首页 > 最新文献

Journal of Materials Science: Materials in Medicine最新文献

英文 中文
The effect of silver nanoparticles on biological and corrosion behavior of electrophoretically deposited hydroxyapatite film on Ti6Al4V. 银纳米粒子对 Ti6Al4V 上电泳沉积羟基磷灰石薄膜的生物和腐蚀行为的影响
IF 3.7 3区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-25 DOI: 10.1007/s10856-024-06784-0
Hassan Balaei, H M Ghasemi, Rouhollah Mehdinavaz Aghdam, B Cheraghali, Mahmoud Heydarzadeh Sohi

Surface modification of titanium and its alloys has been seriously considered by researchers to improve their biological behaviors, in the past few decades. In present research, hydroxyapatite (HA) based composite coatings with different concentrations of 0, 2, 4, and 6 wt% of silver (Ag) nanoparticles were electrophoretically deposited (EPD) on anodized and non-anodized Ti6Al4V, using a direct current at a voltage of 30 V for 10 min at room temperature. The specimens were then characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The cell adhesion images and cell viability results showed that HA-Ag composite coatings significantly promoted the biocompatibility of samples compared with the non-anodized and anodized Ti6Al4V. The viabilities of Mg-63 cells on HA-4%Ag coating and bi-layer coating (HA-4%Ag on anodized specimen) were approximately 91% and they were considered as the best coatings in term of biocompatibility. On the other hand, the antibacterial assessments demonstrated that HA-6%Ag coating had the best antibacterial performance compared with other samples. Furthermore, Tafel polarization curves indicated that corrosion resistance of the bi-layer coating was higher than those of the other specimens. The polarization resistance of this coating was about 7 times more than that of theTi6Al4V alloy.

在过去的几十年里,研究人员一直在认真考虑对钛及其合金进行表面改性,以改善其生物特性。在本研究中,研究人员在阳极氧化和非阳极氧化的 Ti6Al4V 上采用电泳沉积(EPD)的方法,在室温下以 30 V 的直流电流在 10 分钟内沉积了不同浓度(0、2、4 和 6 wt%)的羟基磷灰石(HA)银(Ag)纳米粒子。然后通过 X 射线衍射(XRD)分析、傅立叶变换红外光谱(FT-IR)、配备能量色散光谱(EDS)的扫描电子显微镜(SEM)对试样进行表征。细胞粘附图像和细胞存活率结果表明,与未阳极氧化和阳极氧化的 Ti6Al4V 相比,HA-Ag 复合涂层显著提高了样品的生物相容性。Mg-63细胞在HA-4%Ag涂层和双层涂层(阳极氧化试样上的HA-4%Ag)上的存活率约为91%,被认为是生物相容性最好的涂层。另一方面,抗菌评估表明,与其他样品相比,HA-6%Ag 涂层的抗菌性能最好。此外,塔菲尔极化曲线表明,双层涂层的耐腐蚀性高于其他试样。该涂层的抗极化能力约为 Ti6Al4V 合金的 7 倍。
{"title":"The effect of silver nanoparticles on biological and corrosion behavior of electrophoretically deposited hydroxyapatite film on Ti6Al4V.","authors":"Hassan Balaei, H M Ghasemi, Rouhollah Mehdinavaz Aghdam, B Cheraghali, Mahmoud Heydarzadeh Sohi","doi":"10.1007/s10856-024-06784-0","DOIUrl":"10.1007/s10856-024-06784-0","url":null,"abstract":"<p><p>Surface modification of titanium and its alloys has been seriously considered by researchers to improve their biological behaviors, in the past few decades. In present research, hydroxyapatite (HA) based composite coatings with different concentrations of 0, 2, 4, and 6 wt% of silver (Ag) nanoparticles were electrophoretically deposited (EPD) on anodized and non-anodized Ti6Al4V, using a direct current at a voltage of 30 V for 10 min at room temperature. The specimens were then characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The cell adhesion images and cell viability results showed that HA-Ag composite coatings significantly promoted the biocompatibility of samples compared with the non-anodized and anodized Ti6Al4V. The viabilities of Mg-63 cells on HA-4%Ag coating and bi-layer coating (HA-4%Ag on anodized specimen) were approximately 91% and they were considered as the best coatings in term of biocompatibility. On the other hand, the antibacterial assessments demonstrated that HA-6%Ag coating had the best antibacterial performance compared with other samples. Furthermore, Tafel polarization curves indicated that corrosion resistance of the bi-layer coating was higher than those of the other specimens. The polarization resistance of this coating was about 7 times more than that of theTi6Al4V alloy.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963534/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone formation by Irisin-Poly vinyl alchol modified bioglass ceramic beads in the rabbit model. Irisin-Poly vinyl alchol 改性生物玻璃陶瓷珠在兔子模型中的骨形成。
IF 3.7 3区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-25 DOI: 10.1007/s10856-024-06788-w
Seong-Su Park, Ume Farwa, Hai-Doo Kim, Yong-Sik Kim, Byong-Taek Lee

In the aging society, slow bone regeneration poses a serious hindrance to the quality of life. To deal with this problem, in this study, we have combined irisin with the bioglass regular beads to enhance the bone regeneration process. For this purpose, highly porous bioglass was obtained as spherical beads by using sodium alginate. The bioglass was evaluated by various analytical techniques such as SEM, EDS, XRD, and pore size distribution. The results depicted that porous bioglass was prepared correctly and SEM analysis showed a highly porous bioglass was formulated. On this bioglass, irisin was loaded with the assistance of polyvinyl alcohol (PVA) in three concentrations (50 ng/ml, 100 ng/ml, and 150 ng/ml per 1 g of bioglass). SEM analysis showed that pores are covered with PVA. The irisin release profile showed a sustained release over the time period of 7 days. In vitro, biocompatibility evaluation by the MC3T3E1 cells showed that prepared bioglass and irisin loaded bioglass (BGI50, BGI100, and BG150) are highly biocompatible. Alizarin Red staining analysis showed that after 2 weeks BGI50 samples showed highest calcium nodule formation. In vivo in the rabbit femur model was conducted for 1 and 2 months. BGI150 samples showed highest BV/TV ratio of 37.1 after 2 months. The histological data showed new bone formation surrounding the beads and with beads loaded with irisin. Immunohistochemistry using markers OPN, RUNX, COL, and ALP supported the osteogenic properties of the irisin-loaded bioglass beads. The results indicated that irisin-loaded bioglass displayed remarkable bone regeneration.

