首页 > 最新文献

Green Chemical Engineering最新文献

英文 中文
OFC: Outside Front Cover OFC:外封面
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-09-01 DOI: 10.1016/S2666-9528(23)00026-2
{"title":"OFC: Outside Front Cover","authors":"","doi":"10.1016/S2666-9528(23)00026-2","DOIUrl":"https://doi.org/10.1016/S2666-9528(23)00026-2","url":null,"abstract":"","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Page OFC"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50189975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating electronic environment on alkali metal-doped Cu@NS-SiO2 for selective anisole hydrodeoxygenation 碱金属掺杂对电子环境的调控Cu@NS-SiO2用于选择性苯甲醚加氢脱氧
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-09-01 DOI: 10.1016/j.gce.2022.06.003
Xiaofei Wang , Xiaoxue Han , Li Kang , Shixiang Feng , Meiyan Wang , Yue Wang , Shouying Huang , Yujun Zhao , Shengping Wang , Xinbin Ma

Lignin utilization is a potential approach for replacing fossil energy and releasing the environment pressure. Herein, we synthesized a series of novel Cu-based catalysts, Cu@NS-SiO2 (NS = nano sphere) and alkali metals (Na, K, Rb, and Cs) doped Cu@NS-SiO2, and applied them in hydrodeoxygenation reaction of anisole. High Cu dispersion was presented on all catalysts. The modification of alkali metals on Cu@NS-SiO2 significantly enhanced the electron density of Cu sites in the following order: Cs > Rb > K > Na, among which Cs decreased the Cu 2p3/2 binding energy most (by 0.7 eV). Moreover, the modification did not substantially affect the geometric structure of Cu species. This regulable electronic environment of Cu sites was crucial for selective deoxygenation and inhibiting the hydrogenation of aromatic rings in anisole, and thus promoted the selectivity of benzene. Compared with Cu@NS-SiO2 (∼59%), the highest benzene selectivity was obtained on Cs/10Cu@NS-SiO2 at ∼83%.

木质素利用是一种替代化石能源、释放环境压力的潜在途径。本文合成了一系列新型的铜基催化剂,Cu@NS-SiO2(NS=纳米球)和掺杂的碱金属(Na、K、Rb和Cs)Cu@NS-SiO2,并将其应用于苯甲醚的加氢脱氧反应中。在所有催化剂上都呈现出高Cu分散性。碱金属对Cu@NS-SiO2显著增强了Cu位点的电子密度,其顺序如下:Cs>;Rb>;K>;Na,其中Cs使Cu2p3/2结合能降低最多(降低了0.7eV)。此外,修饰对Cu物种的几何结构没有实质性影响。铜位的这种可调节的电子环境对于选择性脱氧和抑制苯甲醚中芳环的氢化至关重要,从而提高了苯的选择性。和…比起来Cu@NS-SiO2(~59%),在Cs上获得了最高的苯选择性/10Cu@NS-SiO2约83%。
{"title":"Regulating electronic environment on alkali metal-doped Cu@NS-SiO2 for selective anisole hydrodeoxygenation","authors":"Xiaofei Wang ,&nbsp;Xiaoxue Han ,&nbsp;Li Kang ,&nbsp;Shixiang Feng ,&nbsp;Meiyan Wang ,&nbsp;Yue Wang ,&nbsp;Shouying Huang ,&nbsp;Yujun Zhao ,&nbsp;Shengping Wang ,&nbsp;Xinbin Ma","doi":"10.1016/j.gce.2022.06.003","DOIUrl":"10.1016/j.gce.2022.06.003","url":null,"abstract":"<div><p>Lignin utilization is a potential approach for replacing fossil energy and releasing the environment pressure. Herein, we synthesized a series of novel Cu-based catalysts, Cu@NS-SiO<sub>2</sub> (NS = nano sphere) and alkali metals (Na, K, Rb, and Cs) doped Cu@NS-SiO<sub>2</sub>, and applied them in hydrodeoxygenation reaction of anisole. High Cu dispersion was presented on all catalysts. The modification of alkali metals on Cu@NS-SiO<sub>2</sub> significantly enhanced the electron density of Cu sites in the following order: Cs &gt; Rb &gt; K &gt; Na, among which Cs decreased the Cu 2p<sub>3/2</sub> binding energy most (by 0.7 eV). Moreover, the modification did not substantially affect the geometric structure of Cu species. This regulable electronic environment of Cu sites was crucial for selective deoxygenation and inhibiting the hydrogenation of aromatic rings in anisole, and thus promoted the selectivity of benzene. Compared with Cu@NS-SiO<sub>2</sub> (∼59%), the highest benzene selectivity was obtained on Cs/10Cu@NS-SiO<sub>2</sub> at ∼83%.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Pages 294-302"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47920677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Regulated CO adsorption by the electrode with OH− repulsive property for enhancing C–C coupling 具有OH -斥力的电极调节CO吸附,增强C-C耦合
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-09-01 DOI: 10.1016/j.gce.2022.07.007
Qixing Zhang , Dan Ren , Jing Gao , Zhongke Wang , Juan Wang , Sanjiang Pan , Manjing Wang , Jingshan Luo , Ying Zhao , Michael Grätzel , Xiaodan Zhang

