首页 > 最新文献

Journal of Materials Science: Materials in Medicine最新文献

英文 中文
Mxene-bpV plays a neuroprotective role in cerebral ischemia-reperfusion injury by activating the Akt and promoting the M2 microglial polarization signaling pathways Mxene-bpV 通过激活 Akt 和促进 M2 小胶质细胞极化信号通路,在脑缺血再灌注损伤中发挥神经保护作用。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-29 DOI: 10.1007/s10856-024-06811-0
Jing Cheng, Han Yu, Zhi-Feng Zhang, Hong-Xiang Jiang, Ping Wu, Zhou-Guang Wang, Zhi-Biao Chen, Li-Quan Wu

Studies have shown that the inhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN)was neuroprotective against ischemia/reperfusion(I/R) injury. Bisperoxovanadium (bpV), a derivative of vanadate, is a well-established inhibitor of PTEN. However, its function islimited due to its general inadequacy in penetrating cell membranes. Mxene(Ti3C2Tx) is a novel two-dimensional lamellar nanomaterial with an excellent ability to penetrate the cell membrane. Yet, the effects of this nanomaterial on nervous system diseases have yet to be scrutinized. Here, Mxene(Ti3C2Tx) was used for the first time to carry bpV(HOpic), creating a new nanocomposite Mxene-bpV that was probed in a cerebral I/R injury model. The findings showed that this synthetic Mxene-bpV was adequately stable and can cross the cell membraneeasily. We observed that Mxene-bpV treatment significantly increased the survival rate of oxygen glucose deprivation/reperfusion(OGD/R)--insulted neurons, reduced infarct sizes and promoted the recovery of brain function after mice cerebral I/R injury. Crucially, Mxene-bpV treatment was more therapeutically efficient than bpV(HOpic) treatment alone over the same period. Mechanistically, Mxene-bpV inhibited the enzyme activity of PTEN in vitro and in vivo. It also promoted the expression of phospho-Akt (Ser473) by repressing PTEN and then activated the Akt pathway to boost cell survival. Additionally, in PTEN transgenic mice, Mxene-bpV suppressed I/R-induced inflammatory response by promoting M2 microglial polarization through PTEN inhibition. Collectively, the nanosynthetic Mxene-bpV inhibited PTEN’ enzymatic activity by activating Akt pathway and promoting M2 microglial polarization, and finally exerted neuroprotection against cerebral I/R injury.

Graphical Abstract

研究表明,抑制染色体10上缺失的磷酸酶和天丝同源物(PTEN)对缺血/再灌注(I/R)损伤具有神经保护作用。双过氧钒(bpV)是钒酸盐的一种衍生物,是一种成熟的 PTEN 抑制剂。然而,由于其穿透细胞膜的能力普遍不足,其功能受到了限制。Mxene(Ti3C2Tx)是一种新型二维片状纳米材料,具有极佳的穿透细胞膜的能力。然而,这种纳米材料对神经系统疾病的影响还有待进一步研究。本文首次利用 Mxene(Ti3C2Tx)携带 bpV(HOpic),创造出一种新型纳米复合材料 Mxene-bpV,并在脑 I/R 损伤模型中进行了研究。研究结果表明,这种人工合成的 Mxene-bpV 具有足够的稳定性,可以轻松穿过细胞膜。我们观察到,Mxene-bpV能显著提高小鼠脑I/R损伤后氧葡萄糖剥夺/再灌注(OGD/R)损伤神经元的存活率,缩小梗死面积,促进脑功能的恢复。最重要的是,在同一时期,Mxene-bpV治疗比单独使用bpV(HOpic)治疗更有效。从机理上讲,Mxene-bpV 可抑制 PTEN 在体外和体内的酶活性。它还通过抑制 PTEN 促进磷酸化-Akt(Ser473)的表达,然后激活 Akt 通路以提高细胞存活率。此外,在 PTEN 转基因小鼠中,Mxene-bpV 通过抑制 PTEN 促进 M2 小胶质细胞极化,从而抑制了 I/R 诱导的炎症反应。总之,纳米合成的 Mxene-bpV 通过激活 Akt 通路和促进 M2 小胶质细胞极化,抑制了 PTEN 的酶活性,最终发挥了对脑 I/R 损伤的神经保护作用。
{"title":"Mxene-bpV plays a neuroprotective role in cerebral ischemia-reperfusion injury by activating the Akt and promoting the M2 microglial polarization signaling pathways","authors":"Jing Cheng,&nbsp;Han Yu,&nbsp;Zhi-Feng Zhang,&nbsp;Hong-Xiang Jiang,&nbsp;Ping Wu,&nbsp;Zhou-Guang Wang,&nbsp;Zhi-Biao Chen,&nbsp;Li-Quan Wu","doi":"10.1007/s10856-024-06811-0","DOIUrl":"10.1007/s10856-024-06811-0","url":null,"abstract":"<div><p>Studies have shown that the inhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN)was neuroprotective against ischemia/reperfusion(I/R) injury. Bisperoxovanadium (bpV), a derivative of vanadate, is a well-established inhibitor of PTEN. However, its function islimited due to its general inadequacy in penetrating cell membranes. Mxene(Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) is a novel two-dimensional lamellar nanomaterial with an excellent ability to penetrate the cell membrane. Yet, the effects of this nanomaterial on nervous system diseases have yet to be scrutinized. Here, Mxene(Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) was used for the first time to carry bpV(HOpic), creating a new nanocomposite Mxene-bpV that was probed in a cerebral I/R injury model. The findings showed that this synthetic Mxene-bpV was adequately stable and can cross the cell membraneeasily. We observed that Mxene-bpV treatment significantly increased the survival rate of oxygen glucose deprivation/reperfusion(OGD/R)--insulted neurons, reduced infarct sizes and promoted the recovery of brain function after mice cerebral I/R injury. Crucially, Mxene-bpV treatment was more therapeutically efficient than bpV(HOpic) treatment alone over the same period. Mechanistically, Mxene-bpV inhibited the enzyme activity of PTEN in vitro and in vivo. It also promoted the expression of phospho-Akt (Ser<sup>473</sup>) by repressing PTEN and then activated the Akt pathway to boost cell survival. Additionally, in PTEN transgenic mice, Mxene-bpV suppressed I/R-induced inflammatory response by promoting M2 microglial polarization through PTEN inhibition. Collectively, the nanosynthetic Mxene-bpV inhibited PTEN’ enzymatic activity by activating Akt pathway and promoting M2 microglial polarization, and finally exerted neuroprotection against cerebral I/R injury.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro and in vivo dissolution of biocompatible S59 glass scaffolds 生物相容性 S59 玻璃支架的体外和体内溶解。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-03 DOI: 10.1007/s10856-024-06795-x
Laura Aalto-Setälä, Peter Uppstu, Robert Björkenheim, Gustav Strömberg, Nina C. Lindfors, Jukka Pajarinen, Leena Hupa

