首页 > 最新文献

Journal of Materials Science: Materials in Medicine最新文献

英文 中文
Inhibitory impact of a mesoporous silica nanoparticle-based drug delivery system on Porphyromonas gingivalis-induced bone resorption 基于介孔二氧化硅纳米颗粒的给药系统对牙龈卟啉单胞菌诱导的骨吸收的抑制作用
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-30 DOI: 10.1007/s10856-024-06827-6
Mengya Li, Jian Sun, Dong Zhao, Wen Zhang, Qingan Xu

Controlling and reducing plaque formation plays a pivotal role in preventing and treating periodontal disease, often utilizing antibacterial drugs to enhance therapeutic outcomes. Mesoporous silica nanoparticles (MSN), an FDA-approved inorganic nanomaterial, possess robust physical and chemical properties, such as adjustable pore size and pore capacity, easy surface modification, and high biosafety. Numerous studies have exploited MSN to regulate drug release and facilitate targeted delivery. This study aimed to synthesize an MSN-tetracycline (MSN-TC) complex and investigate its inhibitory potential on Porphyromonas gingivalis (P. gingivalis)-induced bone resorption. The antibacterial efficacy of MSN-TC was evaluated through bacterial culture experiments. A P. gingivalis-induced bone resorption model was constructed by subcutaneously injecting P. gingivalis around the cranial bone of rats. Micro-computed tomography was employed to assess the inhibitory impact of MSN and MSN-TC on bone resorption. Furthermore, the influence of MSN and MSN-TC on osteoclast differentiation was examined in vitro. The MSN exhibited optimal pore size and particle dimensions for effective loading and gradual release of TC. MSN-TC demonstrated significant bacteriostatic activity against P. gingivalis. MSN-TC-treated rats showed significantly reduced cranial bone tissue destruction compared to MSN or TC-treated rats. Additionally, both MSN and MSN-TC exhibited inhibitory effects on the receptor activator of nuclear factor kappa-Β ligand-mediated osteoclast differentiation. The MSN-TC complex synthesized in this study demonstrated dual efficacy by exerting antibacterial effects on P. gingivalis and by resisting osteoclast differentiation, thereby mitigating bone resorption induced by P. gingivalis.

Graphical Abstract

控制和减少牙菌斑的形成在预防和治疗牙周病方面起着至关重要的作用,通常利用抗菌药物来提高治疗效果。介孔二氧化硅纳米粒子(MSN)是一种经美国食品及药物管理局批准的无机纳米材料,具有强大的物理和化学特性,如孔径和孔容量可调、表面易于改性以及生物安全性高。许多研究利用 MSN 来调节药物释放和促进靶向给药。本研究旨在合成一种 MSN-四环素(MSN-TC)复合物,并研究其对牙龈卟啉菌(P. gingivalis)诱导的骨吸收的抑制潜力。通过细菌培养实验评估了 MSN-TC 的抗菌功效。通过在大鼠颅骨周围皮下注射牙龈弧菌,建立了牙龈弧菌诱导的骨吸收模型。采用显微计算机断层扫描评估了 MSN 和 MSN-TC 对骨吸收的抑制作用。此外,还在体外研究了 MSN 和 MSN-TC 对破骨细胞分化的影响。MSN 表现出最佳的孔径和颗粒尺寸,可有效装载并逐渐释放 TC。MSN-TC 对牙龈脓疱病具有显著的抑菌活性。与 MSN 或 TC 处理的大鼠相比,MSN-TC 处理的大鼠的颅骨组织破坏明显减少。此外,MSN 和 MSN-TC 对核因子卡巴Β配体受体激活剂介导的破骨细胞分化均有抑制作用。本研究中合成的 MSN-TC 复合物具有双重功效,既能对牙龈脓疱疮产生抗菌作用,又能抑制破骨细胞分化,从而减轻牙龈脓疱疮引起的骨吸收。
{"title":"Inhibitory impact of a mesoporous silica nanoparticle-based drug delivery system on Porphyromonas gingivalis-induced bone resorption","authors":"Mengya Li,&nbsp;Jian Sun,&nbsp;Dong Zhao,&nbsp;Wen Zhang,&nbsp;Qingan Xu","doi":"10.1007/s10856-024-06827-6","DOIUrl":"10.1007/s10856-024-06827-6","url":null,"abstract":"<div><p>Controlling and reducing plaque formation plays a pivotal role in preventing and treating periodontal disease, often utilizing antibacterial drugs to enhance therapeutic outcomes. Mesoporous silica nanoparticles (MSN), an FDA-approved inorganic nanomaterial, possess robust physical and chemical properties, such as adjustable pore size and pore capacity, easy surface modification, and high biosafety. Numerous studies have exploited MSN to regulate drug release and facilitate targeted delivery. This study aimed to synthesize an MSN-tetracycline (MSN-TC) complex and investigate its inhibitory potential on <i>Porphyromonas gingivalis</i> (<i>P. gingivalis</i>)-induced bone resorption. The antibacterial efficacy of MSN-TC was evaluated through bacterial culture experiments. A <i>P. gingivalis</i>-induced bone resorption model was constructed by subcutaneously injecting <i>P. gingivalis</i> around the cranial bone of rats. Micro-computed tomography was employed to assess the inhibitory impact of MSN and MSN-TC on bone resorption. Furthermore, the influence of MSN and MSN-TC on osteoclast differentiation was examined in vitro. The MSN exhibited optimal pore size and particle dimensions for effective loading and gradual release of TC. MSN-TC demonstrated significant bacteriostatic activity against <i>P. gingivalis</i>. MSN-TC-treated rats showed significantly reduced cranial bone tissue destruction compared to MSN or TC-treated rats. Additionally, both MSN and MSN-TC exhibited inhibitory effects on the receptor activator of nuclear factor kappa-Β ligand-mediated osteoclast differentiation. The MSN-TC complex synthesized in this study demonstrated dual efficacy by exerting antibacterial effects on <i>P. gingivalis</i> and by resisting osteoclast differentiation, thereby mitigating bone resorption induced by <i>P. gingivalis</i>.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442573/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective mycobacterial capture with ultraviolet-polymerized poly-dimethyldiallyl chloride functionalized surfaces 利用紫外线聚合的聚二甲基二烯丙基氯功能化表面选择性捕获分枝杆菌。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-30 DOI: 10.1007/s10856-024-06829-4
Xuesong Jiang, Bonolo S. P. Mathekga, Digvijay Singh, Devin Coon, Anjana Sinha, Derek Armstrong, Soumyadipta Acharya, Hai-Quan Mao, Yukari C. Manabe

