首页 > 最新文献

Green Chemical Engineering最新文献

英文 中文
Engineering Escherichia coli for high-yield production of ectoine 工程大肠杆菌高产产异托因
Q2 Chemical Engineering Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2021.09.002
Daoan Wang , Jiamin Chen , Yang Wang , Guocheng Du , Zhen Kang

Ectoine is a natural macromolecule protector and synthesized by some extremophiles. It provides protections against radiation-mediated oxidative damages and is widely used as a bioactive ingredient in pharmaceutics and cosmetics. To meet its growing commercial demands, we engineered Escherichia coli strains for the high-yield production of ectoine. The ectABC gene cluster from the native ectoine producer Halomonas elongata was introduced into different Escherichia coli (E. Coil) strains via plasmids and 0.8 g L-1 of ectoine was produced in flask cultures by engineered E. coli BL21 (DE3). Subsequently, we designed the ribosome-binding sites of the gene cluster to fine-tune the expressions of genes ectA, ectB, and ectC, which increased the ectoine yield to 1.6 g L-1. After further combinatorial overexpression of Corynebacterium glutamicum aspartate kinase mutant (G1A, C932T) and the H. elongate aspartate-semialdehyde dehydrogenase to increase the supply of the precursor, the titer of ectoine reached to 5.5 g L-1 in flask cultures. Finally, the engineered strain produced 60.7 g L-1 ectoine in fed-batch cultures with a conversion rate of 0.25 g/g glucose.

Ectoine是一种天然的大分子保护剂,由一些极端微生物合成。它提供对辐射介导的氧化损伤的保护,并被广泛用作制药和化妆品中的生物活性成分。为了满足其日益增长的商业需求,我们设计了大肠杆菌菌株,用于高产量生产外泌碱。通过质粒将来自天然外泌碱产生菌Halomonas elongata的ectABC基因簇引入不同的大肠杆菌(E.Coil)菌株中,并通过工程大肠杆菌BL21(DE3)在烧瓶培养中产生0.8g L-1的外泌碱。随后,我们设计了基因簇的核糖体结合位点,以微调基因ectA、ectB和ectC的表达,从而将外泌碱产量提高到1.6 g L-1。谷氨酸棒杆菌天冬氨酸激酶突变体(G1A,C932T)和H.伸长天冬氨酸半醛脱氢酶进一步组合过表达以增加前体的供应后,在烧瓶培养中,外泌碱的滴度达到5.5g L-1。最后,工程菌株在补料分批培养中以0.25g/g葡萄糖的转化率产生60.7g L-1胞外碱。
{"title":"Engineering Escherichia coli for high-yield production of ectoine","authors":"Daoan Wang ,&nbsp;Jiamin Chen ,&nbsp;Yang Wang ,&nbsp;Guocheng Du ,&nbsp;Zhen Kang","doi":"10.1016/j.gce.2021.09.002","DOIUrl":"10.1016/j.gce.2021.09.002","url":null,"abstract":"<div><p>Ectoine is a natural macromolecule protector and synthesized by some extremophiles. It provides protections against radiation-mediated oxidative damages and is widely used as a bioactive ingredient in pharmaceutics and cosmetics. To meet its growing commercial demands, we engineered <em>Escherichia coli</em> strains for the high-yield production of ectoine. The <em>ectABC</em> gene cluster from the native ectoine producer <em>Halomonas elongata</em> was introduced into different <em>Escherichia coli (E. Coil)</em> strains <em>via</em> plasmids and 0.8 g L<sup>-1</sup> of ectoine was produced in flask cultures by engineered <em>E. coli</em> BL21 (DE3). Subsequently, we designed the ribosome-binding sites of the gene cluster to fine-tune the expressions of genes <em>ectA</em>, <em>ectB</em>, and <em>ectC</em>, which increased the ectoine yield to 1.6 g L<sup>-1</sup>. After further combinatorial overexpression of <em>Corynebacterium glutamicum</em> aspartate kinase mutant (G1A, C932T) and the <em>H. elongate</em> aspartate-semialdehyde dehydrogenase to increase the supply of the precursor, the titer of ectoine reached to 5.5 g L<sup>-1</sup> in flask cultures. Finally, the engineered strain produced 60.7 g L<sup>-1</sup> ectoine in fed-batch cultures with a conversion rate of 0.25 g/g glucose.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46731087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Outside Back Cover 封底
Q2 Chemical Engineering Pub Date : 2023-06-01 DOI: 10.1016/S2666-9528(23)00020-1
{"title":"Outside Back Cover","authors":"","doi":"10.1016/S2666-9528(23)00020-1","DOIUrl":"https://doi.org/10.1016/S2666-9528(23)00020-1","url":null,"abstract":"","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50177944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application and progress of techno-economic analysis and life cycle assessment in biomanufacturing of fuels and chemicals 技术经济分析和生命周期评估在燃料和化学品生物制造中的应用与进展
Q2 Chemical Engineering Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2022.09.002
Rongzhan Fu , Lixia Kang , Chenyue Zhang , Qiang Fei

