 Engineering Pub Date : 2023-12-01 DOI: 10.3103/s1068366623060077

Abstract

Within the framework of physicochemical mechanics (the Rehbinder effect), the problems of the plasticizing and strengthening effect of the lubricating medium on the near-surface layers of metal tribomaterials are analyzed. The influence of modeling (petroleum jelly oil, glycerin, mineral oils, glycerin-based hydraulic fluids) and industrial (Buksol, Puma, and M-14V2) lubricant media that contain surfactants, is investigated on the main tribological (coefficient of friction, wear intensity), strength (yield strength, microhardness) and microstructural (broadening of X-ray lines, dislocation density and crystal lattice parameter) characteristics, as well as on the processes of diffusion redistribution of alloying elements in surface layers of tribomaterials, such as copper, brass, and bronze, when they are rubbed together with steel. The analysis of the conditions of formation and stable functioning of the regime of “non-wear” friction in these tribomaterials is carried out. It is shown that among industrial copper alloys, brass of the L90 type, aluminum bronzes BrA5 and BrA7, and tin bronzes BrSnP4-0.25 and BrSnP6.5-0.15 have the greatest wear resistance in surface-active lubricants. Examples of the implementation of the selective transfer mode in tribo-pairs used in railway and motor transport are given.

摘要-- 在物理化学力学(雷宾德效应)框架内,分析了润滑介质对金属摩擦材料近表面层的塑化和强化效应问题。研究了含有表面活性剂的模型(凡士林油、甘油、矿物油、甘油基液压油)和工业(Buksol、Puma 和 M-14V2)润滑介质对主要摩擦学(摩擦系数、磨损强度)、强度(屈服强度、显微硬度)和微观结构的影响、微硬度)和微结构(X 射线线宽、位错密度和晶格参数)特征,以及铜、黄铜和青铜等摩擦材料与钢摩擦时合金元素在表层的扩散再分布过程。对这些摩擦材料中 "非磨损 "摩擦机制的形成和稳定运行条件进行了分析。结果表明,在工业铜合金、L90 型黄铜、铝青铜 BrA5 和 BrA7 以及锡青铜 BrSnP4-0.25 和 BrSnP6.5-0.15 中,表面活性润滑剂的耐磨性最强。文中举例说明了在铁路和汽车运输中使用的三元对中实施选择性转移模式的情况。
{"title":"Physicochemical Tribomechanics of Antifriction Materials Operating in Heavy-Loaded Friction Pairs in Active Lubricating Media","authors":"","doi":"10.3103/s1068366623060077","DOIUrl":"https://doi.org/10.3103/s1068366623060077","url":null,"abstract":"<span> <h3> <strong>Abstract</strong>—</h3> <p>Within the framework of physicochemical mechanics (the Rehbinder effect), the problems of the plasticizing and strengthening effect of the lubricating medium on the near-surface layers of metal tribomaterials are analyzed. The influence of modeling (petroleum jelly oil, glycerin, mineral oils, glycerin-based hydraulic fluids) and industrial (Buksol, Puma, and M-14V2) lubricant media that contain surfactants, is investigated on the main tribological (coefficient of friction, wear intensity), strength (yield strength, microhardness) and microstructural (broadening of X-ray lines, dislocation density and crystal lattice parameter) characteristics, as well as on the processes of diffusion redistribution of alloying elements in surface layers of tribomaterials, such as copper, brass, and bronze, when they are rubbed together with steel. The analysis of the conditions of formation and stable functioning of the regime of “non-wear” friction in these tribomaterials is carried out. It is shown that among industrial copper alloys, brass of the L90 type, aluminum bronzes BrA5 and BrA7, and tin bronzes BrSnP4-0.25 and BrSnP6.5-0.15 have the greatest wear resistance in surface-active lubricants. Examples of the implementation of the selective transfer mode in tribo-pairs used in railway and motor transport are given.</p> </span>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140098018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Corrosion Inhibitors in Compositions of Friction Composites on Corrosion Resistance of the Metal Counterbody and Noise Generation during Friction 摩擦复合材料成分中的缓蚀剂对金属对撞体耐腐蚀性和摩擦噪音产生的影响
IF 0.7 4区 工程技术 Q3 Engineering Pub Date : 2023-10-01 DOI: 10.3103/s1068366623050082