Tuberculosis (TB) is the top cause of death from a single infectious pathogen after COVID-19. Despite molecular diagnostic advances, two-thirds of the 10 million annual TB cases are still diagnosed using direct smear microscopy which has ~50% sensitivity. To increase the analytical performance of smear microscopy, we developed and characterized a novel polymer (Polydiallyldimethylammonium chloride [PDADMAC]) engraftment on inexpensive polystyrene (PS) specifically functionalized for mycobacterial capture. Engraftment is achieved via UV photopolymerization of DADMAC monomer on plasma-activated PS. The platform was tested on sputum from presumptive TB cases in Kampala, Uganda (n = 50), with an increased overall sensitivity of 81.8% (27/33) vs. fluorescent smear microscopy 57% (19/33) compared to a molecular (Cepheid GeneXpert MTB/RIF) gold standard. Frugal smear diagnostic innovation that is rapid and does not require dedicated instrumentation may offer an important solution to bridge the TB diagnostic gap.

Graphical Abstract

结核病(TB)是仅次于 COVID-19 的单一传染性病原体致死率最高的病因。尽管分子诊断技术不断进步,但每年 1000 万结核病例中仍有三分之二是通过灵敏度约为 50% 的直接涂片显微镜诊断出来的。为了提高涂片显微镜的分析性能,我们开发了一种新型聚合物(聚二烯丙基二甲基氯化铵 [PDADMAC]),并对其进行了表征。接枝是通过 DADMAC 单体在等离子活化 PS 上的紫外光聚合作用实现的。该平台在乌干达坎帕拉的推定肺结核病例(n = 50)的痰液中进行了测试,与分子(Cepheid GeneXpert MTB/RIF)黄金标准相比,总体灵敏度提高了 81.8%(27/33),而荧光涂片显微镜检查灵敏度为 57%(19/33)。快速、无需专用仪器的低成本涂片诊断创新可为弥合结核病诊断差距提供重要的解决方案。
{"title":"Selective mycobacterial capture with ultraviolet-polymerized poly-dimethyldiallyl chloride functionalized surfaces","authors":"Xuesong Jiang,&nbsp;Bonolo S. P. Mathekga,&nbsp;Digvijay Singh,&nbsp;Devin Coon,&nbsp;Anjana Sinha,&nbsp;Derek Armstrong,&nbsp;Soumyadipta Acharya,&nbsp;Hai-Quan Mao,&nbsp;Yukari C. Manabe","doi":"10.1007/s10856-024-06829-4","DOIUrl":"10.1007/s10856-024-06829-4","url":null,"abstract":"<div><p>Tuberculosis (TB) is the top cause of death from a single infectious pathogen after COVID-19. Despite molecular diagnostic advances, two-thirds of the 10 million annual TB cases are still diagnosed using direct smear microscopy which has ~50% sensitivity. To increase the analytical performance of smear microscopy, we developed and characterized a novel polymer (Polydiallyldimethylammonium chloride [PDADMAC]) engraftment on inexpensive polystyrene (PS) specifically functionalized for mycobacterial capture. Engraftment is achieved via UV photopolymerization of DADMAC monomer on plasma-activated PS. The platform was tested on sputum from presumptive TB cases in Kampala, Uganda (<i>n</i> = 50), with an increased overall sensitivity of 81.8% (27/33) vs. fluorescent smear microscopy 57% (19/33) compared to a molecular (Cepheid GeneXpert MTB/RIF) gold standard. Frugal smear diagnostic innovation that is rapid and does not require dedicated instrumentation may offer an important solution to bridge the TB diagnostic gap.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printed polycaprolactone/gelatin/ordered mesoporous calcium magnesium silicate nanocomposite scaffold for bone tissue regeneration 用于骨组织再生的三维打印聚己内酯/明胶/有序介孔硅酸钙镁纳米复合材料支架。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-30 DOI: 10.1007/s10856-024-06828-5
Zahra Mirzavandi, Seyed Ali Poursamar, Farshad Amiri, Ashkan Bigham, Mohammad Rafienia

Tissue engineering scaffolds are three-dimensional structures that provide an appropriate environment for cellular attachment, proliferation, and differentiation. Depending on their specific purpose, these scaffolds must possess distinct features, including appropriate mechanical properties, porosity, desired degradation rate, and cell compatibility. This investigation aimed to fabricate a new nanocomposite scaffold using a 3D printing technique composed of poly(ε-caprolactone) (PCL)/Gelatin (GEL)/ordered mesoporous calcium-magnesium silicate (om-CMS) particles. Different weight ratios of om-CMS were added and optimized, and a series of scaffolds were constructed for comparison purposes, including PCL 50%/Gel 50%, PCL 50%/Gel 45%/om-CMS%5, and PCL 50%/Gel 40%/om-CMS%10. The optimized weight ratio of om-CMS was 10% without leaving behind negative effects on the filaments’ structure. The scaffolds’ physical and chemical properties were assessed using various techniques, and their degradation rate, bioactivity potential, cell viability, attachment, and ALP activity were evaluated in vitro. The results demonstrated that the PCL 50%/Gel 40%/om-CMS10% scaffold had promising potential for further studies in bone tissue regeneration.