To reduce the dependency on petroleum-based products and emission of greenhouse gas, renewable biofuels and chemicals play an important role to meet the unmatched energy demands of the rapidly growing population. However, most biofuel and chemical products do not reach the commercialization stage, mainly hindered by incomparable economics to petroproducts. Techno-economic assessment (TEA) is a useful tool to estimate economic performance, and identify bottlenecks for the development of biofuel and chemical production technology, meanwhile, life cycle assessment (LCA) is applied to assess sustainability by reducing the environmental impact of biofuel and chemical production. This present review covers TEA and LCA research progress in the manufacturing of biofuels and biochemical, and discusses the impacts of TEA and LCA results on the development and optimization of biofuel and chemical production. In addition, challenges associated with TEA and LCA of biofuel and biochemical production were briefly overviewed, and potential approaches that may overcome such challenges were discussed enabling viable and sustainable biomanufacturing of fuels and chemicals. Future integrated TEA and LCA studies could significantly promote the economic and sustainable development of the biomanufacturing process.

为了减少对石油产品的依赖和温室气体的排放,可再生生物燃料和化学品在满足快速增长人口无与伦比的能源需求方面发挥着重要作用。然而,大多数生物燃料和化学产品还没有达到商业化阶段,主要是受到石油产品无法比拟的经济性的阻碍。技术经济评估(TEA)是评估经济绩效、确定生物燃料和化学品生产技术发展瓶颈的有用工具,同时,生命周期评估(LCA)用于通过减少生物燃料和化工生产对环境的影响来评估可持续性。本综述涵盖了TEA和LCA在生物燃料和生物化学生产方面的研究进展,并讨论了TEA及LCA结果对生物燃料和化学品生产的开发和优化的影响。此外,还简要概述了与生物燃料和生物化学生产的TEA和LCA相关的挑战,并讨论了可能克服这些挑战的潜在方法,以实现燃料和化学品的可行和可持续的生物制造。未来的综合技经评估和生命周期评价研究将大大促进生物制造过程的经济和可持续发展。
{"title":"Application and progress of techno-economic analysis and life cycle assessment in biomanufacturing of fuels and chemicals","authors":"Rongzhan Fu ,&nbsp;Lixia Kang ,&nbsp;Chenyue Zhang ,&nbsp;Qiang Fei","doi":"10.1016/j.gce.2022.09.002","DOIUrl":"https://doi.org/10.1016/j.gce.2022.09.002","url":null,"abstract":"<div><p>To reduce the dependency on petroleum-based products and emission of greenhouse gas, renewable biofuels and chemicals play an important role to meet the unmatched energy demands of the rapidly growing population. However, most biofuel and chemical products do not reach the commercialization stage, mainly hindered by incomparable economics to petroproducts. Techno-economic assessment (TEA) is a useful tool to estimate economic performance, and identify bottlenecks for the development of biofuel and chemical production technology, meanwhile, life cycle assessment (LCA) is applied to assess sustainability by reducing the environmental impact of biofuel and chemical production. This present review covers TEA and LCA research progress in the manufacturing of biofuels and biochemical, and discusses the impacts of TEA and LCA results on the development and optimization of biofuel and chemical production. In addition, challenges associated with TEA and LCA of biofuel and biochemical production were briefly overviewed, and potential approaches that may overcome such challenges were discussed enabling viable and sustainable biomanufacturing of fuels and chemicals. Future integrated TEA and LCA studies could significantly promote the economic and sustainable development of the biomanufacturing process.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50178406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Bioconversion of lignocellulosic biomass into bacterial nanocellulose: challenges and perspectives 木质纤维素生物质转化为细菌纳米纤维素:挑战和前景
Q2 Chemical Engineering Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2022.04.007
Wenchao Li , Yuqing Shen , Huan Liu , Xinxin Huang , Bin Xu , Cheng Zhong , Shiru Jia