Fabrication of porous tissue-engineering scaffolds from bioactive glasses (BAG) is complicated by the tendency of BAG compositions to crystallize in thermal treatments during scaffold manufacture. Here, experimental biocompatible glass S59 (SiO2 59.7 wt%, Na2O 25.5 wt%, CaO 11.0 wt%, P2O5 2.5 wt%, B2O3 1.3 wt%), known to be resistant to crystallization, was used in sintering of glass granules (300–500 µm) into porous scaffolds. The dissolution behavior of the scaffolds was then studied in vivo in rabbit femurs and under continuous flow conditions in vitro (14 days in vitro/56 days in vivo). The scaffolds were osteoconductive in vivo, as bone could grow into the scaffold structure. Still, the scaffolds could not induce sufficiently rapid bone ingrowth to replace the strength lost due to dissolution. The scaffolds lost their structure and strength as the scaffold necks dissolved. In vitro, S59 dissolved congruently throughout the 14-day experiments, resulting in only a slight reaction layer formation. Manufacturing BAG scaffolds from S59 that retain their amorphous structure was thus possible. The relatively rapid and stable dissolution of the scaffold implies that the glass S59 may have the potential to be used in composite implants providing initial strength and stable, predictable release of ions over longer exposure times.

Graphical Abstract

用生物活性玻璃(BAG)制造多孔组织工程支架非常复杂,因为在支架制造过程中,BAG 成分在热处理中容易结晶。在这里,实验性生物相容性玻璃 S59(SiO2 59.7 wt%、Na2O 25.5 wt%、CaO 11.0 wt%、P2O5 2.5 wt%、B2O3 1.3 wt%)被用于将玻璃颗粒(300-500 µm)烧结成多孔支架,已知该玻璃具有抗结晶性。然后在兔子股骨的体内和体外连续流动条件下(体外 14 天/体内 56 天)研究了支架的溶解行为。这些支架在体内具有骨传导性,因为骨骼可以长入支架结构中。不过,这些支架无法诱导足够快的骨生长,以替代因溶解而损失的强度。随着支架颈部的溶解,支架失去了结构和强度。在体外,S59 在整个 14 天的实验过程中溶解一致,只形成了轻微的反应层。因此,用 S59 制造保持无定形结构的 BAG 支架是可能的。支架相对快速而稳定的溶解意味着玻璃 S59 有可能被用于复合植入物,在较长的暴露时间内提供初始强度和稳定、可预测的离子释放。
{"title":"In vitro and in vivo dissolution of biocompatible S59 glass scaffolds","authors":"Laura Aalto-Setälä,&nbsp;Peter Uppstu,&nbsp;Robert Björkenheim,&nbsp;Gustav Strömberg,&nbsp;Nina C. Lindfors,&nbsp;Jukka Pajarinen,&nbsp;Leena Hupa","doi":"10.1007/s10856-024-06795-x","DOIUrl":"10.1007/s10856-024-06795-x","url":null,"abstract":"<div><p>Fabrication of porous tissue-engineering scaffolds from bioactive glasses (BAG) is complicated by the tendency of BAG compositions to crystallize in thermal treatments during scaffold manufacture. Here, experimental biocompatible glass S59 (SiO<sub>2</sub> 59.7 wt%, Na<sub>2</sub>O 25.5 wt%, CaO 11.0 wt%, P<sub>2</sub>O<sub>5</sub> 2.5 wt%, B<sub>2</sub>O<sub>3</sub> 1.3 wt%), known to be resistant to crystallization, was used in sintering of glass granules (300–500 µm) into porous scaffolds. The dissolution behavior of the scaffolds was then studied in vivo in rabbit femurs and under continuous flow conditions in vitro (14 days in vitro/56 days in vivo). The scaffolds were osteoconductive in vivo, as bone could grow into the scaffold structure. Still, the scaffolds could not induce sufficiently rapid bone ingrowth to replace the strength lost due to dissolution. The scaffolds lost their structure and strength as the scaffold necks dissolved. In vitro, S59 dissolved congruently throughout the 14-day experiments, resulting in only a slight reaction layer formation. Manufacturing BAG scaffolds from S59 that retain their amorphous structure was thus possible. The relatively rapid and stable dissolution of the scaffold implies that the glass S59 may have the potential to be used in composite implants providing initial strength and stable, predictable release of ions over longer exposure times.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intraocular pressure control efficacy and safety of HA-Mg glaucoma drainage plate implantation in the anterior chamber of rabbit eyes 将 HA-Mg 青光眼引流板植入兔眼前房的眼压控制效果和安全性。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-25 DOI: 10.1007/s10856-024-06806-x
Mingming Cai, Wangdu Luo, Kevin Feng, Yi Chen, Lin Yi, Xiaomin Zhu, Ju He, Hong Liu, Cindy Hutnik, Yong Wang, Xiangji Li, Lin Xie

The current clinical application of glaucoma drainage devices is made of non-degradable materials. These non-degradable drainage devices often trigger inflammatory responses and scar proliferation, possibly leading to surgical failure. We developed a biodegradable material hydroxyapatite-coated magnesium (HA-Mg) as a glaucoma drainage device. Twelve New Zealand white rabbits were randomly assigned to three groups: HA-Mg drainage plate group (6 right eyes), trabeculectomy group (6 right eyes), and control group (12 left eyes). Results showed that all HA-Mg drainage plates were completely degraded ~4 months postoperatively. At the 5th month postoperatively, there was no statistical difference in the corneal endothelium density between the HA-Mg drainage plate group and the control group (p = 0.857). The intraocular pressure (IOP) level in the HA-Mg drainage plate implantation group was lower than in the other two groups. The trypan blue dye still drained from the anterior chamber to the subconjunctiva 5 months after HA-Mg drainage plate implantation. HE staining revealed the scleral linear aqueous humor drainage channel and anterior synechia were observed after drainage plate completely degraded, with no obvious infiltration with the inflammatory cells. This study showed the safety and efficacy of HA-Mg glaucoma drainage plate in controlling IOP after implantation into the anterior chamber of rabbit eyes.