Abstract

In this paper, we study the effect of corrosion inhibitors in compositions of friction composites on corrosion processes and noise generation in friction units. Model composites containing complex corrosion inhibitors as target additives were prepared. Tribological tests of the friction composite were performed using the “plane-to-plane” scheme. Transfer films on the surface of a steel counterbody are shown to be formed predominantly by laminar wear particles of the composite with sizes up to 50 μm. X-ray photoelectron spectroscopy data confirmed the presence in the transfer films of all elements related to the main components of the friction material, including corrosion inhibitors. Climatic tests were carried out. In a friction pair with a composite containing no corrosion inhibitor, continuous corrosion of the metal counterbody is shown to be predominant while pitting actively develops over time. The degree of corrosion damage to the surface reaches 90–95% of the nominal contact area. The introduction of a complex corrosion inhibitor into the composition of friction composites in an amount of 1.5–3.0 wt % was established to reduce the degree of corrosion damage to the nominal friction area of the metal counterbody by 20–35%. Outside the nominal friction area, the effect of reducing the degree of corrosion damage to the surface area of the metal counterbody by 50–60% was found. Triboacoustic tests were carried out on metal counterbodies subject to corrosion during climatic tests. Levels of sound pressure produced by the friction pair in the frequency range of 50 Hz–20 kHz are determined. The use of corrosion inhibitors was found to lead to a decrease in noise levels while the most significant decrease of 7–30 dB occurs in the high-frequency region of 6–20 kHz.

摘要 本文研究了摩擦复合材料成分中的缓蚀剂对摩擦装置中腐蚀过程和噪音产生的影响。制备了含有复合缓蚀剂作为目标添加剂的模型复合材料。采用 "平面-平面 "方案对摩擦复合材料进行了摩擦学测试。结果表明,钢制台体表面上的转移膜主要是由尺寸达 50 μm 的复合材料层状磨损颗粒形成的。X 射线光电子能谱数据证实,在转移膜中存在与摩擦材料主要成分有关的所有元素,包括腐蚀抑制剂。进行了气候试验。在使用不含腐蚀抑制剂的复合材料的摩擦副中,金属对体的连续腐蚀占主导地位,而点蚀会随着时间的推移而加剧。表面的腐蚀破坏程度达到名义接触面积的 90-95%。在摩擦复合材料成分中引入 1.5-3.0 wt % 的复合缓蚀剂,可将金属对撞体名义摩擦面积的腐蚀损坏程度降低 20-35%。在额定摩擦区域之外,发现金属对撞体表面区域的腐蚀损坏程度降低了 50-60%。在气候试验期间,对受到腐蚀的金属对体进行了三声测试。确定了摩擦副在 50 Hz-20 kHz 频率范围内产生的声压水平。结果发现,使用腐蚀抑制剂可降低噪音水平,而在 6-20 kHz 的高频区域,噪音水平最明显地降低了 7-30 分贝。
{"title":"Effect of Corrosion Inhibitors in Compositions of Friction Composites on Corrosion Resistance of the Metal Counterbody and Noise Generation during Friction","authors":"","doi":"10.3103/s1068366623050082","DOIUrl":"https://doi.org/10.3103/s1068366623050082","url":null,"abstract":"<span> <h3>Abstract</h3> <p>In this paper, we study the effect of corrosion inhibitors in compositions of friction composites on corrosion processes and noise generation in friction units. Model composites containing complex corrosion inhibitors as target additives were prepared. Tribological tests of the friction composite were performed using the “plane-to-plane” scheme. Transfer films on the surface of a steel counterbody are shown to be formed predominantly by laminar wear particles of the composite with sizes up to 50 μm. X-ray photoelectron spectroscopy data confirmed the presence in the transfer films of all elements related to the main components of the friction material, including corrosion inhibitors. Climatic tests were carried out. In a friction pair with a composite containing no corrosion inhibitor, continuous corrosion of the metal counterbody is shown to be predominant while pitting actively develops over time. The degree of corrosion damage to the surface reaches 90–95% of the nominal contact area. The introduction of a complex corrosion inhibitor into the composition of friction composites in an amount of 1.5–3.0 wt % was established to reduce the degree of corrosion damage to the nominal friction area of the metal counterbody by 20–35%. Outside the nominal friction area, the effect of reducing the degree of corrosion damage to the surface area of the metal counterbody by 50–60% was found. Triboacoustic tests were carried out on metal counterbodies subject to corrosion during climatic tests. Levels of sound pressure produced by the friction pair in the frequency range of 50 Hz–20 kHz are determined. The use of corrosion inhibitors was found to lead to a decrease in noise levels while the most significant decrease of 7–30 dB occurs in the high-frequency region of 6–20 kHz.</p> </span>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139649370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Production Modes on the Structure and Tribological Properties of Sintered Tin Bronze during Friction with Lubricant in Friction Units 生产模式对烧结锡青铜在摩擦装置中与润滑剂摩擦时的结构和摩擦学特性的影响
IF 0.7 4区 工程技术 Q3 Engineering Pub Date : 2023-10-01 DOI: 10.3103/s1068366623050057