Nanocellulose has various outstanding properties and great potential for replacing petrochemical products. The utilization of lignocellulose to produce nanocellulose is of great significance to the sustainable development of the economy and society. However, the direct extraction of nanocellulose from lignocellulose by chemical method is challenged by toxic chemicals utilization, energy and time consumption, and waste water generation. Therefore, this paper addressed the conversion of lignocellulosic biomass into bacterial nanocellulose (BNC) by the biological method. Moreover, this article highlights the recent advances in potentials and challenges of lignocellulosic biomass for BNC production through the bioconversion process, including biomass pretreatment, enzymatic hydrolysis, glucose and xylose fermentation, GA accumulation, and inhibitor tolerant. The development in metabolic and evolutionary engineering to enhance the production capacity of BNC-producing strain is also discussed. It is expected to provide guidance on the effective bioproduction of nanocellulose from lignocellulosic biomass.

纳米纤维素具有多种优异的性能,在取代石化产品方面具有巨大的潜力。利用木质纤维素生产纳米纤维素对经济社会的可持续发展具有重要意义。然而,通过化学方法从木质纤维素中直接提取纳米纤维素受到有毒化学品利用、能源和时间消耗以及废水产生的挑战。因此,本文采用生物法将木质纤维素生物质转化为细菌纳米纤维素(BNC)。此外,本文强调了木质纤维素生物质通过生物转化过程生产BNC的潜力和挑战的最新进展,包括生物质预处理、酶水解、葡萄糖和木糖发酵、GA积累和抑制剂耐受性。还讨论了代谢和进化工程的发展,以提高BNC生产菌株的生产能力。它有望为木质纤维素生物质有效生物生产纳米纤维素提供指导。
{"title":"Bioconversion of lignocellulosic biomass into bacterial nanocellulose: challenges and perspectives","authors":"Wenchao Li ,&nbsp;Yuqing Shen ,&nbsp;Huan Liu ,&nbsp;Xinxin Huang ,&nbsp;Bin Xu ,&nbsp;Cheng Zhong ,&nbsp;Shiru Jia","doi":"10.1016/j.gce.2022.04.007","DOIUrl":"10.1016/j.gce.2022.04.007","url":null,"abstract":"<div><p>Nanocellulose has various outstanding properties and great potential for replacing petrochemical products. The utilization of lignocellulose to produce nanocellulose is of great significance to the sustainable development of the economy and society. However, the direct extraction of nanocellulose from lignocellulose by chemical method is challenged by toxic chemicals utilization, energy and time consumption, and waste water generation. Therefore, this paper addressed the conversion of lignocellulosic biomass into bacterial nanocellulose (BNC) by the biological method. Moreover, this article highlights the recent advances in potentials and challenges of lignocellulosic biomass for BNC production through the bioconversion process, including biomass pretreatment, enzymatic hydrolysis, glucose and xylose fermentation, GA accumulation, and inhibitor tolerant. The development in metabolic and evolutionary engineering to enhance the production capacity of BNC-producing strain is also discussed. It is expected to provide guidance on the effective bioproduction of nanocellulose from lignocellulosic biomass.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48928612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Engineering the native methylotrophs for the bioconversion of methanol to value-added chemicals: current status and future perspectives 甲醇生物转化为增值化学品的天然甲基化营养体工程:现状和未来展望
Q2 Chemical Engineering Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2022.10.005
Jing Wang, Ruirui Qin, Yuanke Guo, Chen Ma, Xin Wang, Kequan Chen, Pingkai Ouyang