目前临床应用的青光眼引流装置是由不可降解材料制成的。这些不可降解的引流装置往往会引发炎症反应和瘢痕增生,可能导致手术失败。我们开发了一种可生物降解材料羟基磷灰石包覆镁(HA-Mg)作为青光眼引流装置。我们将 12 只新西兰白兔随机分为三组:HA-Mg 引流板组(6 只右眼)、小梁切除术组(6 只右眼)和对照组(12 只左眼)。结果显示,所有 HA-Mg 引流板在术后 4 个月左右完全降解。术后第 5 个月,HA-镁引流板组与对照组的角膜内皮密度无统计学差异(P = 0.857)。HA-Mg 引流板植入组的眼压低于其他两组。HA-Mg 引流板植入 5 个月后,胰蓝染料仍从前房流向结膜下。HE 染色显示,引流板完全降解后,巩膜线状房水引流通道和前房裂隙被观察到,无明显炎症细胞浸润。该研究表明,HA-Mg 青光眼引流板植入兔眼前房后,在控制眼压方面具有安全性和有效性。
{"title":"Intraocular pressure control efficacy and safety of HA-Mg glaucoma drainage plate implantation in the anterior chamber of rabbit eyes","authors":"Mingming Cai,&nbsp;Wangdu Luo,&nbsp;Kevin Feng,&nbsp;Yi Chen,&nbsp;Lin Yi,&nbsp;Xiaomin Zhu,&nbsp;Ju He,&nbsp;Hong Liu,&nbsp;Cindy Hutnik,&nbsp;Yong Wang,&nbsp;Xiangji Li,&nbsp;Lin Xie","doi":"10.1007/s10856-024-06806-x","DOIUrl":"10.1007/s10856-024-06806-x","url":null,"abstract":"<p>The current clinical application of glaucoma drainage devices is made of non-degradable materials. These non-degradable drainage devices often trigger inflammatory responses and scar proliferation, possibly leading to surgical failure. We developed a biodegradable material hydroxyapatite-coated magnesium (HA-Mg) as a glaucoma drainage device. Twelve New Zealand white rabbits were randomly assigned to three groups: HA-Mg drainage plate group (6 right eyes), trabeculectomy group (6 right eyes), and control group (12 left eyes). Results showed that all HA-Mg drainage plates were completely degraded ~4 months postoperatively. At the 5th month postoperatively, there was no statistical difference in the corneal endothelium density between the HA-Mg drainage plate group and the control group (<i>p</i> = 0.857). The intraocular pressure (IOP) level in the HA-Mg drainage plate implantation group was lower than in the other two groups. The trypan blue dye still drained from the anterior chamber to the subconjunctiva 5 months after HA-Mg drainage plate implantation. HE staining revealed the scleral linear aqueous humor drainage channel and anterior synechia were observed after drainage plate completely degraded, with no obvious infiltration with the inflammatory cells. This study showed the safety and efficacy of HA-Mg glaucoma drainage plate in controlling IOP after implantation into the anterior chamber of rabbit eyes.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological and mechanical performance of calcium phosphate cements modified with phytic acid 植酸改性磷酸钙水泥的生物和机械性能。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-20 DOI: 10.1007/s10856-024-06805-y
Valentin C. Steinacker, Jan Weichhold, Tobias Renner, Sebastian Gubik, Andreas Vollmer, Niko Breitenbücher, Andreas Fuchs, Anton Straub, Stefan Hartmann, Alexander C. Kübler, Uwe Gbureck

Calcium phosphate cements, primarily brushite cements, require the addition of setting retarders to ensure adequate processing time and processability. So far, citric acid has been the primary setting retarder used in this context. Due to the poor biocompatibility, it is crucial to explore alternative options for better processing. In recent years, the setting retarder phytic acid (IP6) has been increasingly investigated. This study investigates the biological behaviour of calcium phosphate cements with varying concentrations of IP6, in addition to their physical properties. Therefore cytocompatibility in vitro testing was performed using osteoblastic (MG-63) and osteoclastic (RAW 264.7 differentiated with RANKL) cells. We could demonstrate that the physical properties like the compressive strength of specimens formed with IP6 (brushite_IP6_5 = 11.2 MPa) were improved compared to the reference (brushite = 9.8 MPa). In osteoblast and osteoclast assays, IP6 exhibited significantly better cytocompatibility in terms of cell activity and cell number for brushite cements up to 11 times compared to the brushite reference. In contrast, the calcium-deficient hydroxyapatite (CDHA) cements produced similar results for IP6 (CDHA_IP6_0.25 = 27.0 MPa) when compared to their reference (CDHA = 21.2 MPa). Interestingly, lower doses of IP6 were found to be more effective than higher doses with up to 3 times higher. Additionally, IP6 significantly increased degradation in both passive and active resorption. For these reasons, IP6 is emerging as a strong new competitor to established setting retarders such as citric acid. These cements have potential applications in bone augmentation, the stabilisation of non-load bearing fractures (craniofacial), or the cementation of metal implants.

Graphical Abstract

磷酸钙水泥(主要是刷石水泥)需要添加缓凝剂,以确保足够的加工时间和可加工性。迄今为止,柠檬酸一直是这方面使用的主要缓凝剂。由于柠檬酸的生物相容性较差,因此探索替代方案以改善加工性能至关重要。近年来,人们对植酸(IP6)这种缓凝剂的研究越来越多。本研究除了研究磷酸钙水泥的物理性质外,还研究了含有不同浓度 IP6 的磷酸钙水泥的生物特性。因此,我们使用成骨细胞(MG-63)和破骨细胞(用 RANKL 分化的 RAW 264.7)进行了体外细胞相容性测试。结果表明,使用 IP6(brushite_IP6_5 = 11.2 兆帕)形成的试样的抗压强度等物理性质比参考值(brushite = 9.8 兆帕)有所提高。在成骨细胞和破骨细胞试验中,就细胞活性和细胞数量而言,IP6 的细胞相容性明显优于 brushite 水泥,最高可达 brushite 参考材料的 11 倍。相比之下,缺钙羟基磷灰石(CDHA)水门汀的 IP6 结果(CDHA_IP6_0.25 = 27.0 MPa)与其参考值(CDHA = 21.2 MPa)相似。有趣的是,较低剂量的 IP6 比高剂量(高达 3 倍)的 IP6 更有效。此外,IP6 还能明显增加被动和主动吸收的降解。由于这些原因,IP6 正在成为柠檬酸等既有凝固延缓剂的有力竞争者。这些水门汀在骨增量、稳定非承重骨折(颅面部)或金属植入物的粘接方面具有潜在的应用价值。
{"title":"Biological and mechanical performance of calcium phosphate cements modified with phytic acid","authors":"Valentin C. Steinacker,&nbsp;Jan Weichhold,&nbsp;Tobias Renner,&nbsp;Sebastian Gubik,&nbsp;Andreas Vollmer,&nbsp;Niko Breitenbücher,&nbsp;Andreas Fuchs,&nbsp;Anton Straub,&nbsp;Stefan Hartmann,&nbsp;Alexander C. Kübler,&nbsp;Uwe Gbureck","doi":"10.1007/s10856-024-06805-y","DOIUrl":"10.1007/s10856-024-06805-y","url":null,"abstract":"<div><p>Calcium phosphate cements, primarily brushite cements, require the addition of setting retarders to ensure adequate processing time and processability. So far, citric acid has been the primary setting retarder used in this context. Due to the poor biocompatibility, it is crucial to explore alternative options for better processing. In recent years, the setting retarder phytic acid (IP6) has been increasingly investigated. This study investigates the biological behaviour of calcium phosphate cements with varying concentrations of IP6, in addition to their physical properties. Therefore cytocompatibility in vitro testing was performed using osteoblastic (MG-63) and osteoclastic (RAW 264.7 differentiated with RANKL) cells. We could demonstrate that the physical properties like the compressive strength of specimens formed with IP6 (brushite_IP6_5 = 11.2 MPa) were improved compared to the reference (brushite = 9.8 MPa). In osteoblast and osteoclast assays, IP6 exhibited significantly better cytocompatibility in terms of cell activity and cell number for brushite cements up to 11 times compared to the brushite reference. In contrast, the calcium-deficient hydroxyapatite (CDHA) cements produced similar results for IP6 (CDHA_IP6_0.25 = 27.0 MPa) when compared to their reference (CDHA = 21.2 MPa). Interestingly, lower doses of IP6 were found to be more effective than higher doses with up to 3 times higher. Additionally, IP6 significantly increased degradation in both passive and active resorption. For these reasons, IP6 is emerging as a strong new competitor to established setting retarders such as citric acid. These cements have potential applications in bone augmentation, the stabilisation of non-load bearing fractures (craniofacial), or the cementation of metal implants.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitatively measuring the cytotoxicity of viscous hydrogels with direct cell sampling in a micro scale format “MicroDrop” and its comparison to CCK8 利用微尺度格式 "MicroDrop "直接进行细胞取样,定量测量粘性水凝胶的细胞毒性,并与 CCK8 进行比较。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-20 DOI: 10.1007/s10856-024-06800-3
Anna Marie Margot, Andreas Engels, Michael Sittinger, Tilo Dehne, Shabnam Hemmati-Sadeghi