Graphical Abstract

组织工程支架是一种三维结构,可为细胞附着、增殖和分化提供适当的环境。根据其特定用途,这些支架必须具备不同的特征,包括适当的机械性能、孔隙率、所需的降解率和细胞兼容性。本研究旨在利用三维打印技术制造一种新型纳米复合材料支架,由聚ε-己内酯(PCL)/明胶(GEL)/有序介孔硅酸钙镁(om-CMS)颗粒组成。研究人员添加并优化了不同重量比的om-CMS,并构建了一系列支架进行比较,包括PCL 50%/凝胶50%、PCL 50%/凝胶45%/om-CMS%5和PCL 50%/凝胶40%/om-CMS%10。优化的 om-CMS 重量比为 10%,不会对丝状物的结构产生负面影响。使用各种技术评估了支架的物理和化学特性,并在体外评估了其降解率、生物活性潜能、细胞活力、附着力和 ALP 活性。结果表明,PCL 50%/凝胶 40%/om-CMS10%支架在骨组织再生方面具有进一步研究的潜力。
{"title":"3D printed polycaprolactone/gelatin/ordered mesoporous calcium magnesium silicate nanocomposite scaffold for bone tissue regeneration","authors":"Zahra Mirzavandi,&nbsp;Seyed Ali Poursamar,&nbsp;Farshad Amiri,&nbsp;Ashkan Bigham,&nbsp;Mohammad Rafienia","doi":"10.1007/s10856-024-06828-5","DOIUrl":"10.1007/s10856-024-06828-5","url":null,"abstract":"<div><p>Tissue engineering scaffolds are three-dimensional structures that provide an appropriate environment for cellular attachment, proliferation, and differentiation. Depending on their specific purpose, these scaffolds must possess distinct features, including appropriate mechanical properties, porosity, desired degradation rate, and cell compatibility. This investigation aimed to fabricate a new nanocomposite scaffold using a 3D printing technique composed of poly(ε-caprolactone) (PCL)/Gelatin (GEL)/ordered mesoporous calcium-magnesium silicate (om-CMS) particles. Different weight ratios of om-CMS were added and optimized, and a series of scaffolds were constructed for comparison purposes, including PCL 50%/Gel 50%, PCL 50%/Gel 45%/om-CMS%5, and PCL 50%/Gel 40%/om-CMS%10. The optimized weight ratio of om-CMS was 10% without leaving behind negative effects on the filaments’ structure. The scaffolds’ physical and chemical properties were assessed using various techniques, and their degradation rate, bioactivity potential, cell viability, attachment, and ALP activity were evaluated in vitro. The results demonstrated that the PCL 50%/Gel 40%/om-CMS10% scaffold had promising potential for further studies in bone tissue regeneration.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustained co-release of ciprofloxacin and dexamethasone in rabbit maxillary sinus using polyvinyl alcohol-based hydrogel microparticle 利用聚乙烯醇基水凝胶微粒在兔上颌窦中持续释放环丙沙星和地塞米松
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-30 DOI: 10.1007/s10856-024-06832-9
Maryam Jalessi, Yasaman Tavakoli Moghaddam, Mehdi Khanmohammadi, Sajad Hassanzadeh, Zahra Azad, Mohammad Farhadi

Topical delivery to paranasal sinuses through sustained-release stents is one of the new horizons in treating chronic rhinosinusitis (CRS). This study aims to introduce and evaluate sustained co-release of encapsulated ciprofloxacin (CIP) and dexamethasone (DEX) in polyvinyl alcohol-based carriers within the maxillary sinus of rabbit animals. DEX and CIP were loaded in a tyramine-substituted polyvinyl alcohol microparticle (PVATyr MP). The mechanical stability, degradability, and sustained-release patterns of both drugs as well as cellular cytocompatibility were assessed in vitro. The PVATyr MPs were then injected into the maxillary sinus of rabbits and they were monitored weekly for 21 days. Nasal endoscopy, MRI imaging, and tissue microscopy were used to follow the changes and compared them with the control condition. Also, the concentrations of drugs were evaluated in the maxillary sinus and blood samples over the study period. Produced PVA-based MPs possessed a relatively narrow particle size distribution (CV 7.7%) with proper physical stability until 30 days of incubation. The uniform-sized PVATyr MPs and their surrounding hydrogel showed sustained-release profiles for DEX and CIP for up to 32 days in vitro. The injected drugs-loaded hydrogel showed complete clearance from the maxillary sinus of rabbits within 28 days. The concentrations of DEX and CIP in mucosal remained within the therapeutic window when measured on days 7, 14, and 21, which were well above the plasma concentrations without any pathological changes in endoscopy, MRI imaging, and histological examinations. DEX/CIP loaded PVATyr MPs provided an effective, controlled, and safe sustained-drug delivery in both in vitro and in vivo analyses at therapeutic concentrations with minimal systemic absorption, suggesting a promising treatment approach for CRS.