Methanol is becoming an attractive fermentation feedstock for large-scale bioproduction of chemicals, due to its natural abundance and mature production technology. Native methylotrophs, which can utilize methanol as the only source of carbon and energy, are ideal hosts for methanol bioconversion due to their high methanol utilization rate and have been extensively employed in the production of value-added chemicals from methanol. Here, we review the natural methanol utilization pathways in native methylotrophs, describing the available synthetic biology tools developed for engineering native methylotrophs, and discuss the strategies for improving their methanol utilization efficiency. Finally, the representative examples of engineering the native methylotrophs to produce value-added products from methanol are summarized. Furthermore, we also discuss the major challenges and possible solutions for the application of native methylotrophs in methanol-based biomanufacturing.

甲醇由于其天然的丰富性和成熟的生产技术,正在成为大规模生物化工生产的一种有吸引力的发酵原料。天然甲基营养物可以利用甲醇作为唯一的碳和能源来源,由于其甲醇利用率高,是甲醇生物转化的理想宿主,并已被广泛用于从甲醇生产增值化学品。在这里,我们回顾了天然甲基营养体中的天然甲醇利用途径,描述了为工程天然甲基营养物开发的可用合成生物学工具,并讨论了提高其甲醇利用效率的策略。最后,总结了利用甲醇改造天然甲基营养物生产高附加值产品的代表性实例。此外,我们还讨论了天然甲基营养物在甲醇生物制造中应用的主要挑战和可能的解决方案。
{"title":"Engineering the native methylotrophs for the bioconversion of methanol to value-added chemicals: current status and future perspectives","authors":"Jing Wang,&nbsp;Ruirui Qin,&nbsp;Yuanke Guo,&nbsp;Chen Ma,&nbsp;Xin Wang,&nbsp;Kequan Chen,&nbsp;Pingkai Ouyang","doi":"10.1016/j.gce.2022.10.005","DOIUrl":"10.1016/j.gce.2022.10.005","url":null,"abstract":"<div><p>Methanol is becoming an attractive fermentation feedstock for large-scale bioproduction of chemicals, due to its natural abundance and mature production technology. Native methylotrophs, which can utilize methanol as the only source of carbon and energy, are ideal hosts for methanol bioconversion due to their high methanol utilization rate and have been extensively employed in the production of value-added chemicals from methanol. Here, we review the natural methanol utilization pathways in native methylotrophs, describing the available synthetic biology tools developed for engineering native methylotrophs, and discuss the strategies for improving their methanol utilization efficiency. Finally, the representative examples of engineering the native methylotrophs to produce value-added products from methanol are summarized. Furthermore, we also discuss the major challenges and possible solutions for the application of native methylotrophs in methanol-based biomanufacturing.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43300902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
OFC: Outside Front Cover OFC:外封面
Q2 Chemical Engineering Pub Date : 2023-06-01 DOI: 10.1016/S2666-9528(23)00013-4
{"title":"OFC: Outside Front Cover","authors":"","doi":"10.1016/S2666-9528(23)00013-4","DOIUrl":"https://doi.org/10.1016/S2666-9528(23)00013-4","url":null,"abstract":"","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50178407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomanufacturing boosts the high-level development of economy and society 生物制造促进了经济社会的高水平发展
Q2 Chemical Engineering Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2023.03.004
Chun Li, An-Ping Zeng, Ying-Jin Yuan
{"title":"Biomanufacturing boosts the high-level development of economy and society","authors":"Chun Li,&nbsp;An-Ping Zeng,&nbsp;Ying-Jin Yuan","doi":"10.1016/j.gce.2023.03.004","DOIUrl":"10.1016/j.gce.2023.03.004","url":null,"abstract":"","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48212612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of glucose isomerase-producing bacteria and optimization of fermentation conditions for producing glucose isomerase using biomass 产糖异构酶细菌的鉴定及生物质产糖异构酶发酵条件的优化
Q2 Chemical Engineering Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2022.05.003
Aristide Laurel Mokale Kognou , Chonlong Chio , Janak Raj Khatiwada , Sarita Shrestha , Xuantong Chen , Hongwei Li , Yuen Zhu , Zi-Hua Jiang , Chunbao (Charles) Xu , Wensheng Qin

