首页 > 最新文献

Green Chemical Engineering最新文献

英文 中文
Can the Bass innovation diffusion model describe adsorption breakthrough curves of pharmaceutical contaminants? Bass创新扩散模型能否描述药物污染物的吸附突破曲线?
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-07-18 DOI: 10.1016/j.gce.2023.07.001
Khim Hoong Chu, Mohd Ali Hashim
{"title":"Can the Bass innovation diffusion model describe adsorption breakthrough curves of pharmaceutical contaminants?","authors":"Khim Hoong Chu, Mohd Ali Hashim","doi":"10.1016/j.gce.2023.07.001","DOIUrl":"10.1016/j.gce.2023.07.001","url":null,"abstract":"","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"5 2","pages":"Pages 145-149"},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952823000353/pdfft?md5=1c59f9f5005d41c75a44fb464d3be52d&pid=1-s2.0-S2666952823000353-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45228083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid chemical recycling of waste polyester plastics catalyzed by recyclable catalyst 再生催化剂催化废旧聚酯塑料的快速化学回收
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-07-04 DOI: 10.1016/j.gce.2023.06.002
Yu-Ji Luo, Jia-Yin Sun, Zhi Li

Waste plastics are serious environmental threats due to their low degradability and low recycling rate. Rapid and efficient waste plastics recycling technologies are urgently demanded for a sustainable future. Herein, we report a rapid, closed-loop, and streamlined process to convert polyesters such as poly(ethylene terephthalate) (PET) back to its purified monomers. Using trifluoromethanesulfonic acid or metal triflates as the recyclable catalyst, polyesters such as PET can be completely depolymerized by simple carboxylic acids within 1 h. By coupling this acidolysis with a subsequent hydrogenolysis process, the consumed carboxylic acid was recovered and the closed-loop of PET depolymerization could be established. All catalysts and depolymerization agents are fully recycled while only PET and hydrogen are consumed.

废塑料降解性差、回收率低,严重威胁环境。为了实现可持续发展的未来,迫切需要快速高效的废塑料回收技术。在此,我们报告了一种快速、闭环、简化的工艺,可将聚酯(如聚对苯二甲酸乙二酯(PET))转化回其纯化单体。使用三氟甲磺酸或金属三氟化物作为可回收催化剂,PET 等聚酯可在 1 小时内被简单的羧酸完全解聚。所有催化剂和解聚剂都可以完全回收利用,而消耗的只是 PET 和氢气。
{"title":"Rapid chemical recycling of waste polyester plastics catalyzed by recyclable catalyst","authors":"Yu-Ji Luo,&nbsp;Jia-Yin Sun,&nbsp;Zhi Li","doi":"10.1016/j.gce.2023.06.002","DOIUrl":"10.1016/j.gce.2023.06.002","url":null,"abstract":"<div><p>Waste plastics are serious environmental threats due to their low degradability and low recycling rate. Rapid and efficient waste plastics recycling technologies are urgently demanded for a sustainable future. Herein, we report a rapid, closed-loop, and streamlined process to convert polyesters such as poly(ethylene terephthalate) (PET) back to its purified monomers. Using trifluoromethanesulfonic acid or metal triflates as the recyclable catalyst, polyesters such as PET can be completely depolymerized by simple carboxylic acids within 1 h. By coupling this acidolysis with a subsequent hydrogenolysis process, the consumed carboxylic acid was recovered and the closed-loop of PET depolymerization could be established. All catalysts and depolymerization agents are fully recycled while only PET and hydrogen are consumed.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"5 2","pages":"Pages 257-265"},"PeriodicalIF":0.0,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952823000341/pdfft?md5=9a827a034877fb9c2f2091c32d0a1146&pid=1-s2.0-S2666952823000341-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45275773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-concentration and multi-component NMHCs capture from oil field exhaust using porous ZIF-8/iso-hexadecane slurry 利用多孔 ZIF-8/异十六烷浆捕获油田废气中的低浓度和多组分 NMHCs
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-06-15 DOI: 10.1016/j.gce.2023.06.001
Kun Li, Han Tang, Jin Cai, Chun Deng, Bei Liu, Yunlei Peng, Changyu Sun, Guangjin Chen