在老龄化社会中,骨再生缓慢严重影响了人们的生活质量。针对这一问题,我们在本研究中将鸢尾素与生物玻璃常规珠子结合起来,以增强骨再生过程。为此,我们使用海藻酸钠获得了高多孔性的球形生物玻璃珠。生物玻璃通过 SEM、EDS、XRD 和孔径分布等多种分析技术进行了评估。结果表明,多孔生物玻璃的制备是正确的,扫描电镜分析表明配制出了一种高多孔生物玻璃。在聚乙烯醇(PVA)的帮助下,鸢尾素以三种浓度(每 1 克生物玻璃 50 纳克/毫升、100 纳克/毫升和 150 纳克/毫升)被添加到这种生物玻璃上。扫描电镜分析表明,孔隙被 PVA 所覆盖。鸢尾素的释放曲线显示,鸢尾素在 7 天内持续释放。通过 MC3T3E1 细胞进行的体外生物相容性评估表明,制备的生物玻璃和鸢尾素负载生物玻璃(BGI50、BGI100 和 BG150)具有很高的生物相容性。茜素红染色分析表明,2 周后,BGI50 样品的钙结形成率最高。在兔子股骨模型中进行了为期 1 个月和 2 个月的体内试验。2 个月后,BGI150 样品的 BV/TV 比率最高,达到 37.1。组织学数据显示,珠子周围和装有鸢尾素的珠子都有新骨形成。使用标记物 OPN、RUNX、COL 和 ALP 进行的免疫组化证实了鸢尾素负载生物玻璃微珠的成骨特性。结果表明,负载鸢尾素的生物玻璃显示出显著的骨再生能力。
{"title":"Bone formation by Irisin-Poly vinyl alchol modified bioglass ceramic beads in the rabbit model.","authors":"Seong-Su Park, Ume Farwa, Hai-Doo Kim, Yong-Sik Kim, Byong-Taek Lee","doi":"10.1007/s10856-024-06788-w","DOIUrl":"10.1007/s10856-024-06788-w","url":null,"abstract":"<p><p>In the aging society, slow bone regeneration poses a serious hindrance to the quality of life. To deal with this problem, in this study, we have combined irisin with the bioglass regular beads to enhance the bone regeneration process. For this purpose, highly porous bioglass was obtained as spherical beads by using sodium alginate. The bioglass was evaluated by various analytical techniques such as SEM, EDS, XRD, and pore size distribution. The results depicted that porous bioglass was prepared correctly and SEM analysis showed a highly porous bioglass was formulated. On this bioglass, irisin was loaded with the assistance of polyvinyl alcohol (PVA) in three concentrations (50 ng/ml, 100 ng/ml, and 150 ng/ml per 1 g of bioglass). SEM analysis showed that pores are covered with PVA. The irisin release profile showed a sustained release over the time period of 7 days. In vitro, biocompatibility evaluation by the MC3T3E1 cells showed that prepared bioglass and irisin loaded bioglass (BGI50, BGI100, and BG150) are highly biocompatible. Alizarin Red staining analysis showed that after 2 weeks BGI50 samples showed highest calcium nodule formation. In vivo in the rabbit femur model was conducted for 1 and 2 months. BGI150 samples showed highest BV/TV ratio of 37.1 after 2 months. The histological data showed new bone formation surrounding the beads and with beads loaded with irisin. Immunohistochemistry using markers OPN, RUNX, COL, and ALP supported the osteogenic properties of the irisin-loaded bioglass beads. The results indicated that irisin-loaded bioglass displayed remarkable bone regeneration.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel, microfluidic high-throughput single-cell encapsulation of human bone marrow mesenchymal stromal cells. 一种新型的微流体高通量单细胞人骨髓间充质基质细胞包被技术。
IF 3.7 3区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-25 DOI: 10.1007/s10856-024-06785-z
Narjes Rashidi, Alex Slater, Giordana Peregrino, Matteo Santin

The efficacy of stem-cell therapy depends on the ability of the transplanted cells to escape early immunological reactions and to be retained at the site of transplantation. The use of tissue engineering scaffolds or injectable biomaterials as carriers has been proposed, but they still present limitations linked to a reliable manufacturing process, surgical practice and clinical outcomes. Alginate microbeads are potential candidates for the encapsulation of mesenchymal stromal cells with the aim of providing a delivery carrier suitable for minimally-invasive and scaffold-free transplantation, tissue-adhesive properties and protection from the immune response. However, the formation of stable microbeads relies on the cross-linking of alginate with divalent calcium ions at concentrations that are toxic for the cells, making control over the beads' size and a single-cell encapsulation unreliable. The present work demonstrates the efficiency of an innovative, high throughput, and reproducible microfluidic system to produce single-cell, calcium-free alginate coatings of human mesenchymal stromal cells. Among the various conditions tested, visible light and confocal microscopy following staining of the cell nuclei by DAPI showed that the microfluidic system yielded an optimal single-cell encapsulation of 2000 cells/min in 2% w/v alginate microcapsules of reproducible morphology and an average size of 28.2 ± 3.7 µm. The adhesive properties of the alginate microcapsules, the viability of the encapsulated cells and their ability to escape the alginate microcapsule were demonstrated by the relatively rapid adherence of the beads onto tissue culture plastic and the cells' ability to gradually disrupt the microcapsule shell after 24 h and proliferate. To mimic the early inflammatory response upon transplantation, the encapsulated cells were exposed to proliferating macrophages at different cell seeding densities for up to 2 days and the protection effect of the microcapsule on the cells assessed by time-lapse microscopy showing a shielding effect for up to 48 h. This work underscores the potential of microfluidic systems to precisely encapsulate cells by good manufacturing practice standards while favouring cell retention on substrates, viability and proliferation upon transplantation.