Electrochemical CO2 reduction driven by renewable electricity is one of the promising strategies to store sustainable energy as fuels. However, the selectivity of value-added multi-carbon products remains poor for further application of this process. Here, we regulate CO adsorption by forming a Nafion layer on the copper (Cu) electrode that is repulsive to OH, contributing to enhanced selectivity of CO2 reduction to C2+ products with the suppression of C1 products. The operando Raman spectroscopy indicates that the local OH would adsorb on part of active sites and decrease the adsorption of CO. Therefore, the electrode with repulsive to OH can adjust the concentration of OH, leading to the increased adsorption of CO and enhanced C–C coupling. This work shows that electrode design could be an effective strategy for improving the selectivity of CO2 reduction to multi-carbon products.

由可再生电力驱动的电化学CO2减排是将可持续能源作为燃料储存的有前景的策略之一。然而,对于该工艺的进一步应用,增值多碳产品的选择性仍然很差。在这里,我们通过在铜(Cu)电极上形成对OH−具有排斥性的Nafion层来调节CO吸附,有助于增强CO2还原为C2+产物的选择性,同时抑制C1产物。操作拉曼光谱表明,局部OH−会吸附在部分活性位点上,降低对CO的吸附。因此,对OH−具有排斥性的电极可以调节OH−的浓度,从而增加对CO的吸收,增强C–C耦合。这项工作表明,电极设计可能是提高CO2还原为多碳产物的选择性的有效策略。
{"title":"Regulated CO adsorption by the electrode with OH− repulsive property for enhancing C–C coupling","authors":"Qixing Zhang ,&nbsp;Dan Ren ,&nbsp;Jing Gao ,&nbsp;Zhongke Wang ,&nbsp;Juan Wang ,&nbsp;Sanjiang Pan ,&nbsp;Manjing Wang ,&nbsp;Jingshan Luo ,&nbsp;Ying Zhao ,&nbsp;Michael Grätzel ,&nbsp;Xiaodan Zhang","doi":"10.1016/j.gce.2022.07.007","DOIUrl":"10.1016/j.gce.2022.07.007","url":null,"abstract":"<div><p>Electrochemical CO<sub>2</sub> reduction driven by renewable electricity is one of the promising strategies to store sustainable energy as fuels. However, the selectivity of value-added multi-carbon products remains poor for further application of this process. Here, we regulate CO adsorption by forming a Nafion layer on the copper (Cu) electrode that is repulsive to OH<sup>−</sup>, contributing to enhanced selectivity of CO<sub>2</sub> reduction to C<sub>2+</sub> products with the suppression of C<sub>1</sub> products. The <em>operando</em> Raman spectroscopy indicates that the local OH<sup>−</sup> would adsorb on part of active sites and decrease the adsorption of CO. Therefore, the electrode with repulsive to OH<sup>−</sup> can adjust the concentration of OH<sup>−</sup>, leading to the increased adsorption of CO and enhanced C–C coupling. This work shows that electrode design could be an effective strategy for improving the selectivity of CO<sub>2</sub> reduction to multi-carbon products.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Pages 331-337"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42216680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient synthesis of cyclic carbonates under atmospheric CO2 by DMAP-based ionic liquids: the difference of inert hydrogen atom and active hydrogen atom in cation dmap基离子液体在大气CO2下高效合成环状碳酸盐:阳离子中惰性氢原子与活性氢原子的差异
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-09-01 DOI: 10.1016/j.gce.2022.06.001
Zhengkun Zhang , Jinya Li , Guanyao Yu , Chao Zeng , Menglong Wang , Susu Huang , Li Wang , Jinglai Zhang