Tissue engineering holds promise for developing therapeutic applications using viscous materials e.g. hydrogels. However, assessing the cytotoxicity of such materials with conventional assays can be challenging due to non-specific interactions. To address this, we optimized a live/dead staining method for quantitative evaluation and compared it with the conventional CCK8 assay. Our MicroDrop method involved seeding droplets containing 5000 cells in 10 µl medium on 12-well plates. After allowing them to adhere for 4 h, various viscous samples were applied to the cells and measurements were conducted using a fluorescence microscope immediately and at daily intervals up to 72 h. A sodium dodecyl sulfate (SDS) dilution series compared the MicroDrop with the CCK8 assay. The findings revealed a cell-type specific pattern for 10 mg/ml hyaluronic acid (HA), wherein MC3T3-E1 cells maintained 95% viability until 72 h, while L929 cells experienced a gradual decline to 17%. 2 mg/ml HA exhibited consistent viability above 90% across all time points and cell lines. Similarly, fibrin demonstrated 90% viability across dilutions and time points, except for undiluted samples showing a decrease from 85% to 20%. Gelatin-methacrylol sustained viability above 70% across all time points at both 5% and 10% concentrations. The comparison of the SDS dilution series between viability (MicroDrop) and metabolic activity (CCK8) assay showed a correlation coefficient of 0.95. The study validates the feasibility of the established assay, providing researchers with an efficient tool for assessing cytotoxicity in viscous materials. Additionally, it holds the potential to yield more precise data on well-known hydrogels.

Graphical Abstract

组织工程有望利用水凝胶等粘性材料开发治疗应用。然而,由于非特异性相互作用,用传统方法评估此类材料的细胞毒性可能具有挑战性。为了解决这个问题,我们优化了一种用于定量评估的活体/死体染色方法,并将其与传统的 CCK8 检测法进行了比较。我们的 MicroDrop 方法是在 12 孔板上的 10 µl 培养基中加入含有 5000 个细胞的液滴。十二烷基硫酸钠(SDS)稀释系列比较了 MicroDrop 和 CCK8 检测法。研究结果显示,10 毫克/毫升透明质酸(HA)具有细胞类型特异性,其中 MC3T3-E1 细胞在 72 小时内保持 95% 的存活率,而 L929 细胞的存活率则逐渐下降到 17%。在所有时间点和细胞系中,2 毫克/毫升 HA 的存活率始终高于 90%。同样,纤维蛋白在不同稀释度和不同时间点的存活率均为 90%,只有未稀释样品的存活率从 85% 降至 20%。明胶-甲基丙烯醇在 5%和 10%浓度下,在所有时间点的存活率都高于 70%。活力(MicroDrop)和代谢活性(CCK8)测定之间的 SDS 稀释系列比较显示相关系数为 0.95。这项研究验证了所建立的检测方法的可行性,为研究人员提供了评估粘性材料细胞毒性的有效工具。此外,它还有可能为众所周知的水凝胶提供更精确的数据。
{"title":"Quantitatively measuring the cytotoxicity of viscous hydrogels with direct cell sampling in a micro scale format “MicroDrop” and its comparison to CCK8","authors":"Anna Marie Margot,&nbsp;Andreas Engels,&nbsp;Michael Sittinger,&nbsp;Tilo Dehne,&nbsp;Shabnam Hemmati-Sadeghi","doi":"10.1007/s10856-024-06800-3","DOIUrl":"10.1007/s10856-024-06800-3","url":null,"abstract":"<div><p>Tissue engineering holds promise for developing therapeutic applications using viscous materials e.g. hydrogels. However, assessing the cytotoxicity of such materials with conventional assays can be challenging due to non-specific interactions. To address this, we optimized a live/dead staining method for quantitative evaluation and compared it with the conventional CCK8 assay. Our MicroDrop method involved seeding droplets containing 5000 cells in 10 µl medium on 12-well plates. After allowing them to adhere for 4 h, various viscous samples were applied to the cells and measurements were conducted using a fluorescence microscope immediately and at daily intervals up to 72 h. A sodium dodecyl sulfate (SDS) dilution series compared the MicroDrop with the CCK8 assay. The findings revealed a cell-type specific pattern for 10 mg/ml hyaluronic acid (HA), wherein MC3T3-E1 cells maintained 95% viability until 72 h, while L929 cells experienced a gradual decline to 17%. 2 mg/ml HA exhibited consistent viability above 90% across all time points and cell lines. Similarly, fibrin demonstrated 90% viability across dilutions and time points, except for undiluted samples showing a decrease from 85% to 20%. Gelatin-methacrylol sustained viability above 70% across all time points at both 5% and 10% concentrations. The comparison of the SDS dilution series between viability (MicroDrop) and metabolic activity (CCK8) assay showed a correlation coefficient of 0.95. The study validates the feasibility of the established assay, providing researchers with an efficient tool for assessing cytotoxicity in viscous materials. Additionally, it holds the potential to yield more precise data on well-known hydrogels.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro cytocompatibility of triclosan coated Polyglactin910 sutures 涂有三氯生的 Polyglactin910 缝合线的体外细胞相容性。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-20 DOI: 10.1007/s10856-024-06796-w
Hongrui Ji, Zhiruo Zhang, Chao Wang, Xuewen Li, Guiling Zhang, Danqing Liu