Abstract

The results of a study on the influence of the modes of obtaining sintered BrO12 bronze on its structure, phase composition and tribological properties during friction with a lubricant are presented. It is shown that the phase composition of BrO12 bronze sintered for 5 min consists of a solid solution of tin in copper and inclusions of intermetallic phases δ-Cu41Sn11 and Cu81nSn22. An increase in the exposure time during sintering leads to an increase in the homogeneity of the solid solution of tin in copper, a decrease in the crystal lattice parameter of copper from 3.69 to 3.68 Å, an increase in the grain size from 2–5 µm at 5 min of sintering to 15–46 µm at 120 min, a decrease in the content of the intermetallic phase δ-Cu41Sn11, and the disappearance of the Cu81nSn22 phase at 60 min of sintering and the virtual absence of intermetallic compounds after sintering for 120 min. Tribological tests have shown that the friction coefficient of bronze sintered for 5 min at a pressure of 4 MPa varies from 0.08 to 0.03, and at 20 MPa, from 0.105 to 0.04, the average wear value at a pressure of 4 MPa and 20 MPa was 2.0 µm. The coefficient of friction at the above pressures of bronze sintered for 60 min was 0.11–0.036 and 0.095–0.023; 0.045 and 0.12–0.5, respectively, wear was 6.3 µm.

摘要-- 本文介绍了关于烧结 BrO12 青铜的获得方式对其结构、相组成和与润滑剂摩擦时的摩擦学特性的影响的研究结果。研究表明,烧结 5 分钟的 BrO12 青铜的相组成包括锡在铜中的固溶体以及金属间相δ-Cu41Sn11 和 Cu81nSn22 的夹杂物。烧结过程中暴露时间的增加会导致锡在铜中固溶体的均匀性增加,铜的晶格参数从 3.69 Å 下降到 3.68 Å,晶粒大小从烧结 5 分钟时的 2-5 µm 增加到 120 分钟时的 15-46 µm,金属间化合物相 δ-Cu41Sn11 的含量减少,烧结 60 分钟时 Cu81nSn22 相消失,烧结 120 分钟后金属间化合物几乎不存在。摩擦学试验表明,在 4 兆帕压力下烧结 5 分钟的青铜的摩擦系数从 0.08 到 0.03 不等,在 20 兆帕压力下从 0.105 到 0.04 不等,在 4 兆帕和 20 兆帕压力下的平均磨损值为 2.0 微米。烧结 60 分钟的青铜在上述压力下的摩擦系数分别为 0.11-0.036 和 0.095-0.023; 0.045 和 0.12-0.5, 磨损为 6.3 µm。
{"title":"Influence of Production Modes on the Structure and Tribological Properties of Sintered Tin Bronze during Friction with Lubricant in Friction Units","authors":"","doi":"10.3103/s1068366623050057","DOIUrl":"https://doi.org/10.3103/s1068366623050057","url":null,"abstract":"<span> <h3> <strong>Abstract</strong>—</h3> <p>The results of a study on the influence of the modes of obtaining sintered BrO12 bronze on its structure, phase composition and tribological properties during friction with a lubricant are presented. It is shown that the phase composition of BrO12 bronze sintered for 5 min consists of a solid solution of tin in copper and inclusions of intermetallic phases δ-Cu41Sn11 and Cu81nSn22. An increase in the exposure time during sintering leads to an increase in the homogeneity of the solid solution of tin in copper, a decrease in the crystal lattice parameter of copper from 3.69 to 3.68 Å, an increase in the grain size from 2–5 µm at 5 min of sintering to 15–46 µm at 120 min, a decrease in the content of the intermetallic phase δ-Cu41Sn11, and the disappearance of the Cu81nSn22 phase at 60 min of sintering and the virtual absence of intermetallic compounds after sintering for 120 min. Tribological tests have shown that the friction coefficient of bronze sintered for 5 min at a pressure of 4 MPa varies from 0.08 to 0.03, and at 20 MPa, from 0.105 to 0.04, the average wear value at a pressure of 4 MPa and 20 MPa was 2.0 µm. The coefficient of friction at the above pressures of bronze sintered for 60 min was 0.11–0.036 and 0.095–0.023; 0.045 and 0.12–0.5, respectively, wear was 6.3 µm.</p> </span>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139649380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the Performance of PTFE-Composites as Antifriction Layers in Supporting Parts with a Spherical Segment PTFE复合材料作为球形节段支撑件减摩层的性能评价
IF 0.7 4区 工程技术 Q3 Engineering Pub Date : 2023-09-25 DOI: 10.3103/S1068366623030029
A. A. Adamov, I. E. Keller, D. S. Petukhov, V. S. Kuzminykh, I. M. Patrakov, P. N. Grakovich, I. S. Shilko

Abstract

For the primary assessment of the operability of a number of filled polymer composites based on polytetrafluoroethylene (PTFE) as a material of antifriction layers, Brinell hardness, stiffness under free compression up to 10% deformation, stiffness under tight compression up to 160 MPa, friction coefficients and resistance to reverse sliding according to the plane-by-plane scheme of polished austenitic stainless steel were studied at room temperature as a counterbody. Seven types of PTFE-based composites filled with coke, bronze, colloidal graphite, as well as modified carbon fiber with a fluoropolymer coating and various additives (composites of the Superfluvis family) were studied. According to the totality of indicators, the composites of the Superfluvis family are superior to materials filled with coke or bronze, and the material filled with colloidal graphite as the main filler did not pass the tests for resistance to reverse sliding. The performance of the Superfluvis composite based on PTFE PN90 in reverse sliding tests under the pressure of 65 MPa at a distance of 10 000 m has been confirmed.