干细胞疗法的疗效取决于移植细胞能否躲过早期免疫反应并保留在移植部位。有人提出使用组织工程支架或可注射生物材料作为载体,但它们在可靠的制造工艺、手术实践和临床结果方面仍存在局限性。藻酸盐微珠是封装间充质基质细胞的潜在候选材料,其目的是提供一种适合微创和无支架移植、具有组织粘附性和免受免疫反应影响的输送载体。然而,稳定微珠的形成有赖于海藻酸盐与二价钙离子的交联,而这种交联的浓度对细胞来说是有毒的,因此对微珠大小的控制和单细胞包被并不可靠。本研究展示了一种创新、高通量、可重复的微流体系统在生产单细胞、无钙海藻酸盐包衣人类间充质基质细胞方面的效率。在测试的各种条件中,用 DAPI 对细胞核染色后的可见光和共聚焦显微镜显示,微流控系统能以 2000 个细胞/分钟的速度在 2% w/v 的藻酸盐微胶囊中产生最佳的单细胞包被效果,微胶囊的形态可重复,平均大小为 28.2 ± 3.7 µm。海藻酸盐微胶囊的粘附特性、封装细胞的存活能力以及细胞逃逸海藻酸盐微胶囊的能力通过珠子在组织培养塑料上相对较快的粘附以及细胞在 24 小时后逐渐破坏微胶囊外壳并增殖的能力得到了证明。为了模拟移植后的早期炎症反应,将封装的细胞暴露在不同细胞播种密度的增殖巨噬细胞中长达 2 天,并通过延时显微镜评估微胶囊对细胞的保护作用,结果表明微胶囊具有长达 48 小时的屏蔽作用。这项工作强调了微流体系统的潜力,即按照良好生产规范标准精确封装细胞,同时有利于细胞在基质上的保留、移植后的存活和增殖。
{"title":"A novel, microfluidic high-throughput single-cell encapsulation of human bone marrow mesenchymal stromal cells.","authors":"Narjes Rashidi, Alex Slater, Giordana Peregrino, Matteo Santin","doi":"10.1007/s10856-024-06785-z","DOIUrl":"10.1007/s10856-024-06785-z","url":null,"abstract":"<p><p>The efficacy of stem-cell therapy depends on the ability of the transplanted cells to escape early immunological reactions and to be retained at the site of transplantation. The use of tissue engineering scaffolds or injectable biomaterials as carriers has been proposed, but they still present limitations linked to a reliable manufacturing process, surgical practice and clinical outcomes. Alginate microbeads are potential candidates for the encapsulation of mesenchymal stromal cells with the aim of providing a delivery carrier suitable for minimally-invasive and scaffold-free transplantation, tissue-adhesive properties and protection from the immune response. However, the formation of stable microbeads relies on the cross-linking of alginate with divalent calcium ions at concentrations that are toxic for the cells, making control over the beads' size and a single-cell encapsulation unreliable. The present work demonstrates the efficiency of an innovative, high throughput, and reproducible microfluidic system to produce single-cell, calcium-free alginate coatings of human mesenchymal stromal cells. Among the various conditions tested, visible light and confocal microscopy following staining of the cell nuclei by DAPI showed that the microfluidic system yielded an optimal single-cell encapsulation of 2000 cells/min in 2% w/v alginate microcapsules of reproducible morphology and an average size of 28.2 ± 3.7 µm. The adhesive properties of the alginate microcapsules, the viability of the encapsulated cells and their ability to escape the alginate microcapsule were demonstrated by the relatively rapid adherence of the beads onto tissue culture plastic and the cells' ability to gradually disrupt the microcapsule shell after 24 h and proliferate. To mimic the early inflammatory response upon transplantation, the encapsulated cells were exposed to proliferating macrophages at different cell seeding densities for up to 2 days and the protection effect of the microcapsule on the cells assessed by time-lapse microscopy showing a shielding effect for up to 48 h. This work underscores the potential of microfluidic systems to precisely encapsulate cells by good manufacturing practice standards while favouring cell retention on substrates, viability and proliferation upon transplantation.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of xyloglucan-grafted poly(N-hydroxyethyl acrylamide) copolymer by free-radical polymerization for in vitro evaluation of human dermal fibroblasts. 通过自由基聚合法制备木聚糖接枝聚(N-羟乙基丙烯酰胺)共聚物,用于人体真皮成纤维细胞的体外评估。
IF 3.7 3区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-25 DOI: 10.1007/s10856-024-06783-1
Maykel González-Torres, Ricardo Martínez-Mata, Erika Karina Ruvalcaba-Paredes, Alicia Del Real, Gerardo Leyva-Gómez, Alfredo Maciel-Cerda