Bioabsorbable sutures can improve the medical functions of existing non-absorbable sutures, and may produce new medical effects, and are expected to become a new generation of medical degradable materials. In this study, the cytocompatibility of triclosan coated polyglactin910 sutures (CTS-PLGA910) was analyzed and different concentrations of sutures were prepared. The effects of sutures on the cytotoxicity and cell proliferation of HUVEC were studied by CCK-8 assay. The hemolysis, total antioxidant capacity (T-AOC) activity and nitric oxide (NO) content were investigated to improve the blood compatibility of sutures. The results showed that the hemolysis rate of CTS-PLGA910 was less than 5%. After treatment on HUVEC cells for 48 and 72 h, there was no significant change in NO content in CTS-PLGA910 groups compared with the control group, while T-AOC activity and antioxidant capacity were significantly increased in medium and high dose groups. In summary, the blood compatibility and cell compatibility were significantly improved, which provided a basis for the clinical application of sutures in the future.

Graphical Abstract

生物可吸收缝合线可改善现有不可吸收缝合线的医疗功能,并可能产生新的医疗效果,有望成为新一代医用可降解材料。本研究分析了三氯生包覆聚乳酸910缝合线(CTS-PLGA910)的细胞相容性,并制备了不同浓度的缝合线。通过 CCK-8 试验研究了缝合线对 HUVEC 细胞毒性和细胞增殖的影响。为了提高缝合线的血液相容性,研究了其溶血、总抗氧化能力(T-AOC)活性和一氧化氮(NO)含量。结果表明,CTS-PLGA910 的溶血率低于 5%。对 HUVEC 细胞处理 48 和 72 h 后,CTS-PLGA910 组的一氧化氮含量与对照组相比无明显变化,而中剂量组和高剂量组的 T-AOC 活性和抗氧化能力则明显提高。综上所述,CTS-PLGA910 的血液相容性和细胞相容性都得到了明显改善,为今后缝合线的临床应用提供了依据。
{"title":"In vitro cytocompatibility of triclosan coated Polyglactin910 sutures","authors":"Hongrui Ji,&nbsp;Zhiruo Zhang,&nbsp;Chao Wang,&nbsp;Xuewen Li,&nbsp;Guiling Zhang,&nbsp;Danqing Liu","doi":"10.1007/s10856-024-06796-w","DOIUrl":"10.1007/s10856-024-06796-w","url":null,"abstract":"<div><p>Bioabsorbable sutures can improve the medical functions of existing non-absorbable sutures, and may produce new medical effects, and are expected to become a new generation of medical degradable materials. In this study, the cytocompatibility of triclosan coated polyglactin910 sutures (CTS-PLGA910) was analyzed and different concentrations of sutures were prepared. The effects of sutures on the cytotoxicity and cell proliferation of HUVEC were studied by CCK-8 assay. The hemolysis, total antioxidant capacity (T-AOC) activity and nitric oxide (NO) content were investigated to improve the blood compatibility of sutures. The results showed that the hemolysis rate of CTS-PLGA910 was less than 5%. After treatment on HUVEC cells for 48 and 72 h, there was no significant change in NO content in CTS-PLGA910 groups compared with the control group, while T-AOC activity and antioxidant capacity were significantly increased in medium and high dose groups. In summary, the blood compatibility and cell compatibility were significantly improved, which provided a basis for the clinical application of sutures in the future.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titanium-doped phosphate glasses containing zinc and strontium applied in bone regeneration 将含锌和锶的掺钛磷酸盐玻璃应用于骨再生。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-20 DOI: 10.1007/s10856-024-06804-z
Tianyi Tang, Rachel Wandless, Zalike Keskin-Erdogan, Nandin-Erdene Mandakhbayar, Jeong-Hui Park, Hae-Won Kim, Morgana Abramchuk, Felipe P. Daltoe, Jonathan C. Knowles

Phosphate bioactive glass has been studied for its advanced biodegradability and active ion release capability. Our previous research found that phosphate glass containing (P2O5)–(Na2O)–(TiO2)–(CaO)–(SrO) or (ZnO) showed good biocompatibility with MG63 and hMSCs. This study further investigated the application of 5 mol% zinc oxide or 17.5 mol% strontium oxide in titanium-doped phosphate glass for bone tissue engineering. Ti-Ca-Na-Phosphate glasses, incorporating 5% zinc oxide or 17.5% strontium oxide, were made with melting quenching technology. The pre-osteoblast cell line MC3T3-E1 was cultured for indirect contact tests with graded diluted phosphate glass extractions and for direct contact tests by seeding cells on glass disks. The cell viability and cytotoxicity were analysed in vitro over 7 days. In vivo studies utilized the tibial defect model with or without glass implants. The micro-CT analysis was performed after surgery and then at 2, 6, and 12 weeks. Extractions from both zinc and strontium phosphate glasses showed no negative impact on MC3T3-E1 cell viability. Notably, non-diluted Zn-Ti-Ca-Na-phosphate glass extracts significantly increased cell viability by 116.8% (P < 0.01). Furthermore, MC3T3-E1 cells cultured with phosphate glass disks exhibited no increase in LDH release compared with the control group. Micro-CT images revealed that, over 12 weeks, both zinc-doped and strontium-doped phosphate glasses demonstrated good bone incorporation and longevity compared to the no-implant control. Titanium-doped phosphate glasses containing 5 mol% zinc oxide, or 17.5 mol% strontium oxide have promising application potential for bone regeneration research.