摘要——为了初步评估一些基于聚四氟乙烯(PTFE)作为减摩层材料的填充聚合物复合材料的可操作性,布氏硬度、自由压缩下的刚度高达10%变形、紧密压缩下的硬度高达160MPa,在室温条件下,以抛光奥氏体不锈钢为沉头,按照逐平面方案研究了其摩擦系数和反向滑动阻力。研究了七种填充焦炭、青铜、胶体石墨的PTFE基复合材料,以及带有含氟聚合物涂层和各种添加剂的改性碳纤维(Superfluvis家族的复合材料)。从总体指标来看,Superfluvis家族的复合材料优于填充有焦炭或青铜的材料,并且填充有胶体石墨作为主要填料的材料没有通过抗反向滑动测试。基于PTFE PN90的Superfluvis复合材料在65MPa压力下10 000米已被确认。
{"title":"Evaluation of the Performance of PTFE-Composites as Antifriction Layers in Supporting Parts with a Spherical Segment","authors":"A. A. Adamov,&nbsp;I. E. Keller,&nbsp;D. S. Petukhov,&nbsp;V. S. Kuzminykh,&nbsp;I. M. Patrakov,&nbsp;P. N. Grakovich,&nbsp;I. S. Shilko","doi":"10.3103/S1068366623030029","DOIUrl":"10.3103/S1068366623030029","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>For the primary assessment of the operability of a number of filled polymer composites based on polytetrafluoroethylene (PTFE) as a material of antifriction layers, Brinell hardness, stiffness under free compression up to 10% deformation, stiffness under tight compression up to 160 MPa, friction coefficients and resistance to reverse sliding according to the plane-by-plane scheme of polished austenitic stainless steel were studied at room temperature as a counterbody. Seven types of PTFE-based composites filled with coke, bronze, colloidal graphite, as well as modified carbon fiber with a fluoropolymer coating and various additives (composites of the Superfluvis family) were studied. According to the totality of indicators, the composites of the Superfluvis family are superior to materials filled with coke or bronze, and the material filled with colloidal graphite as the main filler did not pass the tests for resistance to reverse sliding. The performance of the Superfluvis composite based on PTFE PN90 in reverse sliding tests under the pressure of 65 MPa at a distance of 10 000 m has been confirmed.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41079810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of the Structure of a Near-Surface Layer of an Aluminum Matrix Composite of the Al–Sn–Fe System under Dry Friction Against a Steel Counterbody Al–Sn–Fe系铝基复合材料在与钢制配重干摩擦下近表面层结构的演变
IF 0.7 4区 工程技术 Q3 Engineering Pub Date : 2023-09-25 DOI: 10.3103/S106836662303008X
N. M. Rusin, A. L. Skorentsev, A. V. Chumaevskii

Abstract

An effect of friction forces on the structure and composition of the near-surface layer of an Al–13Sn–5Fe (at %) composite containing a large amount of agglomerates of FeAl3 particles cemented with tin was studied. The investigated composite was prepared by sintering a mixture of Al, Sn, and Fe elemental powders in vacuum for 1 h at a temperature of 620°C and subsequent compaction in a closed die at a pressure of about 300 MPa and a temperature of 250°C. The counterbody was made of heat-resistant X40CrMoV5-1 steel and was a truncated steel cone with a helical surface. The speed of material points lying on the outer perimeter of the section of the rotating cone pressed against the composite was 0.36 and 0.54 m/s. The normal pressure on the end surface of the composite specimen was 16 and 32 MPa with a load on the cone of 150 and 300 kg, respectively. It was found that three layers are formed under the friction surface, which differ in the value of the accumulated deformation. The closer to the friction surface the layer is located, the narrower it is. The uppermost layer consists of highly crushed iron aluminide particles mixed with ultrafine tin and aluminum particles. It also contains a lot of oxygen in the form of fragments of oxide films, which is why it has a high microhardness, reaching 2000 MPa or more. The thickness of this layer increases with increasing processing pressure and reaches several hundred micrometers. Based on the results of the study, it is concluded that pretreatment of the surface of aluminum matrix composites by smoothing with a flat steel counterbody leads to its charging. This fact will increase its wear resistance, however, the optimal mode of such processing and the shape of the processing tool require additional research.