Xyloglucan is a rigid polysaccharide that belongs to the carbohydrate family. This hemicellulose compound has been widely used in biomedical research because of its pseudoplastic, mucoadhesive, mucomimetic, and biocompatibility properties. Xyloglucan is a polyose with no amino groups in its structure, which also limits its range of applications. It is still unknown whether grafting hydrophilic monomers onto xyloglucan can produce derivatives that overcome these shortcomings. This work aimed to prepare the first copolymers in which N-hydroxyethyl acrylamide is grafted onto tamarind xyloglucan by free-radical polymerization. The biocompatibility of these structures in vitro was evaluated using human dermal fibroblasts. Gamma radiation-induced graft polymerization was employed as an initiator by varying the radiation dose from 5-25 kGy. The structure of the graft copolymer, Xy-g-poly(N-hydroxyethyl acrylamide), was verified by thermal analysis, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The findings indicate that the degree of grafting and the cytotoxicity/viability of the xyloglucan-based copolymer were independent of dose. Notably, the grafted galactoxyloglucan exhibited efficient support for human dermal fibroblasts, showing heightened proliferative capacity and superior migration capabilities compared to the unmodified polymer. This copolymer might have the potential to be used in skin tissue engineering.

木聚糖是一种属于碳水化合物家族的硬质多糖。这种半纤维素化合物具有假塑性、粘附性、粘液仿生性和生物相容性,因此被广泛用于生物医学研究。木聚糖是一种聚糖,其结构中没有氨基,这也限制了它的应用范围。将亲水性单体接枝到木聚糖上能否产生克服这些缺点的衍生物,目前还不得而知。这项研究旨在通过自由基聚合法制备第一种将 N-羟乙基丙烯酰胺接枝到罗望子木聚糖上的共聚物。利用人体真皮成纤维细胞对这些结构的生物相容性进行了体外评估。伽马辐射诱导接枝聚合被用作引发剂,辐射剂量在 5-25 kGy 之间变化。热分析、傅立叶变换红外光谱和核磁共振光谱验证了接枝共聚物 Xy-g-poly(N-hydroxyethyl acrylamide) 的结构。研究结果表明,木聚糖基共聚物的接枝程度和细胞毒性/存活率与剂量无关。值得注意的是,与未改性的聚合物相比,接枝的半乳木糖能有效支持人类真皮成纤维细胞,显示出更强的增殖能力和更优越的迁移能力。这种共聚物有望用于皮肤组织工程。
{"title":"Preparation of xyloglucan-grafted poly(N-hydroxyethyl acrylamide) copolymer by free-radical polymerization for in vitro evaluation of human dermal fibroblasts.","authors":"Maykel González-Torres, Ricardo Martínez-Mata, Erika Karina Ruvalcaba-Paredes, Alicia Del Real, Gerardo Leyva-Gómez, Alfredo Maciel-Cerda","doi":"10.1007/s10856-024-06783-1","DOIUrl":"10.1007/s10856-024-06783-1","url":null,"abstract":"<p><p>Xyloglucan is a rigid polysaccharide that belongs to the carbohydrate family. This hemicellulose compound has been widely used in biomedical research because of its pseudoplastic, mucoadhesive, mucomimetic, and biocompatibility properties. Xyloglucan is a polyose with no amino groups in its structure, which also limits its range of applications. It is still unknown whether grafting hydrophilic monomers onto xyloglucan can produce derivatives that overcome these shortcomings. This work aimed to prepare the first copolymers in which N-hydroxyethyl acrylamide is grafted onto tamarind xyloglucan by free-radical polymerization. The biocompatibility of these structures in vitro was evaluated using human dermal fibroblasts. Gamma radiation-induced graft polymerization was employed as an initiator by varying the radiation dose from 5-25 kGy. The structure of the graft copolymer, Xy-g-poly(N-hydroxyethyl acrylamide), was verified by thermal analysis, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The findings indicate that the degree of grafting and the cytotoxicity/viability of the xyloglucan-based copolymer were independent of dose. Notably, the grafted galactoxyloglucan exhibited efficient support for human dermal fibroblasts, showing heightened proliferative capacity and superior migration capabilities compared to the unmodified polymer. This copolymer might have the potential to be used in skin tissue engineering.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porous Mg-Zn-Ca scaffolds for bone repair: a study on microstructure, mechanical properties and in vitro degradation behavior. 用于骨修复的多孔镁锌钙支架:关于微观结构、机械性能和体外降解行为的研究
IF 3.7 3区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-25 DOI: 10.1007/s10856-023-06754-y
Lei Huo, Qiang Li, Linlin Jiang, Huiqin Jiang, Jianping Zhao, Kangjian Yang, Qiangsheng Dong, Yi Shao, Chenglin Chu, Feng Xue, Jing Bai

Biodegradable porous Mg scaffolds are a promising approach to bone repair. In this work, 3D-spherical porous Mg-1.5Zn-0.2Ca (wt.%) scaffolds were prepared by vacuum infiltration casting technology, and MgF2 and fluorapatite coatings were designed to control the degradation behavior of Mg-based scaffolds. The results showed that the pores in Mg-based scaffolds were composed of the main spherical pores (450-600 μm) and interconnected pores (150-200 μm), and the porosity was up to 74.97%. Mg-based porous scaffolds exhibited sufficient mechanical properties with a compressive yield strength of about 4.04 MPa and elastic modulus of appropriately 0.23 GPa. Besides, both MgF2 coating and fluorapatite coating could effectively improve the corrosion resistance of porous Mg-based scaffolds. In conclusion, this research would provide data support and theoretical guidance for the application of biodegradable porous Mg-based scaffolds in bone tissue engineering.