The coupling reaction of carbon dioxide (CO2) and epoxides is one of the most efficient pathways to achieve the carbon balance. However, to accomplish it under the mild conditions, especially under the atmospheric pressure, is still a perplexing problem. Three novel ionic liquids (ILs), [DMAPBrPC][TMGH], [DMAPBrPC][DBUH], and [DMAPBrPC][BTMA], are designed and synthesized. All of them display the excellent catalytic activity for the title reaction achieving the yield over 96.6% under the atmospheric CO2 pressure at 60 °C. Interestingly, [DMAPBrPC][BTMA] with the inert hydrogen atom in cation exhibits the superior catalytic activity as compared to other two ILs with the protic hydrogen atom in cation along with the same anion. The active hydrogen atom in [DMAPBrPC][TMGH] and [DMAPBrPC][DBUH] would impede the –COO group to absorb CO2, which is an unfavorable item for the reaction. Moreover, the strong hydrogen bond in [DMAPBrPC][TMGH] and [DMAPBrPC][DBUH] would lessen the nucleophilic ability of Br anion resulting in the inferior catalytic performance, which is further confirmed by the density functional theory (DFT) calculations. The cation without the active hydrogen atom could also be employed to design the ILs with the excellent catalytic feature when it is combined with the suitable anion.

二氧化碳(CO2)和环氧化物的偶联反应是实现碳平衡的最有效途径之一。然而,要在温和的条件下,特别是在大气压下完成它,仍然是一个令人困惑的问题。设计并合成了三种新型离子液体[DMAPBrPC][TMGH]、[DMAPBrPC][DBUH]和[DMAPBr PC][BTMA]。它们对标题反应都表现出优异的催化活性,在60°C的大气CO2压力下,产率超过96.6%。有趣的是,与阳离子中具有质子氢原子以及相同阴离子的其他两种离子液体相比,阳离子中具有惰性氢原子的[DMAPBrPC][BTMA]表现出优异的催化活性。[DMAPBrPC][TMGH]和[DMAPBr PC][DBUH]中的活性氢原子会阻碍–COO−基团吸收CO2,这对反应不利。此外,[DMAPBrPC][TMGH]和[DMAPBr PC][DBUH]中的强氢键会降低Br−阴离子的亲核能力,导致较差的催化性能,密度泛函理论(DFT)计算进一步证实了这一点。当没有活性氢原子的阳离子与合适的阴离子结合时,也可以用来设计具有优异催化特性的离子液体。
{"title":"Efficient synthesis of cyclic carbonates under atmospheric CO2 by DMAP-based ionic liquids: the difference of inert hydrogen atom and active hydrogen atom in cation","authors":"Zhengkun Zhang ,&nbsp;Jinya Li ,&nbsp;Guanyao Yu ,&nbsp;Chao Zeng ,&nbsp;Menglong Wang ,&nbsp;Susu Huang ,&nbsp;Li Wang ,&nbsp;Jinglai Zhang","doi":"10.1016/j.gce.2022.06.001","DOIUrl":"10.1016/j.gce.2022.06.001","url":null,"abstract":"<div><p>The coupling reaction of carbon dioxide (CO<sub>2</sub>) and epoxides is one of the most efficient pathways to achieve the carbon balance. However, to accomplish it under the mild conditions, especially under the atmospheric pressure, is still a perplexing problem. Three novel ionic liquids (ILs), [DMAPBrPC][TMGH], [DMAPBrPC][DBUH], and [DMAPBrPC][BTMA], are designed and synthesized. All of them display the excellent catalytic activity for the title reaction achieving the yield over 96.6% under the atmospheric CO<sub>2</sub> pressure at 60 °C. Interestingly, [DMAPBrPC][BTMA] with the inert hydrogen atom in cation exhibits the superior catalytic activity as compared to other two ILs with the protic hydrogen atom in cation along with the same anion. The active hydrogen atom in [DMAPBrPC][TMGH] and [DMAPBrPC][DBUH] would impede the –COO<sup>−</sup> group to absorb CO<sub>2</sub>, which is an unfavorable item for the reaction. Moreover, the strong hydrogen bond in [DMAPBrPC][TMGH] and [DMAPBrPC][DBUH] would lessen the nucleophilic ability of Br<sup>−</sup> anion resulting in the inferior catalytic performance, which is further confirmed by the density functional theory (DFT) calculations. The cation without the active hydrogen atom could also be employed to design the ILs with the excellent catalytic feature when it is combined with the suitable anion.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Pages 285-293"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47059352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Outside Back Cover 封底
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-09-01 DOI: 10.1016/S2666-9528(23)00033-X
{"title":"Outside Back Cover","authors":"","doi":"10.1016/S2666-9528(23)00033-X","DOIUrl":"https://doi.org/10.1016/S2666-9528(23)00033-X","url":null,"abstract":"","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Page OBC"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50189358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mild and efficient recovery of lithium-ion battery cathode material by deep eutectic solvents with natural and cheap components 采用天然廉价成分的深共晶溶剂温和高效地回收锂离子电池正极材料
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-09-01 DOI: 10.1016/j.gce.2022.06.005
Yu Chen , Yanlong Wang , Yue Bai , Minghui Feng , Fengyi Zhou , Yanhong Lu , Yuting Guo , Yixuan Zhang , Tiancheng Mu