摘要——研究了摩擦力对Al–13Sn–5Fe(at%)复合材料近表面层结构和成分的影响,该复合材料含有大量与锡胶结的FeAl3颗粒团聚体。所研究的复合材料是通过在620°C的温度下将Al、Sn和Fe元素粉末的混合物在真空中烧结1小时,然后在约300 MPa的压力和250°C的压力下在闭合模具中压实而制备的。沉头体由耐热X40CrMoV5-1钢制成,是具有螺旋表面的截头钢锥。位于压在复合材料上的旋转锥体截面的外周上的材料点的速度分别为0.36和0.54m/s。复合材料试样端面上的法向压力分别为16和32MPa,锥体上的载荷分别为150和300kg。研究发现,摩擦表面下形成了三层,累积变形值不同。该层越靠近摩擦表面,就越窄。最上层由高度破碎的铁铝化物颗粒与超细锡和铝颗粒混合而成。它还以氧化膜碎片的形式含有大量氧气,这就是为什么它具有高显微硬度,达到2000兆帕或更高。该层的厚度随着处理压力的增加而增加,并且达到几百微米。根据研究结果,得出结论:用扁钢沉头对铝基复合材料表面进行光滑预处理,可使其带电。这一事实将增加其耐磨性,然而,这种加工的最佳模式和加工工具的形状需要额外的研究。
{"title":"Evolution of the Structure of a Near-Surface Layer of an Aluminum Matrix Composite of the Al–Sn–Fe System under Dry Friction Against a Steel Counterbody","authors":"N. M. Rusin,&nbsp;A. L. Skorentsev,&nbsp;A. V. Chumaevskii","doi":"10.3103/S106836662303008X","DOIUrl":"10.3103/S106836662303008X","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>An effect of friction forces on the structure and composition of the near-surface layer of an Al–13Sn–5Fe (at %) composite containing a large amount of agglomerates of FeAl<sub>3</sub> particles cemented with tin was studied. The investigated composite was prepared by sintering a mixture of Al, Sn, and Fe elemental powders in vacuum for 1 h at a temperature of 620°C and subsequent compaction in a closed die at a pressure of about 300 MPa and a temperature of 250°C. The counterbody was made of heat-resistant X40CrMoV5-1 steel and was a truncated steel cone with a helical surface. The speed of material points lying on the outer perimeter of the section of the rotating cone pressed against the composite was 0.36 and 0.54 m/s. The normal pressure on the end surface of the composite specimen was 16 and 32 MPa with a load on the cone of 150 and 300 kg, respectively. It was found that three layers are formed under the friction surface, which differ in the value of the accumulated deformation. The closer to the friction surface the layer is located, the narrower it is. The uppermost layer consists of highly crushed iron aluminide particles mixed with ultrafine tin and aluminum particles. It also contains a lot of oxygen in the form of fragments of oxide films, which is why it has a high microhardness, reaching 2000 MPa or more. The thickness of this layer increases with increasing processing pressure and reaches several hundred micrometers. Based on the results of the study, it is concluded that pretreatment of the surface of aluminum matrix composites by smoothing with a flat steel counterbody leads to its charging. This fact will increase its wear resistance, however, the optimal mode of such processing and the shape of the processing tool require additional research.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41079812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Protective Coatings of Inserts on Cutting Forces during Milling of Hadfield Steel Hadfield钢铣削过程中刀片保护层对切削力的影响
IF 0.7 4区 工程技术 Q3 Engineering Pub Date : 2023-09-25 DOI: 10.3103/S1068366623030078
A. S. Pyatykh, A. V. Savilov, S. A. Timofeev, V. M. Svinin, I. G. Maizel

Abstract

The present study analyzed the effect of protective coatings of replaceable hard-alloy plates on cutting forces when milling austenitic high-manganese Hadfield (110G13L) steel. S30T, 1130, S40T, and 4240 hard alloys with PVD and CVD coatings were explored. The analysis was conducted on a milling machining center with a dynamometer plate installed on the table. The experiment was based on the orthogonal planning matrix. The Taguchi method was employed to identify a coating with the best properties. The analysis of variance showed that the tool feed has the greatest effect on active cutting forces. The specific feed gravity was 65.22%. The regression analysis revealed that to minimize and predict cutting forces for the entire range of cutting conditions, S30T alloy with a protective TiAlN PVD coating is preferable in machining austenitic 110G13L stainless steel. The results can improve the machining efficiency for Hadfield steel products produced by machine-building enterprises.