生物可降解多孔镁支架是一种很有前景的骨修复方法。该研究采用真空渗透铸造技术制备了三维球形多孔镁-1.5锌-0.2钙(重量百分比)支架,并设计了MgF2和氟磷灰石涂层来控制镁基支架的降解行为。结果表明,镁基多孔支架的孔隙由主要的球形孔隙(450-600 μm)和相互连接的孔隙(150-200 μm)组成,孔隙率高达 74.97%。镁基多孔支架具有足够的机械性能,抗压屈服强度约为 4.04 兆帕,弹性模量约为 0.23 千兆帕。此外,MgF2 涂层和氟磷灰石涂层都能有效提高多孔镁基支架的耐腐蚀性。总之,该研究将为生物可降解多孔镁基支架在骨组织工程中的应用提供数据支持和理论指导。
{"title":"Porous Mg-Zn-Ca scaffolds for bone repair: a study on microstructure, mechanical properties and in vitro degradation behavior.","authors":"Lei Huo, Qiang Li, Linlin Jiang, Huiqin Jiang, Jianping Zhao, Kangjian Yang, Qiangsheng Dong, Yi Shao, Chenglin Chu, Feng Xue, Jing Bai","doi":"10.1007/s10856-023-06754-y","DOIUrl":"10.1007/s10856-023-06754-y","url":null,"abstract":"<p><p>Biodegradable porous Mg scaffolds are a promising approach to bone repair. In this work, 3D-spherical porous Mg-1.5Zn-0.2Ca (wt.%) scaffolds were prepared by vacuum infiltration casting technology, and MgF<sub>2</sub> and fluorapatite coatings were designed to control the degradation behavior of Mg-based scaffolds. The results showed that the pores in Mg-based scaffolds were composed of the main spherical pores (450-600 μm) and interconnected pores (150-200 μm), and the porosity was up to 74.97%. Mg-based porous scaffolds exhibited sufficient mechanical properties with a compressive yield strength of about 4.04 MPa and elastic modulus of appropriately 0.23 GPa. Besides, both MgF<sub>2</sub> coating and fluorapatite coating could effectively improve the corrosion resistance of porous Mg-based scaffolds. In conclusion, this research would provide data support and theoretical guidance for the application of biodegradable porous Mg-based scaffolds in bone tissue engineering.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curcumin coating: a novel solution to mitigate inherent carbon nanotube toxicity. 姜黄素涂层:减轻碳纳米管固有毒性的新型解决方案。
IF 3.7 3区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-25 DOI: 10.1007/s10856-024-06789-9
Samiksha Rele, Chanchal Kiran Thakur, Fatima Khan, Budhadev Baral, Vaishali Saini, Chandrabose Karthikeyan, N S Hari Narayana Moorthy, Hem Chandra Jha

Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1β, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.

多壁碳纳米管(MWCNTs)是一种具有高纵横比的惰性结构,被广泛用作癌症和许多其他疾病的靶向药物输送载体。然而,当细胞长时间或高浓度地接触这些纳米管时,它们会显示出某些不良反应。这些不良影响包括细胞毒性、炎症、氧化应激和遗传毒性等。为了消除这些不良影响,可以在这些纳米管的表面附着各种分子。姜黄素是一种已知的抗炎、抗氧化和细胞保护化合物,源自一种名为姜黄的药用植物。在这项研究中,我们合成并鉴定了姜黄素涂层-赖氨酸功能化的 MWCNT,并进一步评估了姜黄素涂层在 MWCNT 表面的细胞保护、抗炎、抗氧化和抗细胞凋亡作用。结果显示,在转录本和蛋白质水平上,暴露于姜黄素涂层的 MWCNTs 的细胞与未涂层的相比,IL-6、IL-8、IL-1β、TNFα 和 NFκB 等炎症分子的水平明显下降。此外,与未涂覆的样品相比,使用姜黄素涂覆的 MWCNT 处理的细胞中 ROS 生成减少,抗氧化酶-催化酶上调。姜黄素涂层还有助于恢复暴露于 MWCNTs 的细胞的线粒体膜电位。最后,与暴露于未涂覆的 MWCNTs 的细胞相比,暴露于姜黄素涂覆的 MWCNTs 的细胞死亡减少。我们的研究结果表明,在 MWCNT 表面涂抹姜黄素可以降低其引起炎症、氧化应激和细胞死亡的能力。
{"title":"Curcumin coating: a novel solution to mitigate inherent carbon nanotube toxicity.","authors":"Samiksha Rele, Chanchal Kiran Thakur, Fatima Khan, Budhadev Baral, Vaishali Saini, Chandrabose Karthikeyan, N S Hari Narayana Moorthy, Hem Chandra Jha","doi":"10.1007/s10856-024-06789-9","DOIUrl":"10.1007/s10856-024-06789-9","url":null,"abstract":"<p><p>Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1β, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun nanofibrous mats loaded with gemcitabine and cisplatin suppress bladder tumor growth by improving the tumor immune microenvironment. 负载吉西他滨和顺铂的电纺纳米纤维垫通过改善肿瘤免疫微环境抑制膀胱肿瘤的生长。
IF 3.7 3区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-25 DOI: 10.1007/s10856-024-06786-y
Jing Wang, Yisheng Yin, Xiang Ren, Shaogang Wang, Yunpeng Zhu

The perplexing issues related to positive surgical margins and the considerable negative consequences associated with systemic chemotherapy have posed ongoing challenges for clinicians, especially when it comes to addressing bladder cancer treatment. The current investigation describes the production of nanocomposites loaded with gemcitabine (GEM) and cisplatin (CDDP) through the utilization of electrospinning technology. In vitro and in vivo studies have provided evidence of the strong effectiveness in suppressing tumor advancement while simultaneously reducing the accumulation of chemotherapy drugs within liver and kidney tissues. Mechanically, the GEM and CDDP-loaded electrospun nanocomposites could effectively eliminate myeloid-derived suppressor cells (MDSCs) in tumor tissues, and recruit CD8+ T cells and NKp46+ NK cells to kill tumor cells, which can also effectively inhibit tumor microvascular formation. Our investigation into the impact of localized administration of chemotherapy through GEM and CDDP-loaded electrospun nanocomposites on the tumor microenvironment will offer novel insights for tackling tumors.