Graphical Abstract

通过缓释支架向副鼻窦局部给药是治疗慢性鼻窦炎(CRS)的新领域之一。本研究旨在介绍和评估以聚乙烯醇为载体的环丙沙星(CIP)和地塞米松(DEX)在家兔上颌窦内的持续协同释放。DEX 和 CIP 装载在酪胺取代的聚乙烯醇微颗粒(PVATyr MP)中。在体外评估了这两种药物的机械稳定性、降解性和持续释放模式以及细胞相容性。然后将 PVATyr MPs 注入兔子的上颌窦,每周监测一次,连续 21 天。使用鼻内窥镜、核磁共振成像和组织显微镜来观察其变化,并与对照组进行比较。此外,还对研究期间上颌窦和血液样本中的药物浓度进行了评估。所生产的基于 PVA 的 MPs 具有相对较窄的粒度分布(CV 值为 7.7%),在培养 30 天前具有适当的物理稳定性。尺寸均匀的 PVATyr MPs 及其周围的水凝胶在体外显示了长达 32 天的 DEX 和 CIP 持续释放曲线。注射药物的水凝胶在 28 天内从兔子的上颌窦中完全清除。第 7 天、第 14 天和第 21 天测量的 DEX 和 CIP 在粘膜中的浓度仍在治疗窗口期内,远高于血浆浓度,内窥镜、核磁共振成像和组织学检查均未发现任何病理变化。在体外和体内分析中,负载了 DEX/CIP 的 PVATyr MPs 提供了有效、可控和安全的持续给药,达到了治疗浓度,且全身吸收率极低,是一种治疗 CRS 的有效方法。
{"title":"Sustained co-release of ciprofloxacin and dexamethasone in rabbit maxillary sinus using polyvinyl alcohol-based hydrogel microparticle","authors":"Maryam Jalessi,&nbsp;Yasaman Tavakoli Moghaddam,&nbsp;Mehdi Khanmohammadi,&nbsp;Sajad Hassanzadeh,&nbsp;Zahra Azad,&nbsp;Mohammad Farhadi","doi":"10.1007/s10856-024-06832-9","DOIUrl":"10.1007/s10856-024-06832-9","url":null,"abstract":"<div><p>Topical delivery to paranasal sinuses through sustained-release stents is one of the new horizons in treating chronic rhinosinusitis (CRS). This study aims to introduce and evaluate sustained co-release of encapsulated ciprofloxacin (CIP) and dexamethasone (DEX) in polyvinyl alcohol-based carriers within the maxillary sinus of rabbit animals. DEX and CIP were loaded in a tyramine-substituted polyvinyl alcohol microparticle (PVATyr MP). The mechanical stability, degradability, and sustained-release patterns of both drugs as well as cellular cytocompatibility were assessed in vitro. The PVATyr MPs were then injected into the maxillary sinus of rabbits and they were monitored weekly for 21 days. Nasal endoscopy, MRI imaging, and tissue microscopy were used to follow the changes and compared them with the control condition. Also, the concentrations of drugs were evaluated in the maxillary sinus and blood samples over the study period. Produced PVA-based MPs possessed a relatively narrow particle size distribution (CV 7.7%) with proper physical stability until 30 days of incubation. The uniform-sized PVATyr MPs and their surrounding hydrogel showed sustained-release profiles for DEX and CIP for up to 32 days in vitro. The injected drugs-loaded hydrogel showed complete clearance from the maxillary sinus of rabbits within 28 days. The concentrations of DEX and CIP in mucosal remained within the therapeutic window when measured on days 7, 14, and 21, which were well above the plasma concentrations without any pathological changes in endoscopy, MRI imaging, and histological examinations. DEX/CIP loaded PVATyr MPs provided an effective, controlled, and safe sustained-drug delivery in both in vitro and in vivo analyses at therapeutic concentrations with minimal systemic absorption, suggesting a promising treatment approach for CRS.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the suitability of photocuring-assisted DIW for manufacturing complex prosthesis from commercial dental composites 用商用牙科复合材料制造复杂义齿的光固化辅助 DIW 的适用性。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-30 DOI: 10.1007/s10856-024-06831-w
Florencia M. Nogales, Óscar Borrero-López, Antonia Pajares, Pedro Miranda

A 3-D printing method to produce dental prostheses of complex shapes from a commercial, photocurable resin-ceramic slurry is developed and optimized. The microstructure, mechanical properties and wear behavior of the resulting material are evaluated and compared with a conventional/control sample and other ceramic-polymer dental composites. Commercial resin-ceramic dental slurries can be successfully extruded and appropriately photocured in a low cost 3-D printing system to produce cost-efficient complex dental parts that could be used in indirect restorations. The printing process does not appreciably introduce defects in the material and the 3-D printed composites exhibit mechanical properties (hardness, elastic modulus) and wear resistance comparable to the control material and analogous, conventional dental composites. The main wear mechanisms under sliding contact against a hard antagonist are plastic deformation at the asperity level and ceramic particle pull-out due to filler/matrix interfacial weakness.

Graphical Abstract

3-D printing commercial resin-filler slurries creates cost-efficient tooth prostheses with properties akin to conventional dental composites

本研究开发并优化了一种三维打印方法,可利用商业光固化树脂-陶瓷浆料生产形状复杂的牙科修复体。对所得材料的微观结构、机械性能和磨损行为进行了评估,并与传统/对照样本和其他陶瓷-聚合物牙科复合材料进行了比较。商用树脂-陶瓷牙科泥浆可以在低成本的三维打印系统中成功挤出并适当光固化,从而生产出具有成本效益的复杂牙科部件,可用于间接修复。打印过程不会在材料中产生明显的缺陷,3-D 打印复合材料的机械性能(硬度、弹性模量)和耐磨性与对照材料和类似的传统牙科复合材料相当。在与坚硬的拮抗剂滑动接触时,主要的磨损机制是基底层的塑性变形和由于填料/基质界面薄弱造成的陶瓷颗粒脱落。
{"title":"On the suitability of photocuring-assisted DIW for manufacturing complex prosthesis from commercial dental composites","authors":"Florencia M. Nogales,&nbsp;Óscar Borrero-López,&nbsp;Antonia Pajares,&nbsp;Pedro Miranda","doi":"10.1007/s10856-024-06831-w","DOIUrl":"10.1007/s10856-024-06831-w","url":null,"abstract":"<div><p>A 3-D printing method to produce dental prostheses of complex shapes from a commercial, photocurable resin-ceramic slurry is developed and optimized. The microstructure, mechanical properties and wear behavior of the resulting material are evaluated and compared with a conventional/control sample and other ceramic-polymer dental composites. Commercial resin-ceramic dental slurries can be successfully extruded and appropriately photocured in a low cost 3-D printing system to produce cost-efficient complex dental parts that could be used in indirect restorations. The printing process does not appreciably introduce defects in the material and the 3-D printed composites exhibit mechanical properties (hardness, elastic modulus) and wear resistance comparable to the control material and analogous, conventional dental composites. The main wear mechanisms under sliding contact against a hard antagonist are plastic deformation at the asperity level and ceramic particle pull-out due to filler/matrix interfacial weakness.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>3-D printing commercial resin-filler slurries creates cost-efficient tooth prostheses with properties akin to conventional dental composites</p></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Si and Zn dual ions upregulate the osteogenic differentiation of mBMSCs: mRNA transcriptomic sequencing analysis 硅和锌双离子上调 mBMSCs 的成骨分化:mRNA 转录组测序分析
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-10 DOI: 10.1007/s10856-024-06825-8
Xinyuan Yuan, Tingting Wu, Teliang Lu, Jiandong Ye

Both silicon (Si) and zinc (Zn) ions are essential elements to bone health and their mechanisms for promoting osteogenesis have aroused the extensive attention of researchers. Thereinto, the mechanism by which dual ions promote osteogenic differentiation remains to be elucidated. Herein, the effects of Si and Zn ions on the cytological behaviors of mBMSCs were firstly studied. Then, the molecular mechanism of Si-Zn dual ions regulating the osteogenic differentiation of mBMSCs was investigated via transcriptome sequencing technology. In the single-ion system, Si ion at the concentration of 1.5 mM (Si-1.5) had better comprehensive effects of cell proliferation, ALP activity and osteogenesis-related gene expression levels (ALP, Runx2, OCN, Col-I and BSP); Zn ion at the concentration of 50 μM (Zn-50) demonstrated better combining effects of cell proliferation, ALP activity and same osteogenic genes expression levels. In the dual-ion system, the Si (1.5 mM)-Zn (50 μM) group (Si1.5-Zn50) synthetically enhanced ALP activity and osteogenesis genes compared with single-ion groups. Analysis of the transcriptome sequencing results showed that Si ion had a certain effect on promoting the osteogenic differentiation of mBMSCs; Zn ion had a stronger effect of contributing to a better osteogenic differentiation of mBMSCs than that of Si ion; the Si-Zn dual ions had a synergistic enhancement on conducting to the osteogenic differentiation of mBMSCs compared to single ion (Si or Zn). This study offers a blueprint for exploring the regulation mechanism of osteogenic differentiation by dual ions.