Dissolution of lithium cobalt oxide (LCO) is the key step for the recovery of valuable metals (e.g., Co and Li) from spent LCO-based lithium-ion batteries (LIBs). However, the dissolution process of LCO either needs toxic solvents, and high temperature, or shows low efficiency. Deep eutectic solvents (DESs) are potential green solvents to dissolve LCO. Here, DESs with polyethylene glycol (PEG) as hydrogen bond acceptor and ascorbic acid (AA) as hydrogen bond donor are found to dissolve LCO with 84.2% Co leaching efficiency at 80 oC and 72 h, which is higher than that from the reported references by common DESs. Furthermore, both DESs components (i.e., PEG and AA) are cheap, biodegradable, and biocompatible. AA could be easily and abundantly extracted from natural fruits or vegetables. It provides a new guide for the green, mild, and efficient dissolution of LCO aiming at sustainable recovery of spent LIBs.

锂钴氧化物(LCO)的溶解是从废旧LCO基锂离子电池(LIBs)中回收有价值金属(如Co和Li)的关键步骤。然而,LCO的溶解过程要么需要有毒溶剂和高温,要么效率低。深共晶溶剂(DESs)是溶解LCO的潜在绿色溶剂。本文发现,以聚乙二醇(PEG)为氢键受体,抗坏血酸(AA)为氢键供体的DESs在80℃和72小时内可溶解LCO,Co浸出率为84.2%,高于常见DESs的参考文献。此外,DESs的两种成分(即PEG和AA)都是廉价的、可生物降解的和生物相容的。AA可以很容易地从天然水果或蔬菜中大量提取。它为LCO的绿色、温和和有效溶解提供了一个新的指南,旨在可持续回收废LIBs。
{"title":"Mild and efficient recovery of lithium-ion battery cathode material by deep eutectic solvents with natural and cheap components","authors":"Yu Chen ,&nbsp;Yanlong Wang ,&nbsp;Yue Bai ,&nbsp;Minghui Feng ,&nbsp;Fengyi Zhou ,&nbsp;Yanhong Lu ,&nbsp;Yuting Guo ,&nbsp;Yixuan Zhang ,&nbsp;Tiancheng Mu","doi":"10.1016/j.gce.2022.06.005","DOIUrl":"10.1016/j.gce.2022.06.005","url":null,"abstract":"<div><p>Dissolution of lithium cobalt oxide (LCO) is the key step for the recovery of valuable metals (<em>e.g.</em>, Co and Li) from spent LCO-based lithium-ion batteries (LIBs). However, the dissolution process of LCO either needs toxic solvents, and high temperature, or shows low efficiency. Deep eutectic solvents (DESs) are potential green solvents to dissolve LCO. Here, DESs with polyethylene glycol (PEG) as hydrogen bond acceptor and ascorbic acid (AA) as hydrogen bond donor are found to dissolve LCO with 84.2% Co leaching efficiency at 80 <sup>o</sup>C and 72 h, which is higher than that from the reported references by common DESs. Furthermore, both DESs components (<em>i.e.</em>, PEG and AA) are cheap, biodegradable, and biocompatible. AA could be easily and abundantly extracted from natural fruits or vegetables. It provides a new guide for the green, mild, and efficient dissolution of LCO aiming at sustainable recovery of spent LIBs.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Pages 303-311"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46251976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Issues and strategies of cathode materials for mild aqueous static zinc-ion batteries 软水性静态锌离子电池正极材料的问题与对策
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-09-01 DOI: 10.1016/j.gce.2023.01.001
Wei Zhong , Jiahui Zhang , Zongmiao Li , Zeyu Shen , Shichao Zhang , Xinyang Wang , Yingying Lu