Graphical Abstract

磷酸盐生物活性玻璃因其先进的生物降解性和活性离子释放能力而备受研究。我们之前的研究发现,含有(P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO)或(ZnO)的磷酸盐玻璃与 MG63 和 hMSCs 具有良好的生物相容性。本研究进一步探讨了在掺钛磷酸盐玻璃中添加 5 mol% 氧化锌或 17.5 mol% 氧化锶在骨组织工程中的应用。采用熔融淬火技术制备了含有 5%氧化锌或 17.5%氧化锶的钛-钙-钠-磷酸盐玻璃。对前成骨细胞系 MC3T3-E1 进行培养,用分级稀释的磷酸盐玻璃提取物进行间接接触试验,并将细胞播种到玻璃片上进行直接接触试验。在体外进行了为期 7 天的细胞存活率和细胞毒性分析。体内研究采用了带或不带玻璃植入物的胫骨缺损模型。在手术后以及 2、6 和 12 周时进行显微 CT 分析。锌和磷酸锶玻璃的提取物对 MC3T3-E1 细胞的存活率没有负面影响。值得注意的是,未稀释的锌-钛-钙-锶-磷酸盐玻璃萃取物显著提高了细胞存活率 116.8%(P
{"title":"Titanium-doped phosphate glasses containing zinc and strontium applied in bone regeneration","authors":"Tianyi Tang,&nbsp;Rachel Wandless,&nbsp;Zalike Keskin-Erdogan,&nbsp;Nandin-Erdene Mandakhbayar,&nbsp;Jeong-Hui Park,&nbsp;Hae-Won Kim,&nbsp;Morgana Abramchuk,&nbsp;Felipe P. Daltoe,&nbsp;Jonathan C. Knowles","doi":"10.1007/s10856-024-06804-z","DOIUrl":"10.1007/s10856-024-06804-z","url":null,"abstract":"<div><p>Phosphate bioactive glass has been studied for its advanced biodegradability and active ion release capability. Our previous research found that phosphate glass containing (P<sub>2</sub>O<sub>5</sub>)–(Na<sub>2</sub>O)–(TiO<sub>2</sub>)–(CaO)–(SrO) or (ZnO) showed good biocompatibility with MG63 and hMSCs. This study further investigated the application of 5 mol% zinc oxide or 17.5 mol% strontium oxide in titanium-doped phosphate glass for bone tissue engineering. Ti-Ca-Na-Phosphate glasses, incorporating 5% zinc oxide or 17.5% strontium oxide, were made with melting quenching technology. The pre-osteoblast cell line MC3T3-E1 was cultured for indirect contact tests with graded diluted phosphate glass extractions and for direct contact tests by seeding cells on glass disks. The cell viability and cytotoxicity were analysed in vitro over 7 days. In vivo studies utilized the tibial defect model with or without glass implants. The micro-CT analysis was performed after surgery and then at 2, 6, and 12 weeks. Extractions from both zinc and strontium phosphate glasses showed no negative impact on MC3T3-E1 cell viability. Notably, non-diluted Zn-Ti-Ca-Na-phosphate glass extracts significantly increased cell viability by 116.8% (<i>P</i> &lt; 0.01). Furthermore, MC3T3-E1 cells cultured with phosphate glass disks exhibited no increase in LDH release compared with the control group. Micro-CT images revealed that, over 12 weeks, both zinc-doped and strontium-doped phosphate glasses demonstrated good bone incorporation and longevity compared to the no-implant control. Titanium-doped phosphate glasses containing 5 mol% zinc oxide, or 17.5 mol% strontium oxide have promising application potential for bone regeneration research.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theranostic nanoparticles ZIF-8@ICG for pH/NIR-responsive drug-release and NIR-guided chemo-phototherapy against non-small-cell lung cancer 用于pH/近红外响应药物释放和近红外引导的非小细胞肺癌化疗的治疗纳米粒子ZIF-8@ICG。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-19 DOI: 10.1007/s10856-024-06802-1
Kaiming Lu, Xiongfeng Pan, Jinyu Zheng, Dezhi Cheng, Liangcheng Zheng, Xinbo Zhang

This study leverages nanotechnology by encapsulating indocyanine green (ICG) and paclitaxel (Tax) using zeolitic imidazolate frameworks-8 (ZIF-8) as a scaffold. This study aims to investigate the chemo-photothermal therapeutic potential of ZIF-8@ICG@Tax nanoparticles (NPs) in the treatment of non-small cell lung cancer (NSCLC). An “all-in-one” theranostic ZIF-8@ICG@Tax NPs was conducted by self-assembly based on electrostatic interaction. First, the photothermal effect, stability, pH responsiveness, drug release, and blood compatibility of ZIF-8@ICG@Tax were evaluated through in vitro testing. Furthermore, the hepatic and renal toxicity of ZIF-8@ICG@Tax were assessed through in vivo testing. Additionally, the anticancer effects of these nanoparticles were investigated both in vitro and in vivo. Uniform and stable chemo-photothermal ZIF-8@ICG@Tax NPs had been successfully synthesized and had outstanding drug releasing capacities. Moreover, ZIF-8@ICG@Tax NPs showed remarkable responsiveness dependent both on pH in the tumor microenvironment and NIR irradiation, allowing for targeted drug delivery and controlled drug release. NIR irradiation can enhance the tumor cell response to ZIF-8@ICG@Tax uptake, thereby promoting the anti-tumor growth in vitro and in vivo. ZIF-8@ICG@Tax and NIR irradiation have demonstrated remarkable synergistic anti-tumor growth properties compared to their individual components. This novel theranostic chemo-photothermal NPs hold great potential as a viable treatment option for NSCLC.

Graphical Abstract

A novel nano-theranostic platform was developed by encapsulating indocyanine green and paclitaxel within a zeolitie imidazolate framework-8 (ZIF-8). This chemo-phototherapic agent demonstrated accurate tumor targeting and effective suppression effects on both tumor growth in non-small cell lung cancer.