Non-methane hydrocarbons (NMHCs) are a common type of volatile organic compounds (VOCs) pollutant in the petrochemical industry and have attracted widespread attention because of their adverse health effects and environmental impacts. In this paper, we report a new porous slurry formed with zeolitic imidazolate framework-8 (ZIF-8) and iso-hexadecane to capture the low-concentration and multi-component NMHCs (mainly ethane (C2H6), propane (C3H8), and n-butane (n-C4H10)) from the oil field exhaust. The sorption capacity of C2H6 in the slurry is significantly higher than that of nitrogen (N2) and methane (CH4). Moreover, the slurry demonstrated a clear advantage for C2H6 over N2 and CH4 in competitive adsorption through the pressure-drop curves. In the NMHCs capture experiments, the C3H8 and n-C4H10 concentrations after purification can be reduced to below 100 ppm, while the C2H6 concentration can reach approximately 180 ppm. More encouragingly, in the breakthrough tests, the slurry exhibits a perfect kinetic separation selectivity for multi-component NMHCs. Furthermore, to avoid structural collapse of ZIF-8 material during long-term use in acidic and wet environments, a certain amount of 2-methylimidazole was retained in the slurry as a protective agent in the material synthesis process. In this way, the ZIF-8 materials in the slurry can retain the stable characteristic structure in an aqueous and acidic environment and keep the capture capacity for NMHCs without degradation. We believe the porous ZIF-8/iso-hexadecane slurry is a promising capture agent for low-concentration and multi-component NMHCs with strong purification capacity and stability.

非甲烷碳氢化合物(NMHCs)是石化工业中常见的一种挥发性有机化合物(VOCs)污染物,因其对健康的不良影响和对环境的不良影响而受到广泛关注。本文报道了一种由沸石咪唑框架-8(ZIF-8)和异十六烷形成的新型多孔浆料,用于捕集油田废气中的低浓度、多组分非甲烷有机化合物(主要是乙烷(C2H6)、丙烷(C3H8)和正丁烷(n-C4H10))。泥浆中 C2H6 的吸附能力明显高于氮气(N2)和甲烷(CH4)。此外,通过压降曲线,泥浆中 C2H6 的竞争吸附能力明显优于 N2 和 CH4。在非甲烷总烃捕获实验中,净化后的 C3H8 和 n-C4H10 浓度可降至 100 ppm 以下,而 C2H6 浓度可达到约 180 ppm。更令人鼓舞的是,在突破试验中,浆料对多组分 NMHC 具有完美的动力学分离选择性。此外,为了避免 ZIF-8 材料在酸性和潮湿环境中长期使用时结构崩溃,在材料合成过程中,浆料中保留了一定量的 2-甲基咪唑作为保护剂。这样,浆料中的 ZIF-8 材料就能在水性和酸性环境中保持稳定的特征结构,并保持对 NMHC 的捕获能力而不会降解。我们认为多孔 ZIF-8/ 异十六烷浆料是一种很有前景的低浓度、多组分 NMHC 捕捉剂,具有很强的净化能力和稳定性。
{"title":"Low-concentration and multi-component NMHCs capture from oil field exhaust using porous ZIF-8/iso-hexadecane slurry","authors":"Kun Li,&nbsp;Han Tang,&nbsp;Jin Cai,&nbsp;Chun Deng,&nbsp;Bei Liu,&nbsp;Yunlei Peng,&nbsp;Changyu Sun,&nbsp;Guangjin Chen","doi":"10.1016/j.gce.2023.06.001","DOIUrl":"10.1016/j.gce.2023.06.001","url":null,"abstract":"<div><p>Non-methane hydrocarbons (NMHCs) are a common type of volatile organic compounds (VOCs) pollutant in the petrochemical industry and have attracted widespread attention because of their adverse health effects and environmental impacts. In this paper, we report a new porous slurry formed with zeolitic imidazolate framework-8 (ZIF-8) and iso-hexadecane to capture the low-concentration and multi-component NMHCs (mainly ethane (C<sub>2</sub>H<sub>6</sub>), propane (C<sub>3</sub>H<sub>8</sub>), and n-butane (n-C<sub>4</sub>H<sub>10</sub>)) from the oil field exhaust. The sorption capacity of C<sub>2</sub>H<sub>6</sub> in the slurry is significantly higher than that of nitrogen (N<sub>2</sub>) and methane (CH<sub>4</sub>). Moreover, the slurry demonstrated a clear advantage for C<sub>2</sub>H<sub>6</sub> over N<sub>2</sub> and CH<sub>4</sub> in competitive adsorption through the pressure-drop curves. In the NMHCs capture experiments, the C<sub>3</sub>H<sub>8</sub> and n-C<sub>4</sub>H<sub>10</sub> concentrations after purification can be reduced to below 100 ppm, while the C<sub>2</sub>H<sub>6</sub> concentration can reach approximately 180 ppm. More encouragingly, in the breakthrough tests, the slurry exhibits a perfect kinetic separation selectivity for multi-component NMHCs. Furthermore, to avoid structural collapse of ZIF-8 material during long-term use in acidic and wet environments, a certain amount of 2-methylimidazole was retained in the slurry as a protective agent in the material synthesis process. In this way, the ZIF-8 materials in the slurry can retain the stable characteristic structure in an aqueous and acidic environment and keep the capture capacity for NMHCs without degradation. We believe the porous ZIF-8/iso-hexadecane slurry is a promising capture agent for low-concentration and multi-component NMHCs with strong purification capacity and stability.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"5 2","pages":"Pages 245-256"},"PeriodicalIF":0.0,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952823000250/pdfft?md5=a97de56e7443c293257b6e31da284b98&pid=1-s2.0-S2666952823000250-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136161315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly selective kinetic resolution of D/L-syn-p-sulfone phenylserine catalyzed by d-threonine aldolase in two-phase ionic solvent D-苏氨酸醛缩酶在两相离子溶剂中催化D/ l -对砜苯基丝氨酸的高选择性动力学拆分
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2022.10.002
Fengfan Liu , Zhihao Shi , Jinmei Zhu , Xiaobin Liang , Mingming Liang , Yuanyuan Xie , Weike Su , Jiequn Wu