与手术切缘阳性相关的令人困惑的问题以及与全身化疗相关的相当大的负面影响给临床医生带来了持续的挑战,尤其是在膀胱癌治疗方面。目前的研究介绍了利用电纺丝技术生产出负载吉西他滨(GEM)和顺铂(CDDP)的纳米复合材料。体外和体内研究证明,这种纳米复合材料能有效抑制肿瘤的发展,同时减少化疗药物在肝脏和肾脏组织中的积聚。从机理上讲,GEM和CDDP负载的电纺纳米复合材料能有效消除肿瘤组织中的髓源性抑制细胞(MDSCs),并招募CD8+ T细胞和NKp46+ NK细胞杀伤肿瘤细胞,还能有效抑制肿瘤微血管的形成。我们对通过GEM和CDDP负载的电纺纳米复合材料局部给药化疗对肿瘤微环境影响的研究,将为应对肿瘤提供新的见解。
{"title":"Electrospun nanofibrous mats loaded with gemcitabine and cisplatin suppress bladder tumor growth by improving the tumor immune microenvironment.","authors":"Jing Wang, Yisheng Yin, Xiang Ren, Shaogang Wang, Yunpeng Zhu","doi":"10.1007/s10856-024-06786-y","DOIUrl":"10.1007/s10856-024-06786-y","url":null,"abstract":"<p><p>The perplexing issues related to positive surgical margins and the considerable negative consequences associated with systemic chemotherapy have posed ongoing challenges for clinicians, especially when it comes to addressing bladder cancer treatment. The current investigation describes the production of nanocomposites loaded with gemcitabine (GEM) and cisplatin (CDDP) through the utilization of electrospinning technology. In vitro and in vivo studies have provided evidence of the strong effectiveness in suppressing tumor advancement while simultaneously reducing the accumulation of chemotherapy drugs within liver and kidney tissues. Mechanically, the GEM and CDDP-loaded electrospun nanocomposites could effectively eliminate myeloid-derived suppressor cells (MDSCs) in tumor tissues, and recruit CD8<sup>+</sup> T cells and NKp46<sup>+</sup> NK cells to kill tumor cells, which can also effectively inhibit tumor microvascular formation. Our investigation into the impact of localized administration of chemotherapy through GEM and CDDP-loaded electrospun nanocomposites on the tumor microenvironment will offer novel insights for tackling tumors.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140287928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore graded borosilicate bioactive glass scaffolds: in vitro dissolution and cytocompatibility. 孔分级硼硅酸盐生物活性玻璃支架:体外溶解和细胞相容性。
IF 3.7 3区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-20 DOI: 10.1007/s10856-024-06791-1
Agata Szczodra, Amel Houaoui, Turkka Salminen, Markus Hannula, Virginia Alessandra Gobbo, Sonya Ghanavati, Susanna Miettinen, Jonathan Massera

3D borosilicate bioactive glass (1393B20 and B12.5MgSr) scaffolds were prepared by robocasting, with and without a dense layer at the top. Pore graded scaffolds are promising as they allow for membrane deposition and could limit the risk of soft tissue infiltration. In vitro dissolution was studied in tris(hydroxymethyl)aminomethane (TRIS) and Simulated Body Fluid (SBF). 1393B20 scaffolds dissolved faster than B12.5MgSr in TRIS whereas they dissolved slower in SBF. The difference in dissolution profiles, as a function of the medium used, is assigned to the different rates of precipitation of hydroxyapatite (HA). While the precipitation of calcium phosphate (CaP) in the form of HA, first sign of bioactivity, was confirmed by ICP, FTIR-ATR and SEM-EDX analysis for both compositions, 1393B20 was found to precipitate HA at a faster rate. The presence of a dense top layer did not significantly impact the dissolution rate and CaP precipitation. In vitro cell culture was performed using human adipose-derived stem cells (hADSCs). Prior to cell plating, a preincubation of 3 days was found optimum to prevent burst ion release. In direct contact, cells proliferate and spread on the scaffolds while maintaining characteristic spindle morphology. Cell plated on 1393B20 scaffolds showed increased viability when compared to cell plated on B12.5MgSr. The lower cell viability, when testing B12.5MgSr, was assigned to the depletion of Ca2+ ions from culture medium and higher pH. Static cell culture leads to believe that the scaffold produced from the 1393B20 glass composition are promising in bone regeneration applications.