本研究利用纳米技术,以沸石咪唑啉框架-8(ZIF-8)为支架,封装吲哚菁绿(ICG)和紫杉醇(Tax)。本研究旨在探讨 ZIF-8@ICG@Tax 纳米粒子(NPs)在治疗非小细胞肺癌(NSCLC)方面的化学光热治疗潜力。基于静电相互作用的自组装技术实现了 "一体化 "治疗ZIF-8@ICG@Tax NPs。首先,通过体外测试评估了ZIF-8@ICG@Tax的光热效应、稳定性、pH响应性、药物释放和血液相容性。此外,还通过体内测试评估了 ZIF-8@ICG@Tax 的肝脏和肾脏毒性。此外,还研究了这些纳米颗粒在体外和体内的抗癌效果。结果表明,ZIF-8@ICG@Tax NPs具有均匀、稳定的化学光热作用,并具有出色的药物释放能力。此外,ZIF-8@ICG@Tax NPs 对肿瘤微环境中的 pH 值和近红外照射均表现出显著的响应性,从而实现了靶向给药和药物控释。近红外照射可增强肿瘤细胞对 ZIF-8@ICG@Tax 吸收的反应,从而促进体外和体内的抗肿瘤生长。与单个成分相比,ZIF-8@ICG@Tax 和近红外照射具有显著的协同抗肿瘤生长特性。这种新型治疗化疗光热NPs作为一种治疗NSCLC的可行方法,具有巨大的潜力。
{"title":"Theranostic nanoparticles ZIF-8@ICG for pH/NIR-responsive drug-release and NIR-guided chemo-phototherapy against non-small-cell lung cancer","authors":"Kaiming Lu,&nbsp;Xiongfeng Pan,&nbsp;Jinyu Zheng,&nbsp;Dezhi Cheng,&nbsp;Liangcheng Zheng,&nbsp;Xinbo Zhang","doi":"10.1007/s10856-024-06802-1","DOIUrl":"10.1007/s10856-024-06802-1","url":null,"abstract":"<div><p>This study leverages nanotechnology by encapsulating indocyanine green (ICG) and paclitaxel (Tax) using zeolitic imidazolate frameworks-8 (ZIF-8) as a scaffold. This study aims to investigate the chemo-photothermal therapeutic potential of ZIF-8@ICG@Tax nanoparticles (NPs) in the treatment of non-small cell lung cancer (NSCLC). An “all-in-one” theranostic ZIF-8@ICG@Tax NPs was conducted by self-assembly based on electrostatic interaction. First, the photothermal effect, stability, pH responsiveness, drug release, and blood compatibility of ZIF-8@ICG@Tax were evaluated through in vitro testing. Furthermore, the hepatic and renal toxicity of ZIF-8@ICG@Tax were assessed through in vivo testing. Additionally, the anticancer effects of these nanoparticles were investigated both in vitro and in vivo. Uniform and stable chemo-photothermal ZIF-8@ICG@Tax NPs had been successfully synthesized and had outstanding drug releasing capacities. Moreover, ZIF-8@ICG@Tax NPs showed remarkable responsiveness dependent both on pH in the tumor microenvironment and NIR irradiation, allowing for targeted drug delivery and controlled drug release. NIR irradiation can enhance the tumor cell response to ZIF-8@ICG@Tax uptake, thereby promoting the anti-tumor growth in vitro and in vivo. ZIF-8@ICG@Tax and NIR irradiation have demonstrated remarkable synergistic anti-tumor growth properties compared to their individual components. This novel theranostic chemo-photothermal NPs hold great potential as a viable treatment option for NSCLC.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>A novel nano-theranostic platform was developed by encapsulating indocyanine green and paclitaxel within a zeolitie imidazolate framework-8 (ZIF-8). This chemo-phototherapic agent demonstrated accurate tumor targeting and effective suppression effects on both tumor growth in non-small cell lung cancer.</p></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing alkaline hydrothermal treatment for biomimetic smart metallic orthopedic and dental implants 优化生物仿生智能金属骨科和牙科植入物的碱性水热处理。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-19 DOI: 10.1007/s10856-024-06794-y
Hanieh Hadady, Arefin Alam, Indu Khurana, Isha Mutreja, Dhiraj Kumar, Mamilla Ravi Shankar, Rupak Dua

Orthopedic and dental implant failure continues to be a significant concern due to localized bacterial infections. Previous studies have attempted to improve implant surfaces by modifying their texture and roughness or coating them with antibiotics to enhance antibacterial properties for implant longevity. However, these approaches have demonstrated limited effectiveness. In this study, we attempted to engineer the titanium (Ti) alloy surface biomimetically at the nanometer scale, inspired by the cicada wing nanostructure using alkaline hydrothermal treatment (AHT) to simultaneously confer antibacterial properties and support the adhesion and proliferation of mammalian cells. The two modified Ti surfaces were developed using a 4 h and 8 h AHT process in 1 N NaOH at 230 °C, followed by a 2-hour post-calcination at 600 °C. We found that the control plates showed a relatively smooth surface, while the treatment groups (4 h & 8 h AHT) displayed nanoflower structures containing randomly distributed nano-spikes. The results demonstrated a statistically significant decrease in the contact angle of the treatment groups, which increased wettability characteristics. The 8 h AHT group exhibited the highest wettability and significant increase in roughness 0.72 ± 0.08 µm (P < 0.05), leading to more osteoblast cell attachment, reduced cytotoxicity effects, and enhanced relative survivability. The alkaline phosphatase activity measured in all different groups indicated that the 8 h AHT group exhibited the highest activity, suggesting that the surface roughness and wettability of the treatment groups may have facilitated cell adhesion and attachment and subsequently increased secretion of extracellular matrix. Overall, the findings indicate that biomimetic nanotextured surfaces created by the AHT process have the potential to be translated as implant coatings to enhance bone regeneration and implant integration.

Graphical Abstract

由于局部细菌感染,骨科和牙科植入物的失败仍然是一个令人严重关切的问题。以往的研究试图通过改变种植体表面的质地和粗糙度或在表面涂抹抗生素来改善种植体表面,从而增强抗菌性能,延长种植体的使用寿命。然而,这些方法的效果有限。在本研究中,我们受蝉翼纳米结构的启发,尝试使用碱性水热处理(AHT)技术在纳米尺度上对钛(Ti)合金表面进行生物模拟设计,以同时赋予其抗菌特性并支持哺乳动物细胞的粘附和增殖。在 230 °C 的 1 N NaOH 溶液中分别进行了 4 小时和 8 小时的碱性水热处理,然后在 600 °C 下进行了 2 小时的后煅烧,从而形成了两种改性钛表面。我们发现,对照组的钛板表面相对光滑,而处理组(4 小时和 8 小时 AHT)则显示出含有随机分布的纳米尖峰的纳米花结构。结果表明,处理组的接触角在统计学上显著减小,从而提高了润湿特性。8 小时 AHT 组的润湿性最高,粗糙度 0.72 ± 0.08 µm 显著增加(P<0.05)。
{"title":"Optimizing alkaline hydrothermal treatment for biomimetic smart metallic orthopedic and dental implants","authors":"Hanieh Hadady,&nbsp;Arefin Alam,&nbsp;Indu Khurana,&nbsp;Isha Mutreja,&nbsp;Dhiraj Kumar,&nbsp;Mamilla Ravi Shankar,&nbsp;Rupak Dua","doi":"10.1007/s10856-024-06794-y","DOIUrl":"10.1007/s10856-024-06794-y","url":null,"abstract":"<div><p>Orthopedic and dental implant failure continues to be a significant concern due to localized bacterial infections. Previous studies have attempted to improve implant surfaces by modifying their texture and roughness or coating them with antibiotics to enhance antibacterial properties for implant longevity. However, these approaches have demonstrated limited effectiveness. In this study, we attempted to engineer the titanium (Ti) alloy surface biomimetically at the nanometer scale, inspired by the cicada wing nanostructure using alkaline hydrothermal treatment (AHT) to simultaneously confer antibacterial properties and support the adhesion and proliferation of mammalian cells. The two modified Ti surfaces were developed using a 4 h and 8 h AHT process in 1 N NaOH at 230 °C, followed by a 2-hour post-calcination at 600 °C. We found that the control plates showed a relatively smooth surface, while the treatment groups (4 h &amp; 8 h AHT) displayed nanoflower structures containing randomly distributed nano-spikes. The results demonstrated a statistically significant decrease in the contact angle of the treatment groups, which increased wettability characteristics. The 8 h AHT group exhibited the highest wettability and significant increase in roughness 0.72 ± 0.08 µm (<i>P</i> &lt; 0.05), leading to more osteoblast cell attachment, reduced cytotoxicity effects, and enhanced relative survivability. The alkaline phosphatase activity measured in all different groups indicated that the 8 h AHT group exhibited the highest activity, suggesting that the surface roughness and wettability of the treatment groups may have facilitated cell adhesion and attachment and subsequently increased secretion of extracellular matrix. Overall, the findings indicate that biomimetic nanotextured surfaces created by the AHT process have the potential to be translated as implant coatings to enhance bone regeneration and implant integration.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating layer-by-layer chitosan-dextran sulfate-coated mesoporous silica as a pH-sensitive drug delivery system 将逐层壳聚糖-硫酸葡聚糖包裹的介孔二氧化硅作为 pH 值敏感的给药系统的研究。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-17 DOI: 10.1007/s10856-024-06797-9
Mohammad Reza Hooshyar, Shahram Raygan, Rouhollah Mehdinavaz aghdam