In the chemical synthesis of L-syn-p-methylsulfoxide phenylserine ethyl ester (D-ethyl ester), l-tartaric acid or enzymatic resolution is employed to resolve the racemate, and thus obtain the target compound, and the remaining isomer can be recycled to obtain the raw material. In this study, high-purity L-syn-p-methylsulfoxide phenylserine (L-syn-MPS) was obtained. The kinetics of the d-threonine aldolase enzymatic hydrolysis reaction reveals that D-syn-p-sulfoxylphenylserine resolves well in [BMIM][BF4] ionic solvents. The D/L-syn-MPS racemate was resolved using a two-phase ionic solvent [BMIM][NTf2] to afford L-syn-MPS (ee (enantiomeric excess) > 99%) and a white solid in 41.7% yield. Therefore, this system is suitable for the separation of insoluble aldehydes and successfully avoids the condensation of hydroxyl aldehydes to form D-anti-MPS.

在L-对甲基亚砜苯基丝氨酸乙酯(D-乙酯)的化学合成中,采用L-酒石酸或酶促拆分来拆分外消旋体,从而获得目标化合物,剩余的异构体可以回收获得原料。本研究获得了高纯度的L-对甲基亚砜苯基丝氨酸(L-syn-MPS)。d-苏氨酸醛缩酶酶水解反应的动力学表明,d-正-磺酰基苯基丝氨酸在[BMIM][BF4]离子溶剂中很好地分解。使用两相离子溶剂[BMIM][NTf2]解析D/L-合-MPS外消旋体,得到L-合-MPS(ee(对映体过量) >; 99%)和白色固体,产率为41.7%。因此,该体系适用于不溶性醛的分离,并成功避免了羟基醛缩合形成D-抗-MPS。
{"title":"Highly selective kinetic resolution of D/L-syn-p-sulfone phenylserine catalyzed by d-threonine aldolase in two-phase ionic solvent","authors":"Fengfan Liu ,&nbsp;Zhihao Shi ,&nbsp;Jinmei Zhu ,&nbsp;Xiaobin Liang ,&nbsp;Mingming Liang ,&nbsp;Yuanyuan Xie ,&nbsp;Weike Su ,&nbsp;Jiequn Wu","doi":"10.1016/j.gce.2022.10.002","DOIUrl":"10.1016/j.gce.2022.10.002","url":null,"abstract":"<div><p>In the chemical synthesis of L-<em>syn</em>-<em>p</em>-methylsulfoxide phenylserine ethyl ester (D-ethyl ester), <span>l</span>-tartaric acid or enzymatic resolution is employed to resolve the racemate, and thus obtain the target compound, and the remaining isomer can be recycled to obtain the raw material. In this study, high-purity L-<em>syn</em>-<em>p</em>-methylsulfoxide phenylserine (L-<em>syn</em>-MPS) was obtained. The kinetics of the <span>d</span>-threonine aldolase enzymatic hydrolysis reaction reveals that D-<em>syn</em>-<em>p</em>-sulfoxylphenylserine resolves well in [BMIM][BF<sub>4</sub>] ionic solvents. The D/L-<em>syn</em>-MPS racemate was resolved using a two-phase ionic solvent [BMIM][NTf<sub>2</sub>] to afford L-<em>syn</em>-MPS (ee (enantiomeric excess) &gt; 99%) and a white solid in 41.7% yield. Therefore, this system is suitable for the separation of insoluble aldehydes and successfully avoids the condensation of hydroxyl aldehydes to form D-<em>anti</em>-MPS.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 2","pages":"Pages 212-216"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48252309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Metabolic flux simulation of microbial systems based on optimal planning algorithms 基于最优规划算法的微生物系统代谢通量模拟