Glucose isomerase (GI) is an enzyme with high potential applications. Characterization of GI producing bacteria with interesting properties from an industrial point of view is essential. Bacillus sp., Paenarthrobacter sp., Chryseobacterium sp., Hymenobacter sp., Mycobacterium sp., and Stenotrophomonas sp. were isolated from soil samples. Optimization of enzyme production yield was investigated in various fermentation conditions using response surface methodology. All isolates exhibited maximum GI activity at 40 °C, pH 6–8 after 4 days of incubation. A mixture of peptone/yeast extract or tryptone/peptone enhanced higher enzyme production. The same trend was observed in fermentation medium containing 1% xylose or 2%–2.5% wheat straw. This study advanced the knowledge of these bacterial isolates in promoting wheat straw as feedstock for the bio-based industry.

葡萄糖异构酶(GI)是一种应用前景广阔的酶。从工业角度对具有有趣特性的GI产生菌进行表征是至关重要的。从土壤样品中分离出芽孢杆菌属(Bacillus sp.)、Paenarvonacter sp.、Chrysobacterium sp.、膜壳杆菌属(Hymenobacter sp..)、分枝杆菌属(Mycobacterum sp.)和狭窄单胞菌属(Stenotrophomonas sp.)。采用响应面法研究了不同发酵条件下酶产量的优化。培养4天后,所有分离株在40°C、pH 6-8时均表现出最大的GI活性。蛋白胨/酵母提取物或胰蛋白酶/蛋白胨的混合物提高了较高的酶产量。在含有1%木糖或2%–2.5%麦秆的发酵培养基中也观察到了相同的趋势。本研究在推广麦草作为生物工业原料方面提高了对这些菌株的认识。
{"title":"Characterization of glucose isomerase-producing bacteria and optimization of fermentation conditions for producing glucose isomerase using biomass","authors":"Aristide Laurel Mokale Kognou ,&nbsp;Chonlong Chio ,&nbsp;Janak Raj Khatiwada ,&nbsp;Sarita Shrestha ,&nbsp;Xuantong Chen ,&nbsp;Hongwei Li ,&nbsp;Yuen Zhu ,&nbsp;Zi-Hua Jiang ,&nbsp;Chunbao (Charles) Xu ,&nbsp;Wensheng Qin","doi":"10.1016/j.gce.2022.05.003","DOIUrl":"10.1016/j.gce.2022.05.003","url":null,"abstract":"<div><p>Glucose isomerase (GI) is an enzyme with high potential applications. Characterization of GI producing bacteria with interesting properties from an industrial point of view is essential. <em>Bacillus</em> sp., <em>Paenarthrobacter</em> sp., <em>Chryseobacterium</em> sp., <em>Hymenobacter</em> sp., <em>Mycobacterium</em> sp., and <em>Stenotrophomonas</em> sp. were isolated from soil samples. Optimization of enzyme production yield was investigated in various fermentation conditions using response surface methodology. All isolates exhibited maximum GI activity at 40 °C, pH 6–8 after 4 days of incubation. A mixture of peptone/yeast extract or tryptone/peptone enhanced higher enzyme production. The same trend was observed in fermentation medium containing 1% xylose or 2%–2.5% wheat straw. This study advanced the knowledge of these bacterial isolates in promoting wheat straw as feedstock for the bio-based industry.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45691911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Multi-functional engineered polypeptide-based drug delivery systems for improved cancer therapy 用于改善癌症治疗的多功能工程多肽给药系统
Q2 Chemical Engineering Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2022.07.010
Xiaobin Li , Junyu Liu , Haihong Chen , Yaxin Chen , Yi Wang , Can Yang Zhang , Xin-Hui Xing