Graphical Abstract

硅(Si)和锌(Zn)离子都是骨骼健康的重要元素,它们促进成骨的机制引起了研究人员的广泛关注。然而,双离子促进成骨分化的机制仍有待阐明。本文首先研究了 Si 和 Zn 离子对 mBMSCs 细胞学行为的影响。然后,通过转录组测序技术研究了Si-Zn双离子调控mBMSCs成骨分化的分子机制。在单离子体系中,浓度为1.5 mM(Si-1.5)的Si离子对细胞增殖、ALP活性和成骨相关基因(ALP、Runx2、OCN、Col-I和BSP)表达水平有较好的综合效应;浓度为50 μM(Zn-50)的Zn离子对细胞增殖、ALP活性和相同的成骨基因表达水平有较好的综合效应。在双离子系统中,与单离子组相比,Si(1.5 mM)-Zn(50 μM)组(Si1.5-Zn50)能合成性地提高 ALP 活性和成骨基因。转录组测序分析结果表明,硅离子对促进 mBMSCs 成骨分化有一定作用;与硅离子相比,锌离子对促进 mBMSCs 成骨分化的作用更强;与单离子(硅或锌)相比,硅锌双离子对促进 mBMSCs 成骨分化有协同增强作用。该研究为探索双离子对成骨分化的调控机制提供了蓝图。 图文摘要
{"title":"Si and Zn dual ions upregulate the osteogenic differentiation of mBMSCs: mRNA transcriptomic sequencing analysis","authors":"Xinyuan Yuan,&nbsp;Tingting Wu,&nbsp;Teliang Lu,&nbsp;Jiandong Ye","doi":"10.1007/s10856-024-06825-8","DOIUrl":"10.1007/s10856-024-06825-8","url":null,"abstract":"<div><p>Both silicon (Si) and zinc (Zn) ions are essential elements to bone health and their mechanisms for promoting osteogenesis have aroused the extensive attention of researchers. Thereinto, the mechanism by which dual ions promote osteogenic differentiation remains to be elucidated. Herein, the effects of Si and Zn ions on the cytological behaviors of mBMSCs were firstly studied. Then, the molecular mechanism of Si-Zn dual ions regulating the osteogenic differentiation of mBMSCs was investigated via transcriptome sequencing technology. In the single-ion system, Si ion at the concentration of 1.5 mM (Si-1.5) had better comprehensive effects of cell proliferation, ALP activity and osteogenesis-related gene expression levels (ALP, Runx2, OCN, Col-I and BSP); Zn ion at the concentration of 50 μM (Zn-50) demonstrated better combining effects of cell proliferation, ALP activity and same osteogenic genes expression levels. In the dual-ion system, the Si (1.5 mM)-Zn (50 μM) group (Si1.5-Zn50) synthetically enhanced ALP activity and osteogenesis genes compared with single-ion groups. Analysis of the transcriptome sequencing results showed that Si ion had a certain effect on promoting the osteogenic differentiation of mBMSCs; Zn ion had a stronger effect of contributing to a better osteogenic differentiation of mBMSCs than that of Si ion; the Si-Zn dual ions had a synergistic enhancement on conducting to the osteogenic differentiation of mBMSCs compared to single ion (Si or Zn). This study offers a blueprint for exploring the regulation mechanism of osteogenic differentiation by dual ions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06825-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional printed calcium phosphate scaffolds emulate bone microstructure to promote bone regrowth and repair 三维打印磷酸钙支架可模拟骨骼微观结构,促进骨骼再生和修复。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-03 DOI: 10.1007/s10856-024-06817-8
Kyohei Takase, Takahiro Niikura, Tomoaki Fukui, Yohei Kumabe, Kenichi Sawauchi, Ryo Yoshikawa, Yuya Yamamoto, Ryota Nishida, Tomoyuki Matsumoto, Ryosuke Kuroda, Keisuke Oe

The interconnected structures in a 3D scaffold allows the movement of cells and nutrients. Therefore, this study aimed to investigate the in-vivo bioactivity of 3D-printed β-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) scaffolds that replicate biological bone. This study included 24-week-old male New Zealand white rabbits. A cylindrical bone defect with a diameter of 4.5 mm and a depth of 8 mm was created in the lateral aspect of the distal femur. A 3D-printed scaffold was implanted in the right femur (experimental side), whereas the left femur was kept free of implantation (control side). Micro-CT analysis and histological observations of the bone defect site were conducted at 4, 8, and 12 weeks postoperatively to track the bone repair progress. No evidence of new bone tissue formation was found in the medullary cavity of the bone defect on the control side. In contrast, on the experimental side, the 3D scaffold demonstrated sufficient bioactivity, leading to the growth of new bone tissue. Over time, new bone tissue gradually extended from the periphery toward the center, a phenomenon evident in both micro-CT images and biopsy staining. In the current study, we observed that the cells involved in bone metabolism adhered, spread, and proliferated on our newly designed 3D-printed scaffold with a bone microstructure. Therefore, it is suggested that this scaffold has sufficient bioactivity to induce new bone formation and could be expected to be a more useful artificial bone than the existing version.