Researchers prefer mild aqueous static zinc-ion batteries (ASZIBs) for their distinct benefits of excellent safety, abundant zinc resources, low cost, and high energy density. However, at the moment there are some issues with the cathode materials of mild ASZIBs, including dissolution, by-products, poor conductivity, and a contentious energy storage system. Consequently, there are numerous difficulties in the development of high-performance mild ASZIBs cathode materials. This overview examines the mechanisms for storing energy and the developments in inorganic, organic, and other novel cathode materials that have emerged in recent years. At the same time, three solutions—structural engineering, interface engineering, and reaction pathway engineering—as well as the difficulties now faced by the cathode materials of mild ASZIBs are forcefully introduced. Finally, a prospect is made regarding the evolution of cathode materials in the future.

研究人员更喜欢温和的水性静态锌离子电池(ASZIBs),因为它们具有优异的安全性、丰富的锌资源、低成本和高能量密度。然而,目前轻度ASZIB的阴极材料存在一些问题,包括溶解、副产物、导电性差以及有争议的储能系统。因此,在开发高性能温和的ASZIBs阴极材料方面存在许多困难。这篇综述考察了近年来出现的无机、有机和其他新型阴极材料的储能机制和发展。同时,着重介绍了三种解决方案——结构工程、界面工程和反应途径工程——以及目前温和ASZIB阴极材料面临的困难。最后对阴极材料的发展前景进行了展望。
{"title":"Issues and strategies of cathode materials for mild aqueous static zinc-ion batteries","authors":"Wei Zhong ,&nbsp;Jiahui Zhang ,&nbsp;Zongmiao Li ,&nbsp;Zeyu Shen ,&nbsp;Shichao Zhang ,&nbsp;Xinyang Wang ,&nbsp;Yingying Lu","doi":"10.1016/j.gce.2023.01.001","DOIUrl":"10.1016/j.gce.2023.01.001","url":null,"abstract":"<div><p>Researchers prefer mild aqueous static zinc-ion batteries (ASZIBs) for their distinct benefits of excellent safety, abundant zinc resources, low cost, and high energy density. However, at the moment there are some issues with the cathode materials of mild ASZIBs, including dissolution, by-products, poor conductivity, and a contentious energy storage system. Consequently, there are numerous difficulties in the development of high-performance mild ASZIBs cathode materials. This overview examines the mechanisms for storing energy and the developments in inorganic, organic, and other novel cathode materials that have emerged in recent years. At the same time, three solutions—structural engineering, interface engineering, and reaction pathway engineering—as well as the difficulties now faced by the cathode materials of mild ASZIBs are forcefully introduced. Finally, a prospect is made regarding the evolution of cathode materials in the future.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Pages 264-284"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48119950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient and safe platform based on the tube-in-tube reactor for implementing gas-liquid processes in flow 基于管中管反应器的高效安全的气液流动过程平台
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-09-01 DOI: 10.1016/j.gce.2022.12.001
Caijin Zhou , Bingqi Xie , Junxin Chen , Yiwei Fan , Jisong Zhang