With the rapid development of chemical engineering and biotechnology, polypeptide, as a promising candidate in the biomedical field, has been thoroughly investigated and extensively used as the drug delivery vehicle for diseases treatment, especially cancer, owing to the high biocompatibility, good biodegradability, versatile constructions, and diverse functions. Engineered polypeptide-based drug delivery system (so-called EPP-DDS) can deliver the cargos to the target site via a specific recognition effect, followed by overcoming the barriers like blood brain barrier (BBB) and releasing them by responding to the microenvironment cues, to improve the therapeutic efficacy and reduce the side-effect. Herein, it's of great importance to conclude and summarize the updates on EPP-DDS developed by chemical engineering methods. In this review, we first summarized the recent updates in the manufacturing of polypeptide and preparation of EPP-DDS based on green biochemical engineering and/or synthetic processes for cancer therapy, including chemotherapy, immunotherapy, photodynamic therapy (PDT), gene therapy, and combination therapy. Then, we surveyed the research progress of inflammation-mediated cancer treatment strategies based on EPP-DDS with high anti-inflammation activity. Finally, we concluded the discovery and green production process of engineered polypeptide, challenges, and perspectives of EPP-DDS. Overall, the EPP-DDS has great potential for cancer therapy in the clinic with improved therapeutic efficacy and reduced adverse effect, which needs the innovation of green biochemical engineering for customized design and production of polypeptides.

随着化学工程和生物技术的快速发展,多肽作为生物医学领域的一种很有前途的候选药物,由于其高的生物相容性、良好的生物降解性、多功能的结构和多样的功能,已被广泛研究和应用于疾病治疗,尤其是癌症的给药载体。基于工程多肽的药物递送系统(所谓的EPP-DDS)可以通过特定的识别作用将货物递送到靶位点,然后克服血脑屏障(BBB)等屏障,并通过响应微环境线索释放它们,以提高治疗效果并减少副作用。在此,总结和总结化学工程方法开发的EPP-DDS的最新进展具有重要意义。在这篇综述中,我们首先总结了癌症治疗中基于绿色生物化学工程和/或合成工艺的多肽制造和EPP-DS制备的最新进展,包括化疗、免疫疗法、光动力疗法(PDT)、基因疗法和联合疗法。然后,我们综述了基于具有高抗炎活性的EPP-DS的炎症介导的癌症治疗策略的研究进展。最后,我们总结了工程多肽的发现和绿色生产过程,EPP-DDS的挑战和前景。总体而言,EPP-DDS在临床治疗癌症方面具有巨大的潜力,提高了疗效,减少了不良反应,这需要绿色生物化学工程的创新来定制多肽的设计和生产。
{"title":"Multi-functional engineered polypeptide-based drug delivery systems for improved cancer therapy","authors":"Xiaobin Li ,&nbsp;Junyu Liu ,&nbsp;Haihong Chen ,&nbsp;Yaxin Chen ,&nbsp;Yi Wang ,&nbsp;Can Yang Zhang ,&nbsp;Xin-Hui Xing","doi":"10.1016/j.gce.2022.07.010","DOIUrl":"10.1016/j.gce.2022.07.010","url":null,"abstract":"<div><p>With the rapid development of chemical engineering and biotechnology, polypeptide, as a promising candidate in the biomedical field, has been thoroughly investigated and extensively used as the drug delivery vehicle for diseases treatment, especially cancer, owing to the high biocompatibility, good biodegradability, versatile constructions, and diverse functions. Engineered polypeptide-based drug delivery system (so-called EPP-DDS) can deliver the cargos to the target site <em>via</em> a specific recognition effect, followed by overcoming the barriers like blood brain barrier (BBB) and releasing them by responding to the microenvironment cues, to improve the therapeutic efficacy and reduce the side-effect. Herein, it's of great importance to conclude and summarize the updates on EPP-DDS developed by chemical engineering methods. In this review, we first summarized the recent updates in the manufacturing of polypeptide and preparation of EPP-DDS based on green biochemical engineering and/or synthetic processes for cancer therapy, including chemotherapy, immunotherapy, photodynamic therapy (PDT), gene therapy, and combination therapy. Then, we surveyed the research progress of inflammation-mediated cancer treatment strategies based on EPP-DDS with high anti-inflammation activity. Finally, we concluded the discovery and green production process of engineered polypeptide, challenges, and perspectives of EPP-DDS. Overall, the EPP-DDS has great potential for cancer therapy in the clinic with improved therapeutic efficacy and reduced adverse effect, which needs the innovation of green biochemical engineering for customized design and production of polypeptides.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42155772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Ionic-microenvironment stabilizes the disulfide engineered lysine decarboxylase for efficient cadaverine production 离子微环境稳定二硫键工程赖氨酸脱羧酶以高效生产尸胺
Q2 Chemical Engineering Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2021.11.010
Zhuang Li , Yaju Xue , Xiuling Ji , Yuhong Huang