Graphical Abstract

三维支架中相互连接的结构允许细胞和营养物质的移动。因此,本研究旨在调查三维打印的β-磷酸三钙(β-TCP)和羟基磷灰石(HAP)支架在体内复制生物骨骼的生物活性。这项研究包括 24 周大的雄性新西兰白兔。在股骨远端外侧创建了一个直径为 4.5 毫米、深度为 8 毫米的圆柱形骨缺损。在右侧股骨(实验侧)植入 3D 打印支架,左侧股骨(对照侧)则不植入支架。术后4周、8周和12周,对骨缺损部位进行了显微CT分析和组织学观察,以跟踪骨修复的进展情况。对照组一侧骨缺损的髓腔内没有发现新骨组织形成的迹象。相反,在实验侧,三维支架表现出了足够的生物活性,导致了新骨组织的生长。随着时间的推移,新骨组织逐渐从外围向中心延伸,这一现象在显微 CT 图像和活检染色中都很明显。在本研究中,我们观察到参与骨代谢的细胞在我们新设计的具有骨微结构的三维打印支架上附着、扩散和增殖。因此,这种支架具有足够的生物活性来诱导新骨形成,有望成为比现有版本更有用的人工骨。
{"title":"Three-dimensional printed calcium phosphate scaffolds emulate bone microstructure to promote bone regrowth and repair","authors":"Kyohei Takase,&nbsp;Takahiro Niikura,&nbsp;Tomoaki Fukui,&nbsp;Yohei Kumabe,&nbsp;Kenichi Sawauchi,&nbsp;Ryo Yoshikawa,&nbsp;Yuya Yamamoto,&nbsp;Ryota Nishida,&nbsp;Tomoyuki Matsumoto,&nbsp;Ryosuke Kuroda,&nbsp;Keisuke Oe","doi":"10.1007/s10856-024-06817-8","DOIUrl":"10.1007/s10856-024-06817-8","url":null,"abstract":"<div><p>The interconnected structures in a 3D scaffold allows the movement of cells and nutrients. Therefore, this study aimed to investigate the in-vivo bioactivity of 3D-printed β-tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) scaffolds that replicate biological bone. This study included 24-week-old male New Zealand white rabbits. A cylindrical bone defect with a diameter of 4.5 mm and a depth of 8 mm was created in the lateral aspect of the distal femur. A 3D-printed scaffold was implanted in the right femur (experimental side), whereas the left femur was kept free of implantation (control side). Micro-CT analysis and histological observations of the bone defect site were conducted at 4, 8, and 12 weeks postoperatively to track the bone repair progress. No evidence of new bone tissue formation was found in the medullary cavity of the bone defect on the control side. In contrast, on the experimental side, the 3D scaffold demonstrated sufficient bioactivity, leading to the growth of new bone tissue. Over time, new bone tissue gradually extended from the periphery toward the center, a phenomenon evident in both micro-CT images and biopsy staining. In the current study, we observed that the cells involved in bone metabolism adhered, spread, and proliferated on our newly designed 3D-printed scaffold with a bone microstructure. Therefore, it is suggested that this scaffold has sufficient bioactivity to induce new bone formation and could be expected to be a more useful artificial bone than the existing version.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro evaluation of the biocompatibility and bioactivity of a SLM-fabricated NiTi alloy with superior tensile property 对具有优异拉伸性能的 SLM 制造镍钛合金的生物相容性和生物活性进行体外评估。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-23 DOI: 10.1007/s10856-024-06822-x
Yu Sun, Zhihui Zhang, Qingping Liu, Luquan Ren, Jincheng Wang

Because nickel-titanium (NiTi) alloys have unique functions, such as superelasticity, shape memory, and hysteresis similar to bone in the loading-unloading cycles of their recoverable deformations. They likely offer good bone integration, a low loosening rate, individual customization, and ease of insertion. Due to the poor processability of NITI, traditional methods cannot manufacture NiTi products with complex shapes. Orthopedic NiTi implants need to show an adequate fracture elongation of at least 8%. Additive manufacturing can be used to prepare NiTi implants with complex structures and tunable porosity. However, as previously reported, additively manufactured NiTi alloys could only exhibit a maximum tensile fracture strain of 7%. In new reports, a selective laser melting (SLM)–NiTi alloy has shown greater tensile strain (15.6%). Nevertheless, due to the unique microstructure of additive manufacturing NiTi that differs from traditional NITI, the biocompatibility of SLM-NITI manufactured by this new process requires further evaluation In this study, the effects of the improved NiTi alloy on bone marrow mesenchymal stem cell (BMSC) proliferation, adhesion, and cell viability were investigated via in vitro studies. A commercial Ti-6Al-4V alloy was studied side-by-side for comparison. Like the Ti-6Al-4V alloy, the SLM-NiTi alloy exhibited low cytotoxicity toward BMSCs and similar effect on cell adhesion or cell viability. This study demonstrates that the new SLM-NiTi alloy, which has exhibited improved mechanical properties, also displays excellent biocompatibility. Therefore, this alloy may be a superior implant material in biomedical implantation.