Recently, the continuous tube-in-tube reactor based on the Teflon AF membrane is emerging as a powerful toolkit for accelerating gas-liquid mass transfer and reaction rate. Because of its large gas-liquid interfacial area and short mass transfer distance, the reactor can allow a fast gas-liquid mass transfer without direct contact between gas and liquid phases, offering an efficient and safe platform for implementing gas-liquid reaction and rapid determination of gas-liquid parameters. In this review, a detailed description and construction method of this reactor are provided. Then, the recent advancements of the tube-in-tube reactor in fundamental studies and practical applications in gas-involved chemical reactions and biosynthetic processes are discussed. Finally, a perspective on future potential applications of such flow reactors is provided.

最近,基于Teflon AF膜的连续管中管反应器正在成为加速气液传质和反应速率的强大工具。由于其气液界面面积大、传质距离短,该反应器可以在气相和液相不直接接触的情况下实现快速的气液传质,为实现气液反应和快速确定气液参数提供了一个高效安全的平台。在这篇综述中,提供了该反应器的详细描述和施工方法。然后,讨论了管中反应器在气体化学反应和生物合成过程中的基础研究和实际应用方面的最新进展。最后,对这种流动反应器的未来潜在应用进行了展望。
{"title":"An efficient and safe platform based on the tube-in-tube reactor for implementing gas-liquid processes in flow","authors":"Caijin Zhou ,&nbsp;Bingqi Xie ,&nbsp;Junxin Chen ,&nbsp;Yiwei Fan ,&nbsp;Jisong Zhang","doi":"10.1016/j.gce.2022.12.001","DOIUrl":"10.1016/j.gce.2022.12.001","url":null,"abstract":"<div><p>Recently, the continuous tube-in-tube reactor based on the Teflon AF membrane is emerging as a powerful toolkit for accelerating gas-liquid mass transfer and reaction rate. Because of its large gas-liquid interfacial area and short mass transfer distance, the reactor can allow a fast gas-liquid mass transfer without direct contact between gas and liquid phases, offering an efficient and safe platform for implementing gas-liquid reaction and rapid determination of gas-liquid parameters. In this review, a detailed description and construction method of this reactor are provided. Then, the recent advancements of the tube-in-tube reactor in fundamental studies and practical applications in gas-involved chemical reactions and biosynthetic processes are discussed. Finally, a perspective on future potential applications of such flow reactors is provided.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Pages 251-263"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47768785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renewable non-edible oils derived long chain (C24.1) bio-based zwitterionic surfactant with ultralow interfacial tension between crude oil and formation brine 可再生非食用油衍生的长链(C24.1)生物基两性离子表面活性剂,具有原油与地层盐水之间的超低界面张力
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-09-01 DOI: 10.1016/j.gce.2022.08.001
Homely Isaya Mtui , Fang-Hui Liu , Wei Wang , Jian-Qiao Lang , Shi-Zhong Yang , Bo-Zhong Mu

A new ultra-long chain monounsaturated 4-(N-nervonicamidopropyl-N,N-dimethylammonium) butane sulfonate (NDAS) zwitterionic surfactant with ultralow interfacial tensions was developed through the modification of nervonic acid derived from renewable non-edible seed oils by a simple and effective method. Its structure was characterized by ESI-HRMS, 1H NMR, and 13C NMR. NDAS surfactant exhibited a strong interfacial activity (∼10−4 mN/m) between the crude oil and the formation brine at a very low surfactant dosage (0.05 g/L) and at high salinity conditions, which is equivalent to 2% (w/w) of dosage of the most traditional surfactants used in the enhanced oil recovery field. Meanwhile, at a very low concentration (0.05 g/L), NDAS demonstrated strong NaCl compatibility up to 100 g/L, Ca2+ ions compatibility up to 200 mg/L, and temperature stability up to 90 °C. The surface tension, emulsification, and biodegradability parameters were also evaluated. This work consolidates our hypothesis that increasing the hydrophobic chain length of a surfactant certainly contributes to the high interfacial activity and good compatibility of salts and temperatures. Hence, it will facilitate the design of a sustainable alternative to petroleum-based chemicals to develop bio-based surfactants and extend the domain of bio-based surfactants to new applications such as in enhanced oil recovery (EOR).