摘要——分析了可更换硬质合金板保护层对奥氏体高锰哈德菲尔德(110G13L)钢铣削时切削力的影响。研究了具有PVD和CVD涂层的S30T、1130、S40T和4240硬质合金。分析是在一个铣削加工中心上进行的,测功机板安装在工作台上。实验基于正交规划矩阵。采用田口方法来鉴定具有最佳性能的涂层。方差分析表明,刀具进给对主动切削力的影响最大。进料比重为65.22%。回归分析表明,为了最大限度地减少和预测整个切削条件下的切削力,在加工奥氏体110G13L不锈钢时,具有保护性TiAlN PVD涂层的S30T合金是优选的。研究结果可以提高机械制造企业生产的哈德菲尔德钢产品的加工效率。
{"title":"Influence of Protective Coatings of Inserts on Cutting Forces during Milling of Hadfield Steel","authors":"A. S. Pyatykh,&nbsp;A. V. Savilov,&nbsp;S. A. Timofeev,&nbsp;V. M. Svinin,&nbsp;I. G. Maizel","doi":"10.3103/S1068366623030078","DOIUrl":"10.3103/S1068366623030078","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>The present study analyzed the effect of protective coatings of replaceable hard-alloy plates on cutting forces when milling austenitic high-manganese Hadfield (110G13L) steel. S30T, 1130, S40T, and 4240 hard alloys with PVD and CVD coatings were explored. The analysis was conducted on a milling machining center with a dynamometer plate installed on the table. The experiment was based on the orthogonal planning matrix. The Taguchi method was employed to identify a coating with the best properties. The analysis of variance showed that the tool feed has the greatest effect on active cutting forces. The specific feed gravity was 65.22%. The regression analysis revealed that to minimize and predict cutting forces for the entire range of cutting conditions, S30T alloy with a protective TiAlN PVD coating is preferable in machining austenitic 110G13L stainless steel. The results can improve the machining efficiency for Hadfield steel products produced by machine-building enterprises.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41079706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of the Spatial Organization of Carbon Nanostructures on Antiwear Characteristics of Model Lubricating Systems under a Hard Friction Mode 纳米碳结构的空间组织对硬摩擦模式下模型润滑系统抗磨特性的影响
IF 0.7 4区 工程技术 Q3 Engineering Pub Date : 2023-09-25 DOI: 10.3103/S1068366623030091
M. A. Shilov, A. I. Smirnova, L. N. Zhukova, A. A. Gvozdev, N. N. Rozhkova, T. P. Dyachkova, N. V. Usol’tseva

The following carbon nanostructures (CNSs) are used: shungite nanocarbon (Sh), multilayered graphene oxide (GO), multiwalled carbon nanotubes (Taunit-M), and fullerene C60. Medical Vaseline (MV) free from any additives or thickeners is used as a lubricant base. Tribological tests are carried out using a 2070 SMT-1 friction machine at a load of 2000 N. The roughness parameters of steel rollers before and after the tests are studied by profilometry. Detailed characteristics of contacting surfaces before and after friction are obtained by scanning and transmission electron microscopy. The experimental data are analyzed using the Hertz and Johnson–Kendall–Roberts models. According to the data on efficiency coefficients kef, the studied dispersions are ranked as follows in the order of deterioration of antiwear properties: MV/GO (0.5 wt %), kef of 50% > MV/Taunit-M (1.5 wt %), kef of 40% > MV/C60 (0.5 wt %), kef of 15% > MV/Sh (0.5 wt %), kef of 5%, which is in agreement with the above-mentioned sequence of CNSs at low loads. The reason for the best and worst wear factors upon using CNSs in the dispersions under study and factors affecting the values of wear in the hard friction mode are considered. The results of the study can be a basis for the development of new plastic lubricating compositions with carbon nanostructure additives for use in heavily loaded friction units.