通过机械铸造法制备了三维硼硅酸盐生物活性玻璃(1393B20 和 B12.5MgSr)支架,支架顶部有致密层和无致密层。孔隙分级支架很有前景,因为它们允许膜沉积,并能限制软组织浸润的风险。在三(羟甲基)氨基甲烷(TRIS)和模拟体液(SBF)中对体外溶解进行了研究。1393B20 支架在 TRIS 中的溶解速度比 B12.5MgSr 快,而在 SBF 中的溶解速度较慢。溶解曲线的差异与所用介质有关,这是因为羟基磷灰石(HA)的沉淀速度不同。通过对两种成分进行 ICP、FTIR-ATR 和 SEM-EDX 分析,以 HA 形式沉淀的磷酸钙(CaP)是生物活性的第一个标志,但 1393B20 的 HA 沉淀速度更快。致密顶层的存在对溶解速率和 CaP 沉淀没有明显影响。体外细胞培养使用的是人脂肪干细胞(hADSCs)。在细胞培养前,发现预孵育 3 天是防止猝灭离子释放的最佳时间。在直接接触中,细胞在支架上增殖和扩散,同时保持特有的纺锤体形态。与在 B12.5MgSr 上培养的细胞相比,在 1393B20 支架上培养的细胞存活率更高,而在 B12.5MgSr 上培养的细胞存活率较低,原因是培养基中的 Ca2+ 离子耗尽和 pH 值升高。静态细胞培养使我们相信,由 1393B20 玻璃成分制成的支架在骨再生应用中大有可为。
{"title":"Pore graded borosilicate bioactive glass scaffolds: in vitro dissolution and cytocompatibility.","authors":"Agata Szczodra, Amel Houaoui, Turkka Salminen, Markus Hannula, Virginia Alessandra Gobbo, Sonya Ghanavati, Susanna Miettinen, Jonathan Massera","doi":"10.1007/s10856-024-06791-1","DOIUrl":"10.1007/s10856-024-06791-1","url":null,"abstract":"<p><p>3D borosilicate bioactive glass (1393B20 and B12.5MgSr) scaffolds were prepared by robocasting, with and without a dense layer at the top. Pore graded scaffolds are promising as they allow for membrane deposition and could limit the risk of soft tissue infiltration. In vitro dissolution was studied in tris(hydroxymethyl)aminomethane (TRIS) and Simulated Body Fluid (SBF). 1393B20 scaffolds dissolved faster than B12.5MgSr in TRIS whereas they dissolved slower in SBF. The difference in dissolution profiles, as a function of the medium used, is assigned to the different rates of precipitation of hydroxyapatite (HA). While the precipitation of calcium phosphate (CaP) in the form of HA, first sign of bioactivity, was confirmed by ICP, FTIR-ATR and SEM-EDX analysis for both compositions, 1393B20 was found to precipitate HA at a faster rate. The presence of a dense top layer did not significantly impact the dissolution rate and CaP precipitation. In vitro cell culture was performed using human adipose-derived stem cells (hADSCs). Prior to cell plating, a preincubation of 3 days was found optimum to prevent burst ion release. In direct contact, cells proliferate and spread on the scaffolds while maintaining characteristic spindle morphology. Cell plated on 1393B20 scaffolds showed increased viability when compared to cell plated on B12.5MgSr. The lower cell viability, when testing B12.5MgSr, was assigned to the depletion of Ca<sup>2+</sup> ions from culture medium and higher pH. Static cell culture leads to believe that the scaffold produced from the 1393B20 glass composition are promising in bone regeneration applications.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel fluffy PLGA/HA composite scaffold for bone defect repair. 用于骨缺损修复的新型绒毛状 PLGA/HA 复合支架。
IF 3.7 3区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-15 DOI: 10.1007/s10856-024-06782-2
Yuan Tao, Meng Jia, Yang Shao-Qiang, Cheng-Teng Lai, Qian Hong, Yu Xin, Jiang Hui, Cao Qing-Gang, Xu Jian-Da, Bao Ni-Rong

Treatment of bone defects remains crucial challenge for successful bone healing, which arouses great interests in designing and fabricating ideal biomaterials. In this regard, the present study focuses on developing a novel fluffy scaffold of poly Lactide-co-glycolide (PLGA) composites with hydroxyapatite (HA) scaffold used in bone defect repair in rabbits. This fluffy PLGA/HA composite scaffold was fabricated by using multi-electro-spinning combined with biomineralization technology. In vitro analysis of human bone marrow mesenchymal stem cells (BMSCs) seeded onto fluffy PLGA/HA composite scaffold showed their ability to adhere, proliferate and cell viability. Transplant of fluffy PLGA/HA composite scaffold in a rabbit model showed a significant increase in mineralized tissue production compared to conventional and fluffy PLGA/HA composite scaffold. These findings are promising for fluffy PLGA/HA composite scaffolds used in bone defects.

骨缺损治疗仍然是成功实现骨愈合的关键挑战,这引起了人们对设计和制造理想生物材料的极大兴趣。在这方面,本研究的重点是开发一种新型的聚乳酸-聚乙二醇(PLGA)与羟基磷灰石(HA)复合绒毛支架,用于兔子的骨缺损修复。这种蓬松的 PLGA/HA 复合支架是通过多电纺结合生物矿化技术制成的。体外分析表明,将人骨髓间充质干细胞(BMSCs)播种到蓬松的PLGA/HA复合支架上后,它们具有粘附、增殖和细胞存活能力。在兔子模型中移植蓬松的PLGA/HA复合支架后,矿化组织的生成量比传统和蓬松的PLGA/HA复合支架显著增加。这些发现为蓬松的 PLGA/HA 复合支架用于骨缺损带来了希望。
{"title":"A novel fluffy PLGA/HA composite scaffold for bone defect repair.","authors":"Yuan Tao, Meng Jia, Yang Shao-Qiang, Cheng-Teng Lai, Qian Hong, Yu Xin, Jiang Hui, Cao Qing-Gang, Xu Jian-Da, Bao Ni-Rong","doi":"10.1007/s10856-024-06782-2","DOIUrl":"10.1007/s10856-024-06782-2","url":null,"abstract":"<p><p>Treatment of bone defects remains crucial challenge for successful bone healing, which arouses great interests in designing and fabricating ideal biomaterials. In this regard, the present study focuses on developing a novel fluffy scaffold of poly Lactide-co-glycolide (PLGA) composites with hydroxyapatite (HA) scaffold used in bone defect repair in rabbits. This fluffy PLGA/HA composite scaffold was fabricated by using multi-electro-spinning combined with biomineralization technology. In vitro analysis of human bone marrow mesenchymal stem cells (BMSCs) seeded onto fluffy PLGA/HA composite scaffold showed their ability to adhere, proliferate and cell viability. Transplant of fluffy PLGA/HA composite scaffold in a rabbit model showed a significant increase in mineralized tissue production compared to conventional and fluffy PLGA/HA composite scaffold. These findings are promising for fluffy PLGA/HA composite scaffolds used in bone defects.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemical and biomechanical characterization of an autologous protein-based fibrin sealant for regenerative medicine. 用于再生医学的自体蛋白基纤维蛋白密封剂的生物化学和生物力学特征。
IF 3.7 3区 医学 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-08 DOI: 10.1007/s10856-024-06780-4
Eduardo Anitua, Ander Pino, Roberto Prado, Francisco Muruzabal, Mohammad Hamdan Alkhraisat