以可再生非食用种子油为原料,采用简单有效的方法对神经酸进行改性,制备了一种新型的超长链单不饱和4-(N-神经酰胺丙基-N,N-二甲基铵)丁烷磺酸两性离子表面活性剂。通过ESI-HRMS、1H NMR和13C NMR对其结构进行了表征。在极低的表面活性剂用量(0.05 g/L)和高盐度条件下,NDAS表面活性剂在原油和地层盐水之间表现出很强的界面活性(~10−4 mN/m),这相当于提高采收率油田中使用的最传统表面活性剂剂量的2%(w/w)。同时,在极低浓度(0.05 g/L)下,NDAS表现出高达100 g/L的强NaCl兼容性、高达200 mg/L的Ca2+离子兼容性和高达90°C的温度稳定性。还评估了表面张力、乳化性和生物降解性参数。这项工作巩固了我们的假设,即增加表面活性剂的疏水链长度肯定有助于提高界面活性和盐与温度的良好兼容性。因此,它将有助于设计一种可持续的石油基化学品替代品,以开发生物基表面活性剂,并将生物基表面活化剂的领域扩展到新的应用,如提高采收率(EOR)。
{"title":"Renewable non-edible oils derived long chain (C24.1) bio-based zwitterionic surfactant with ultralow interfacial tension between crude oil and formation brine","authors":"Homely Isaya Mtui ,&nbsp;Fang-Hui Liu ,&nbsp;Wei Wang ,&nbsp;Jian-Qiao Lang ,&nbsp;Shi-Zhong Yang ,&nbsp;Bo-Zhong Mu","doi":"10.1016/j.gce.2022.08.001","DOIUrl":"10.1016/j.gce.2022.08.001","url":null,"abstract":"<div><p>A new ultra-long chain monounsaturated 4-(<em>N</em>-nervonicamidopropyl-<em>N,N</em>-dimethylammonium) butane sulfonate (NDAS) zwitterionic surfactant with ultralow interfacial tensions was developed through the modification of nervonic acid derived from renewable non-edible seed oils by a simple and effective method. Its structure was characterized by ESI-HRMS, <sup>1</sup>H NMR, and <sup>13</sup>C NMR. NDAS surfactant exhibited a strong interfacial activity (∼10<sup>−4</sup> mN/m) between the crude oil and the formation brine at a very low surfactant dosage (0.05 g/L) and at high salinity conditions, which is equivalent to 2% (w/w) of dosage of the most traditional surfactants used in the enhanced oil recovery field. Meanwhile, at a very low concentration (0.05 g/L), NDAS demonstrated strong NaCl compatibility up to 100 g/L, Ca<sup>2+</sup> ions compatibility up to 200 mg/L, and temperature stability up to 90 °C. The surface tension, emulsification, and biodegradability parameters were also evaluated. This work consolidates our hypothesis that increasing the hydrophobic chain length of a surfactant certainly contributes to the high interfacial activity and good compatibility of salts and temperatures. Hence, it will facilitate the design of a sustainable alternative to petroleum-based chemicals to develop bio-based surfactants and extend the domain of bio-based surfactants to new applications such as in enhanced oil recovery (EOR).</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Pages 346-355"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45182423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Type I photosensitizer based on AIE chromophore tricyano-methylene-pyridine for photodynamic therapy 基于AIE发色团三氰基亚甲基吡啶的I型光敏剂用于光动力治疗
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-09-01 DOI: 10.1016/j.gce.2022.07.004
Chao Pan, Weijun Zhao, Xiaolei Zhao, Zhenxing Liu, Xiangyu Li, Yanting Lyu, Xupeng Wu, Zhirong Zhu, Wei-Hong Zhu, Qi Wang