Graphical Abstract

由于镍钛(NiTi)合金具有独特的功能,如超弹性、形状记忆以及在其可恢复变形的加载-卸载循环中与骨骼相似的滞后性。它们可能具有良好的骨整合性、低松动率、个性化定制和易于插入等特点。由于镍钛材料的加工性较差,传统方法无法制造形状复杂的镍钛产品。骨科镍钛植入物需要有足够的断裂伸长率,至少为 8%。增材制造可用于制备具有复杂结构和可调孔隙率的镍钛植入体。然而,根据之前的报道,添加剂制造的镍钛合金只能表现出 7% 的最大拉伸断裂应变。在新的报道中,一种选择性激光熔化(SLM)-镍钛合金显示出更大的拉伸应变(15.6%)。本研究通过体外研究调查了改进型镍钛合金对骨髓间充质干细胞(BMSC)增殖、粘附和细胞活力的影响。同时还对商用 Ti-6Al-4V 合金进行了对比研究。与 Ti-6Al-4V 合金一样,SLM-NiTi 合金对 BMSCs 的细胞毒性较低,对细胞粘附性或细胞活力的影响相似。这项研究表明,新型 SLM-NiTi 合金不仅具有更好的机械性能,还具有出色的生物相容性。因此,这种合金可能是生物医学植入中的一种优质植入材料。
{"title":"In vitro evaluation of the biocompatibility and bioactivity of a SLM-fabricated NiTi alloy with superior tensile property","authors":"Yu Sun,&nbsp;Zhihui Zhang,&nbsp;Qingping Liu,&nbsp;Luquan Ren,&nbsp;Jincheng Wang","doi":"10.1007/s10856-024-06822-x","DOIUrl":"10.1007/s10856-024-06822-x","url":null,"abstract":"<div><p>Because nickel-titanium (NiTi) alloys have unique functions, such as superelasticity, shape memory, and hysteresis similar to bone in the loading-unloading cycles of their recoverable deformations. They likely offer good bone integration, a low loosening rate, individual customization, and ease of insertion. Due to the poor processability of NITI, traditional methods cannot manufacture NiTi products with complex shapes. Orthopedic NiTi implants need to show an adequate fracture elongation of at least 8%. Additive manufacturing can be used to prepare NiTi implants with complex structures and tunable porosity. However, as previously reported, additively manufactured NiTi alloys could only exhibit a maximum tensile fracture strain of 7%. In new reports, a selective laser melting (SLM)–NiTi alloy has shown greater tensile strain (15.6%). Nevertheless, due to the unique microstructure of additive manufacturing NiTi that differs from traditional NITI, the biocompatibility of SLM-NITI manufactured by this new process requires further evaluation In this study, the effects of the improved NiTi alloy on bone marrow mesenchymal stem cell (BMSC) proliferation, adhesion, and cell viability were investigated via in vitro studies. A commercial Ti-6Al-4V alloy was studied side-by-side for comparison. Like the Ti-6Al-4V alloy, the SLM-NiTi alloy exhibited low cytotoxicity toward BMSCs and similar effect on cell adhesion or cell viability. This study demonstrates that the new SLM-NiTi alloy, which has exhibited improved mechanical properties, also displays excellent biocompatibility. Therefore, this alloy may be a superior implant material in biomedical implantation.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TiO2-ZnPc nanoparticles functionalized with folic acid as a target photosensitizer for photodynamic therapy against glioblastoma cells 叶酸功能化 TiO2-ZnPc 纳米粒子作为光动力疗法的靶光敏剂,用于治疗胶质母细胞瘤细胞。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-22 DOI: 10.1007/s10856-024-06823-w
Gustavo Jardón-Guadarrama, Ma Elena Manríquez-Ramírez, Citlali E. Rodríguez-Pérez, Araceli Díaz-Ruiz, María de los Ángeles Martínez-Cárdenas, Alfonso Mata-Bermudez, Camilo Ríos, Emma Ortiz-Islas

The use of TiO2 as a photosensitizer in photodynamic therapy is limited due to TiO2 generates reactive oxygen species only under UV irradiation. The TiO2 surface has been modified with different functional groups to achieve activation at longer wavelengths (visible light). This work reports the synthesis, characterization, and biological toxicity assay of TiO2 nanoparticles functionalized with folic acid and combined with a zinc phthalocyanine to obtain a nano-photosensitizer for its application in photodynamic therapy for glioblastoma cancer treatment. The nano-photosensitizer was prepared using the sol-gel method. Folic acid and zinc phthalocyanine were added during the hydrolysis and condensation of titanium butoxide, which was the TiO2 precursor. The samples obtained were characterized by several microscopy and spectroscopy techniques. An in vitro toxicity test was performed using the MTT assay and the C6 cellular line. The results of the characterization showed that the structure of the nanoparticles corresponds mainly to the anatase phase. Successful functionalization with folic acid and an excellent combination with phthalocyanine was also achieved. Both folic acid-functionalized TiO2 and phthalocyanine-functionalized TiO2 had no cytotoxic effect on C6 cells (even at high concentrations) in comparison to Cis-Pt, which was very toxic to C6 cells. The materials behaved similarly to the control (untreated cells). The cell viability and light microscopy images suggest that both materials could be considered biocompatible and mildly phototoxic in these cells when activated by light.

Graphical Abstract

由于二氧化钛只能在紫外线照射下产生活性氧,因此在光动力疗法中使用二氧化钛作为光敏剂受到了限制。为了在更长的波长(可见光)下实现活化,TiO2 的表面已被不同的官能团修饰。本研究报告了叶酸功能化 TiO2 纳米粒子的合成、表征和生物毒性检测,并结合酞菁锌获得了一种纳米光敏剂,可应用于治疗胶质母细胞瘤的光动力疗法。该纳米光敏剂采用溶胶-凝胶法制备。在作为 TiO2 前体的丁氧化钛的水解和缩合过程中加入了叶酸和酞菁锌。获得的样品通过多种显微镜和光谱技术进行了表征。使用 MTT 试验和 C6 细胞系进行了体外毒性测试。表征结果表明,纳米颗粒的结构主要对应锐钛矿相。此外,还成功实现了与叶酸的功能化以及与酞菁的完美结合。叶酸功能化的二氧化钛和酞菁功能化的二氧化钛对 C6 细胞都没有细胞毒性作用(即使在高浓度下),而顺式铂则对 C6 细胞有剧毒。这些材料的表现与对照组(未处理的细胞)相似。细胞存活率和光学显微镜图像表明,这两种材料都具有生物相容性,在光的激活下对这些细胞具有轻微的光毒性。
{"title":"TiO2-ZnPc nanoparticles functionalized with folic acid as a target photosensitizer for photodynamic therapy against glioblastoma cells","authors":"Gustavo Jardón-Guadarrama,&nbsp;Ma Elena Manríquez-Ramírez,&nbsp;Citlali E. Rodríguez-Pérez,&nbsp;Araceli Díaz-Ruiz,&nbsp;María de los Ángeles Martínez-Cárdenas,&nbsp;Alfonso Mata-Bermudez,&nbsp;Camilo Ríos,&nbsp;Emma Ortiz-Islas","doi":"10.1007/s10856-024-06823-w","DOIUrl":"10.1007/s10856-024-06823-w","url":null,"abstract":"<div><p>The use of TiO<sub>2</sub> as a photosensitizer in photodynamic therapy is limited due to TiO<sub>2</sub> generates reactive oxygen species only under UV irradiation. The TiO<sub>2</sub> surface has been modified with different functional groups to achieve activation at longer wavelengths (visible light). This work reports the synthesis, characterization, and biological toxicity assay of TiO<sub>2</sub> nanoparticles functionalized with folic acid and combined with a zinc phthalocyanine to obtain a nano-photosensitizer for its application in photodynamic therapy for glioblastoma cancer treatment. The nano-photosensitizer was prepared using the sol-gel method. Folic acid and zinc phthalocyanine were added during the hydrolysis and condensation of titanium butoxide, which was the TiO<sub>2</sub> precursor. The samples obtained were characterized by several microscopy and spectroscopy techniques. An in vitro toxicity test was performed using the MTT assay and the C6 cellular line. The results of the characterization showed that the structure of the nanoparticles corresponds mainly to the anatase phase. Successful functionalization with folic acid and an excellent combination with phthalocyanine was also achieved. Both folic acid-functionalized TiO<sub>2</sub> and phthalocyanine-functionalized TiO<sub>2</sub> had no cytotoxic effect on C6 cells (even at high concentrations) in comparison to Cis-Pt, which was very toxic to C6 cells. The materials behaved similarly to the control (untreated cells). The cell viability and light microscopy images suggest that both materials could be considered biocompatible and mildly phototoxic in these cells when activated by light.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of composite calcium phosphate cement scaffold loaded with Hedysarum polysaccharides and its efficacy in repairing bone defects 负载 Hedysarum 多糖的复合磷酸钙水泥支架的制备及其在修复骨缺损中的功效。
IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-08-13 DOI: 10.1007/s10856-024-06818-7
Lianggong Zhao, Bo Wang, Shilan Feng, Huifang Wu