Accidental events or surgical procedures usually lead to tissue injury. Fibrin sealants have proven to optimize the healing process but have some drawbacks due to their allogeneic nature. Autologous fibrin sealants present several advantages. The aim of this study is to evaluate the performance of a new autologous fibrin sealant based on Endoret®PRGF® technology (E-sealant). One of the most widely used commercial fibrin sealants (Tisseel®) was included as comparative Control. E-sealant´s hematological and biological properties were characterized. The coagulation kinetics and the microstructure were compared. Their rheological profile and biomechanical behavior were also recorded. Finally, the swelling/shrinkage capacity and the enzymatic degradation of adhesives were determined. E-sealant presented a moderate platelet concentration and physiological levels of fibrinogen and thrombin. It clotted 30 s after activation. The microstructure of E-sealant showed a homogeneous fibrillar scaffold with numerous and scattered platelet aggregates. In contrast, Control presented absence of blood cells and amorphous protein deposits. Although in different order of magnitude, both adhesives had similar rheological profiles and viscoelasticity. Control showed a higher hardness but both adhesives presented a pseudoplastic hydrogel nature with a shear thinning behavior. Regarding their adhesiveness, E-sealant presented a higher tensile strength before cohesive failure but their elastic stretching capacity and maximum elongation was similar. While E-sealant presented a significant shrinkage process, Control showed a slight swelling over time. In addition, E-sealant presented a high enzymatic resorption rate, while Control showed to withstand the biodegradation process in a significant way. E-sealant presents optimal biochemical and biomechanical properties suitable for its use as a fibrin sealant with regenerative purposes.

意外事件或外科手术通常会导致组织损伤。事实证明,纤维蛋白密封剂可以优化愈合过程,但由于其异体性质,也存在一些缺点。自体纤维蛋白密封剂具有一些优点。本研究旨在评估基于 Endoret®PRGF® 技术的新型自体纤维蛋白密封剂(E-sealant)的性能。其中一种应用最广泛的商用纤维蛋白密封剂(Tisseel®)被列为对比对照组。对 E-sealant 的血液学和生物学特性进行了鉴定。比较了凝固动力学和微观结构。还记录了它们的流变学特征和生物力学行为。最后,还测定了粘合剂的膨胀/收缩能力和酶降解能力。E 型密封剂的血小板浓度适中,纤维蛋白原和凝血酶含量符合生理水平。它在激活后 30 秒就会凝结。E-sealant 的微观结构显示出均匀的纤维支架,其中有大量分散的血小板聚集。相比之下,对照组则没有血细胞和无定形的蛋白质沉淀。虽然数量级不同,但两种粘合剂具有相似的流变曲线和粘弹性。对照组显示出更高的硬度,但两种粘合剂都呈现出具有剪切稀化行为的假塑性水凝胶性质。在粘合性方面,E-密封剂在内聚失效前的拉伸强度更高,但它们的弹性拉伸能力和最大伸长率相似。E 型密封剂会出现明显的收缩过程,而 Control 型密封剂则会随着时间的推移出现轻微的膨胀。此外,E 型密封剂的酶吸收率较高,而对照组则在很大程度上经受住了生物降解过程。E 型密封剂具有最佳的生物化学和生物力学特性,适合用作具有再生功能的纤维蛋白密封剂。
{"title":"Biochemical and biomechanical characterization of an autologous protein-based fibrin sealant for regenerative medicine.","authors":"Eduardo Anitua, Ander Pino, Roberto Prado, Francisco Muruzabal, Mohammad Hamdan Alkhraisat","doi":"10.1007/s10856-024-06780-4","DOIUrl":"10.1007/s10856-024-06780-4","url":null,"abstract":"<p><p>Accidental events or surgical procedures usually lead to tissue injury. Fibrin sealants have proven to optimize the healing process but have some drawbacks due to their allogeneic nature. Autologous fibrin sealants present several advantages. The aim of this study is to evaluate the performance of a new autologous fibrin sealant based on Endoret®PRGF® technology (E-sealant). One of the most widely used commercial fibrin sealants (Tisseel®) was included as comparative Control. E-sealant´s hematological and biological properties were characterized. The coagulation kinetics and the microstructure were compared. Their rheological profile and biomechanical behavior were also recorded. Finally, the swelling/shrinkage capacity and the enzymatic degradation of adhesives were determined. E-sealant presented a moderate platelet concentration and physiological levels of fibrinogen and thrombin. It clotted 30 s after activation. The microstructure of E-sealant showed a homogeneous fibrillar scaffold with numerous and scattered platelet aggregates. In contrast, Control presented absence of blood cells and amorphous protein deposits. Although in different order of magnitude, both adhesives had similar rheological profiles and viscoelasticity. Control showed a higher hardness but both adhesives presented a pseudoplastic hydrogel nature with a shear thinning behavior. Regarding their adhesiveness, E-sealant presented a higher tensile strength before cohesive failure but their elastic stretching capacity and maximum elongation was similar. While E-sealant presented a significant shrinkage process, Control showed a slight swelling over time. In addition, E-sealant presented a high enzymatic resorption rate, while Control showed to withstand the biodegradation process in a significant way. E-sealant presents optimal biochemical and biomechanical properties suitable for its use as a fibrin sealant with regenerative purposes.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923958/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Materials Science: Materials in Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1