Image guided photodynamic therapy (PDT) combines fluorescence tracing and phototherapy, which can achieve a more accurate and effective treatment effect. However, traditional photosensitizers are limited by the aggregation-caused fluorescence quenching (ACQ) effect and low reactive oxygen species (ROS) generation in a hypoxic environment, resulting in poor imaging and treatment effect. Herein, we report a tricyano-methylene-pyridine (TCM)-based Type I aggregation-induced emission (AIE) photosensitizer (TCM-MBP), the strong electron acceptance (D-A) effect extends the wavelength to near-infrared (NIR) region to reduce the autofluorescence interference, and oxygen atoms provide lone pair electrons to enhance the inter system crossing (ISC) rate, thereby promoting the generation of more triplet states to produce ROS. The AIE photosensitizer TCM-MBP exhibited low oxygen dependence, NIR emission, and higher ROS production compared to commercially available Ce 6 and RB. After encapsulation with DSPE-PEG2000, TCM-MBP nanoparticles (TCM-MBP NPs) could penetrate to visualize cells and efficiently kill cancer cells upon light irradiation. This study provides an oxygen-independent AIE photosensitizer, which has great potential to replace the commercial ACQ photosensitizers.

图像引导光动力疗法(PDT)结合了荧光追踪和光疗,可以达到更准确有效的治疗效果。然而,传统的光敏剂在缺氧环境中受到聚集引起的荧光猝灭(ACQ)效应和低活性氧(ROS)产生的限制,导致成像和治疗效果不佳。在此,我们报道了一种基于三氰基亚甲基吡啶(TCM)的I型聚集诱导发射(AIE)光敏剂(TCM-MBP),强电子接受(D-a)效应将波长扩展到近红外(NIR)区域以减少自发荧光干扰,氧原子提供孤对电子以增强系统间交叉(ISC)速率,从而促进产生更多的三重态以产生ROS。与市售的Ce 6和RB相比,AIE光敏剂TCM-MBP表现出低的氧依赖性、NIR发射和更高的ROS产生。用DSPE-PEG2000包封后,TCM-MBP纳米颗粒(TCM-MBP-NP)可以穿透以观察细胞,并在光照射下有效杀死癌症细胞。本研究提供了一种不依赖氧气的AIE光敏剂,它有很大的潜力取代商业ACQ光敏剂。
{"title":"Type I photosensitizer based on AIE chromophore tricyano-methylene-pyridine for photodynamic therapy","authors":"Chao Pan,&nbsp;Weijun Zhao,&nbsp;Xiaolei Zhao,&nbsp;Zhenxing Liu,&nbsp;Xiangyu Li,&nbsp;Yanting Lyu,&nbsp;Xupeng Wu,&nbsp;Zhirong Zhu,&nbsp;Wei-Hong Zhu,&nbsp;Qi Wang","doi":"10.1016/j.gce.2022.07.004","DOIUrl":"10.1016/j.gce.2022.07.004","url":null,"abstract":"<div><p>Image guided photodynamic therapy (PDT) combines fluorescence tracing and phototherapy, which can achieve a more accurate and effective treatment effect. However, traditional photosensitizers are limited by the aggregation-caused fluorescence quenching (ACQ) effect and low reactive oxygen species (ROS) generation in a hypoxic environment, resulting in poor imaging and treatment effect. Herein, we report a tricyano-methylene-pyridine (TCM)-based Type I aggregation-induced emission (AIE) photosensitizer (TCM-MBP), the strong electron acceptance (D-A) effect extends the wavelength to near-infrared (NIR) region to reduce the autofluorescence interference, and oxygen atoms provide lone pair electrons to enhance the inter system crossing (ISC) rate, thereby promoting the generation of more triplet states to produce ROS. The AIE photosensitizer TCM-MBP exhibited low oxygen dependence, NIR emission, and higher ROS production compared to commercially available Ce 6 and RB. After encapsulation with DSPE-PEG<sub>2000</sub>, TCM-MBP nanoparticles (TCM-MBP NPs) could penetrate to visualize cells and efficiently kill cancer cells upon light irradiation. This study provides an oxygen-independent AIE photosensitizer, which has great potential to replace the commercial ACQ photosensitizers.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Pages 324-330"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46385738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Green Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1