使用以下碳纳米结构(CNSs):顺土纳米碳(Sh)、多层氧化石墨烯(GO)、多壁碳纳米管(Tauni-M)和富勒烯C60。不含任何添加剂或增稠剂的医用凡士林(MV)用作润滑剂基础。使用2070 SMT-1摩擦机在2000N的载荷下进行了摩擦学试验。通过轮廓术研究了试验前后钢辊的粗糙度参数。通过扫描和透射电子显微镜获得了摩擦前后接触表面的详细特征。实验数据使用赫兹和约翰逊-肯德尔-罗伯茨模型进行分析。根据效率系数kef的数据,所研究的分散体按抗磨性能劣化的顺序排列如下:MV/GO(0.5wt%),kef为50%>;MV/Taunit-M(1.5wt%)、kef为40%>;MV/C60(0.5wt%)、kef为15%>;MV/Sh(0.5wt%),kef为5%,这与上述低负载下的CNSs序列一致。考虑了在所研究的分散体中使用CNSs时最佳和最差磨损因子的原因,以及影响硬摩擦模式下磨损值的因素。该研究结果可为开发用于重载摩擦装置的具有碳纳米结构添加剂的新型塑料润滑组合物奠定基础。
{"title":"The Influence of the Spatial Organization of Carbon Nanostructures on Antiwear Characteristics of Model Lubricating Systems under a Hard Friction Mode","authors":"M. A. Shilov,&nbsp;A. I. Smirnova,&nbsp;L. N. Zhukova,&nbsp;A. A. Gvozdev,&nbsp;N. N. Rozhkova,&nbsp;T. P. Dyachkova,&nbsp;N. V. Usol’tseva","doi":"10.3103/S1068366623030091","DOIUrl":"10.3103/S1068366623030091","url":null,"abstract":"<p>The following carbon nanostructures (CNSs) are used: shungite nanocarbon (Sh), multilayered graphene oxide (GO), multiwalled carbon nanotubes (Taunit-M), and fullerene C60. Medical Vaseline (MV) free from any additives or thickeners is used as a lubricant base. Tribological tests are carried out using a 2070 SMT-1 friction machine at a load of 2000 N. The roughness parameters of steel rollers before and after the tests are studied by profilometry. Detailed characteristics of contacting surfaces before and after friction are obtained by scanning and transmission electron microscopy. The experimental data are analyzed using the Hertz and Johnson–Kendall–Roberts models. According to the data on efficiency coefficients <i>k</i><sub>ef</sub>, the studied dispersions are ranked as follows in the order of deterioration of antiwear properties: MV/GO (0.5 wt %), <i>k</i><sub>ef</sub> of 50% &gt; MV/Taunit-M (1.5 wt %), <i>k</i><sub>ef</sub> of 40% &gt; MV/C60 (0.5 wt %), <i>k</i><sub>ef</sub> of 15% &gt; MV/Sh (0.5 wt %), <i>k</i><sub>ef</sub> of 5%, which is in agreement with the above-mentioned sequence of CNSs at low loads. The reason for the best and worst wear factors upon using CNSs in the dispersions under study and factors affecting the values of wear in the hard friction mode are considered. The results of the study can be a basis for the development of new plastic lubricating compositions with carbon nanostructure additives for use in heavily loaded friction units.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41079811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of Tribotechnical Parameters of Bronze Parts by Applying a Molybdenum Coating 应用钼涂层改善青铜零件的摩擦学参数
IF 0.7 4区 工程技术 Q3 Engineering Pub Date : 2023-09-25 DOI: 10.3103/S1068366623030030
V. B. Balyakin, S. V. Falaleev, D. E. Dolgih, A. A. Yurtaev

Abstract

The results of experimental determination of the wear intensity coefficient and the friction coefficient in the steel-bronze BrNBT and steel–molybdenum coating contact are shown. To determine the tribotechnical parameters of the coating, experiments were carried out on a Tribometer TRB automated friction machine of the Swiss company ANTON PAAR according to the ball–disk scheme. It is shown that the average coefficient of friction for a sample with a molybdenum coating is almost two times lower than for a sample without a coating. With the help of the SURTRONIC 25 profile meter, a profilogram was obtained to determine the coefficient of wear intensity. At a run of 50,000 m, the coefficient of wear intensity for a sample made of BrNBT material without coating at a maximum contact voltage of 507 MPa is 2.48 × 10–4 mm3/m, and for a sample with a molybdenum coating was 1.98 × 10–5 mm3/m, which is 12.5 times less. Recommendations for the use of a molybdenum antifriction coating are given.

文摘——给出了钢-青铜-BrNBT与钢-钼涂层接触磨损强度系数和摩擦系数的实验测定结果。为了确定涂层的摩擦技术参数,根据球-盘方案,在瑞士ANTON PAAR公司的Tribometer TRB自动摩擦机上进行了实验。结果表明,具有钼涂层的样品的平均摩擦系数几乎是没有涂层的样品低两倍。在SURTRONIC25型面仪的帮助下,获得了用于确定磨损强度系数的轮廓图。在50000 m的行程中,由无涂层的BrNBT材料制成的样品在507 MPa的最大接触电压下的磨损强度系数为2.48×10–4 mm3/m,而具有钼涂层的样品的磨损强度为1.98×10-5 mm3/m。给出了使用钼减摩涂层的建议。
{"title":"Improvement of Tribotechnical Parameters of Bronze Parts by Applying a Molybdenum Coating","authors":"V. B. Balyakin,&nbsp;S. V. Falaleev,&nbsp;D. E. Dolgih,&nbsp;A. A. Yurtaev","doi":"10.3103/S1068366623030030","DOIUrl":"10.3103/S1068366623030030","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>The results of experimental determination of the wear intensity coefficient and the friction coefficient in the steel-bronze BrNBT and steel–molybdenum coating contact are shown. To determine the tribotechnical parameters of the coating, experiments were carried out on a Tribometer TRB automated friction machine of the Swiss company ANTON PAAR according to the ball–disk scheme. It is shown that the average coefficient of friction for a sample with a molybdenum coating is almost two times lower than for a sample without a coating. With the help of the SURTRONIC 25 profile meter, a profilogram was obtained to determine the coefficient of wear intensity. At a run of 50,000 m, the coefficient of wear intensity for a sample made of BrNBT material without coating at a maximum contact voltage of 507 MPa is 2.48 × 10<sup>–4</sup> mm<sup>3</sup>/m, and for a sample with a molybdenum coating was 1.98 × 10<sup>–5</sup> mm<sup>3</sup>/m, which is 12.5 times less. Recommendations for the use of a molybdenum antifriction coating are given.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41079704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotor-to-Stator Friction Simulation with Nonconstant Stiffness of the Contact Surfaces and Small Clearance between Them 具有接触面非恒定刚度和小间隙的转子-定子摩擦仿真
IF 0.7 4区 工程技术 Q3 Engineering Pub Date : 2023-09-25 DOI: 10.3103/S1068366623030066
A. N. Nikiforov