It’s imperative to create a more ideal biological scaffold for bone defect repair. Calcium phosphate bone cements (CPC) could be used as a scaffold. Some ingredients and osteogenic factors could be added to improve its poor mechanical properties and biological activity. As a macromolecule extracted from traditional Chinese medicine, Hedysarum polysaccharides (HPS) would significantly promote the osteogenic activity of bone biomaterials. Zirconium oxide and starch were added to the solid phase and citric acid was added to the liquid phase to optimize CPC. HPS was loaded onto the scaffold as an osteogenic factor, and the prepared CPS + HPS was characterized. Further, the cytocompatibility of CPS + HPS was assessed according to activity, differentiation, and calcification in neonatal rat calvarial osteoblasts, and the biosafety of CPS + HPS was evaluated according to acute toxicity, pyrogen, sensitization, and hemolysis. The success of CPS + HPS in repairing bone defects was evaluated by using a rabbit femur implantation experiment. After optimization, CPS-20-CA-5 containing 10% starch and 5% citric acid displayed the highest mechanical strength of 28.96 ± 0.03 MPa. HPS-50 was demonstrated to exert the best osteogenic effect. The combination of CPS + HPS achieved HPS-loaded CPC. Material characterization, cytocompatibility, biosafety, and femoral implantation experiments indicated that CPS + HPS possessed better pressure resistance and improved osteogenic ability in bone defect repair.CPS + HPS demonstrated effective pressure resistance and superior osteogenic ability, which may be of great significance for bone defects and bone tissue engineering to promote bone regeneration and repair.

当务之急是为骨缺损修复创造一种更理想的生物支架。磷酸钙骨水泥(CPC)可用作支架。可以添加一些成分和成骨因子来改善其不良的机械性能和生物活性。作为一种从传统中药中提取的大分子,海带多糖(HPS)可显著促进骨生物材料的成骨活性。在固相中加入氧化锆和淀粉,在液相中加入柠檬酸以优化 CPC。将 HPS 作为成骨因子添加到支架上,并对制备的 CPS + HPS 进行了表征。此外,还根据新生大鼠小腿成骨细胞的活性、分化和钙化情况评估了 CPS + HPS 的细胞相容性,并根据急性毒性、热原、致敏和溶血情况评估了 CPS + HPS 的生物安全性。通过兔股骨植入实验评估了 CPS + HPS 修复骨缺损的成功率。经过优化,含有 10%淀粉和 5%柠檬酸的 CPS-20-CA-5 显示出最高的机械强度(28.96 ± 0.03 兆帕)。HPS-50 的成骨效果最佳。CPS + HPS的组合实现了HPS负载CPC。材料表征、细胞相容性、生物安全性和股骨植入实验表明,CPS + HPS 在骨缺损修复中具有更好的抗压性和更强的成骨能力。
{"title":"Preparation of composite calcium phosphate cement scaffold loaded with Hedysarum polysaccharides and its efficacy in repairing bone defects","authors":"Lianggong Zhao,&nbsp;Bo Wang,&nbsp;Shilan Feng,&nbsp;Huifang Wu","doi":"10.1007/s10856-024-06818-7","DOIUrl":"10.1007/s10856-024-06818-7","url":null,"abstract":"<p>It’s imperative to create a more ideal biological scaffold for bone defect repair. Calcium phosphate bone cements (CPC) could be used as a scaffold. Some ingredients and osteogenic factors could be added to improve its poor mechanical properties and biological activity. As a macromolecule extracted from traditional Chinese medicine, <i>Hedysarum</i> polysaccharides (HPS) would significantly promote the osteogenic activity of bone biomaterials. Zirconium oxide and starch were added to the solid phase and citric acid was added to the liquid phase to optimize CPC. HPS was loaded onto the scaffold as an osteogenic factor, and the prepared CPS + HPS was characterized. Further, the cytocompatibility of CPS + HPS was assessed according to activity, differentiation, and calcification in neonatal rat calvarial osteoblasts, and the biosafety of CPS + HPS was evaluated according to acute toxicity, pyrogen, sensitization, and hemolysis. The success of CPS + HPS in repairing bone defects was evaluated by using a rabbit femur implantation experiment. After optimization, CPS-20-CA-5 containing 10% starch and 5% citric acid displayed the highest mechanical strength of 28.96 ± 0.03 MPa. HPS-50 was demonstrated to exert the best osteogenic effect. The combination of CPS + HPS achieved HPS-loaded CPC. Material characterization, cytocompatibility, biosafety, and femoral implantation experiments indicated that CPS + HPS possessed better pressure resistance and improved osteogenic ability in bone defect repair.CPS + HPS demonstrated effective pressure resistance and superior osteogenic ability, which may be of great significance for bone defects and bone tissue engineering to promote bone regeneration and repair.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Materials Science: Materials in Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1