Mesoporous silica nanoparticles (MSNPs) coated by chitosan (CS) were shown to be a proper candidate as a carrier for drug delivery purposes. However, choosing the suitable drug-containing complexes to be applied on MSNPs-CS is of much greater importance to evaluate the possible candidate for an efficient combination of cell viability, drug release kinetics, and atherosclerosis prevention. In this regard, this study concentrates on the synthesis and assessment of coated MSNPs-CS designed for drug delivery purposes. The MSNPs are coated with polyelectrolyte complexes (PEC) composed of CS and dextran sulfate (MSNPs-CS-DX), serving as a versatile drug carrier with favorable biological characteristics. CS-DX is applied to MSNPs without requiring complex or multi-step synthesis procedures. Rosuvastatin, a cholesterol-lowering medication, is chosen for its therapeutic relevance. Additionally, CS-DX is found to relatively impede the uptake of low-density lipoproteins (LDLs) by macrophages, enhancing their potential therapeutic utility. FTIR pattern, FESEM, and TEM images prove MSNPs-CS-DX formation. DLS measurement demonstrates the average particle size of 110 nm for MSNPs, with the combined thickness of CS and DX layers ranging from 10 to 15 nm. BET test is carried out to evaluate the pore size and porosity of structure, showing outstanding results that cause an entrapment efficiency of 57% for MSNPs-CS-DX. Furthermore, the findings demonstrate the pH sensitivity of MSNPs-CS-DX on drug release kinetics. Notably, the CS-DX layer exhibits a significant enhancement in cell viability of human umbilical vein endothelial cells (HUVEC) by approximately 24% within a 24 h timeframe compared to MSNPs lacking CS-DX.

Graphical Abstract

壳聚糖(CS)包覆的介孔二氧化硅纳米颗粒(MSNPs)已被证明是一种合适的药物输送载体。然而,选择合适的含药复合物应用到 MSNPs-CS 上,对于评估细胞存活率、药物释放动力学和动脉粥样硬化预防的有效结合的可能候选物来说,具有更重要的意义。在这方面,本研究集中于合成和评估为给药目的而设计的涂覆 MSNPs-CS。MSNP 涂覆了由 CS 和硫酸葡聚糖组成的聚电解质复合物(PEC)(MSNPs-CS-DX),可作为具有良好生物特性的多功能药物载体。将 CS-DX 应用于 MSNPs 无需复杂或多步骤的合成过程。选择降低胆固醇的药物瑞舒伐他汀是因为它具有治疗意义。此外,CS-DX 还能相对抑制巨噬细胞对低密度脂蛋白(LDL)的吸收,从而提高其潜在的治疗效用。傅立叶变换红外光谱图、FESEM 和 TEM 图像证明了 MSNPs-CS-DX 的形成。DLS 测量表明 MSNPs 的平均粒径为 110 nm,CS 层和 DX 层的总厚度为 10-15 nm。通过 BET 测试评估了结构的孔径和孔隙率,结果显示 MSNPs-CS-DX 的截留效率高达 57%。此外,研究结果还证明了 MSNPs-CS-DX 的 pH 值对药物释放动力学的敏感性。值得注意的是,与缺乏 CS-DX 的 MSNPs 相比,CS-DX 层在 24 小时内显著提高了人脐静脉内皮细胞(HUVEC)的细胞活力,提高幅度约为 24%。
{"title":"Investigating layer-by-layer chitosan-dextran sulfate-coated mesoporous silica as a pH-sensitive drug delivery system","authors":"Mohammad Reza Hooshyar,&nbsp;Shahram Raygan,&nbsp;Rouhollah Mehdinavaz aghdam","doi":"10.1007/s10856-024-06797-9","DOIUrl":"10.1007/s10856-024-06797-9","url":null,"abstract":"<div><p>Mesoporous silica nanoparticles (MSNPs) coated by chitosan (CS) were shown to be a proper candidate as a carrier for drug delivery purposes. However, choosing the suitable drug-containing complexes to be applied on MSNPs-CS is of much greater importance to evaluate the possible candidate for an efficient combination of cell viability, drug release kinetics, and atherosclerosis prevention. In this regard, this study concentrates on the synthesis and assessment of coated MSNPs-CS designed for drug delivery purposes. The MSNPs are coated with polyelectrolyte complexes (PEC) composed of CS and dextran sulfate (MSNPs-CS-DX), serving as a versatile drug carrier with favorable biological characteristics. CS-DX is applied to MSNPs without requiring complex or multi-step synthesis procedures. Rosuvastatin, a cholesterol-lowering medication, is chosen for its therapeutic relevance. Additionally, CS-DX is found to relatively impede the uptake of low-density lipoproteins (LDLs) by macrophages, enhancing their potential therapeutic utility. FTIR pattern, FESEM, and TEM images prove MSNPs-CS-DX formation. DLS measurement demonstrates the average particle size of 110 nm for MSNPs, with the combined thickness of CS and DX layers ranging from 10 to 15 nm. BET test is carried out to evaluate the pore size and porosity of structure, showing outstanding results that cause an entrapment efficiency of 57% for MSNPs-CS-DX. Furthermore, the findings demonstrate the pH sensitivity of MSNPs-CS-DX on drug release kinetics. Notably, the CS-DX layer exhibits a significant enhancement in cell viability of human umbilical vein endothelial cells (HUVEC) by approximately 24% within a 24 h timeframe compared to MSNPs lacking CS-DX.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11182833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Materials Science: Materials in Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1