Analytical and numerical modeling approaches for the contact-working system of turbo- and electric machines have been developed. The simulation allows determining some dynamic characteristics and loads in the rotor–stator system when there is a loss in clearance between them and there occurs subsequent motions with impacts or without separation from each other. In the system, the rotor and stator are deformable, the stiffness of rubbing surfaces is variable, and the working clearance between them is extremely small (50–500 times less than the rotor radius at the contact point). It is shown that the effect of the absolute elasticity for stator generates a significant change in natural oscillations of the coupled rotor–stator system, that is, a significant change in its eigenfrequencies and eigenmodes. It is noted that the elastic deformation of rubbing surfaces leads to a nonlinear increase in their contact stiffness, which consists of quasi-static and dynamic components. The consequences of an extremely small clearance are an elastic deformation of the contact surfaces commensurate with it (up to half the clearance size at the point of contact) during whirling with slipping of rotor over stator, as well as the disappearance of pure rolling, which is accompanied by the actual absence of rotary speeds even at low frequencies of contact whirling. The resulting diagrams of changes in the contact stiffness and whirling frequencies and the XY trajectories can serve as sources of initial information for identifying the operation of a real rotary machine on the threshold of a dangerous whirling with slipping and whipping and for further studies of contact oscillations of rotors.

已经开发了涡轮和电机接触工作系统的分析和数值建模方法。模拟允许确定转子-定子系统中的一些动态特性和负载,当它们之间存在间隙损失,并且随后发生有冲击或没有相互分离的运动时。在该系统中,转子和定子是可变形的,摩擦表面的刚度是可变的,并且它们之间的工作间隙非常小(比接触点处的转子半径小50–500倍)。研究表明,定子的绝对弹性效应会使转子-定子耦合系统的固有振荡发生显著变化,即其本征频率和本征模发生显著变化。值得注意的是,摩擦表面的弹性变形导致其接触刚度的非线性增加,接触刚度由准静态和动态分量组成。极小间隙的后果是,在转子在定子上滑动的旋转过程中,与之相当的接触表面发生弹性变形(高达接触点处间隙大小的一半),以及纯滚动的消失,即使在接触旋转的低频率下,也会伴随着实际的转速缺失。由此产生的接触刚度和旋转频率以及XY轨迹的变化图可以作为初始信息源,用于识别真实旋转机器在具有打滑和抖动的危险旋转阈值上的操作,以及用于进一步研究转子的接触振荡。
{"title":"Rotor-to-Stator Friction Simulation with Nonconstant Stiffness of the Contact Surfaces and Small Clearance between Them","authors":"A. N. Nikiforov","doi":"10.3103/S1068366623030066","DOIUrl":"10.3103/S1068366623030066","url":null,"abstract":"<p>Analytical and numerical modeling approaches for the contact-working system of turbo- and electric machines have been developed. The simulation allows determining some dynamic characteristics and loads in the rotor–stator system when there is a loss in clearance between them and there occurs subsequent motions with impacts or without separation from each other. In the system, the rotor and stator are deformable, the stiffness of rubbing surfaces is variable, and the working clearance between them is extremely small (50–500 times less than the rotor radius at the contact point). It is shown that the effect of the absolute elasticity for stator generates a significant change in natural oscillations of the coupled rotor–stator system, that is, a significant change in its eigenfrequencies and eigenmodes. It is noted that the elastic deformation of rubbing surfaces leads to a nonlinear increase in their contact stiffness, which consists of quasi-static and dynamic components. The consequences of an extremely small clearance are an elastic deformation of the contact surfaces commensurate with it (up to half the clearance size at the point of contact) during whirling with slipping of rotor over stator, as well as the disappearance of pure rolling, which is accompanied by the actual absence of rotary speeds even at low frequencies of contact whirling. The resulting diagrams of changes in the contact stiffness and whirling frequencies and the <i>XY</i> trajectories can serve as sources of initial information for identifying the operation of a real rotary machine on the threshold of a dangerous whirling with slipping and whipping and for further studies of contact oscillations of rotors.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41079699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Friction and Wear
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1