Cadaverine is the key monomer for the synthesis of nylon 5X. Efficient and alkaline stable lysine decarboxylases are highly desirable for cadaverine production as the reaction pH increasing from 6.3 to 8.5. However, the most studied lysine decarboxylase CadA (E. coli) lost almost all activity at pH 8.0, which is the foremost challenge for the industrial-cadaverine production. In this study, we first found that the Na+-microenvironment significantly improved the alkaline stability of the disulfide engineered lysine decarboxylase ΔLdcEt3 (P233C/L628C) (half-life 362 h), compared to the conventional buffer (half-life 0.66 h) at pH 8.0. Meanwhile, the whole-cell conversion efficiency of the industrial-grade l-lysine with ΔLdcEt3 could reach up to 99% in 2 h in the fermenter. Experimental investigation and molecular dynamics confirmed that Na+-microenvironment could improve active-aggregation state and affect secondary structure of ΔLdcEt3. Therefore, Na+-microenvironment stabilizes ΔLdcEt3 providing a great potential industrial application for high-level cadaverine production.

Cadaverine是合成尼龙5X的关键单体。当反应pH从6.3增加到8.5时,高效和碱性稳定的赖氨酸脱羧酶对于尸胺的生产是非常需要的。然而,研究最多的赖氨酸脱羧酶CadA(大肠杆菌)在pH 8.0时几乎失去了所有活性,这是工业化尸胺生产的首要挑战。在这项研究中,我们首先发现Na+-微环境显著改善了二硫化物工程赖氨酸脱羧酶ΔLdcEt3(P233C/L628C)的碱性稳定性(半衰期362 h) ,与传统缓冲液相比(半衰期0.66 h) pH 8.0。同时,工业级l-赖氨酸与ΔLdcEt3的全细胞转化率在2 h。实验研究和分子动力学证实,Na+-微环境可以改善ΔLdcEt3的活性聚集状态并影响其二级结构。因此,Na+-微环境稳定了ΔLdcEt3,为高水平的尸胺生产提供了巨大的工业应用潜力。
{"title":"Ionic-microenvironment stabilizes the disulfide engineered lysine decarboxylase for efficient cadaverine production","authors":"Zhuang Li ,&nbsp;Yaju Xue ,&nbsp;Xiuling Ji ,&nbsp;Yuhong Huang","doi":"10.1016/j.gce.2021.11.010","DOIUrl":"10.1016/j.gce.2021.11.010","url":null,"abstract":"<div><p>Cadaverine is the key monomer for the synthesis of nylon 5X. Efficient and alkaline stable lysine decarboxylases are highly desirable for cadaverine production as the reaction pH increasing from 6.3 to 8.5. However, the most studied lysine decarboxylase CadA (<em>E. coli</em>) lost almost all activity at pH 8.0, which is the foremost challenge for the industrial-cadaverine production. In this study, we first found that the Na<sup>+</sup>-microenvironment significantly improved the alkaline stability of the disulfide engineered lysine decarboxylase ΔLdcEt3 (P233C/L628C) (half-life 362 h), compared to the conventional buffer (half-life 0.66 h) at pH 8.0. Meanwhile, the whole-cell conversion efficiency of the industrial-grade <span>l</span>-lysine with ΔLdcEt3 could reach up to 99% in 2 h in the fermenter. Experimental investigation and molecular dynamics confirmed that Na<sup>+</sup>-microenvironment could improve active-aggregation state and affect secondary structure of ΔLdcEt3. Therefore, Na<sup>+</sup>-microenvironment stabilizes ΔLdcEt3 providing a great potential industrial application for high-level cadaverine production.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45527480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Green Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1