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2022.04.003
Chen Yang, Boyuan Xue, Yiming Zhang, Shaojie Wang, Haijia Su

The genomic scale metabolic networks of the microorganisms can be constructed based on their genome sequences, functional annotations, and biochemical reactions, reflecting almost all of the metabolic functions. Mathematical simulations of metabolic fluxes could make these functions be visualized, thereby providing guidance for rational engineering design and experimental operations. This review summarized recently developed flux simulation algorithms of microbial systems. For the single microbial systems, the optimal planning algorithm has low complexity because there is no interaction between microorganisms, and it can quickly simulate the stable metabolic states through the pseudo-steady hypothesis. Besides, the experimental conditions of single microbial systems are easier to reach or close to the optimal states of simulation, compared with polymicrobial systems. The polymicrobial culture systems could outcompete the single microbial systems as they could relieve metabolic pressure through metabolic division, resource exchange, and complex substrate co-utilization. Besides, they provide varieties of intracellular production environments, which render them the potential to achieve efficient bioproduct synthesis. However, due to the quasi-steady hypothesis that restricts the simulation of the dynamic processes of microbial interactions and the algorithm complexity, there are few researches on simulation algorithms of polymicrobial metabolic fluxes. Therefore, this review also analyzed and combed the microbial interactions based on the commonly used hypothesis of maximizing growth rates, and studied the strategies of coupling interactions with optimal planning simulations for metabolism. Finally, this review provided new insights into the genomic scale metabolic flux simulations of polymicrobial systems.

微生物的基因组规模代谢网络可以基于它们的基因组序列、功能注释和生化反应来构建,反映几乎所有的代谢功能。代谢通量的数学模拟可以使这些函数可视化,从而为合理的工程设计和实验操作提供指导。本文综述了近年来发展起来的微生物系统通量模拟算法。对于单个微生物系统,由于微生物之间没有相互作用,最优规划算法的复杂度较低,并且可以通过伪稳态假设快速模拟稳定的代谢状态。此外,与多微生物系统相比,单个微生物系统的实验条件更容易达到或接近模拟的最佳状态。多微生物培养系统可以通过代谢分裂、资源交换和复杂底物的共同利用来缓解代谢压力,因此可以胜过单一微生物系统。此外,它们提供了多种细胞内生产环境,这使它们有可能实现高效的生物产品合成。然而,由于准稳态假设限制了微生物相互作用动态过程的模拟和算法的复杂性,对多微生物代谢通量模拟算法的研究很少。因此,本综述还基于常用的生长速率最大化假设对微生物相互作用进行了分析和梳理,并研究了将相互作用与代谢优化规划模拟相耦合的策略。最后,这篇综述为多微生物系统的基因组规模代谢通量模拟提供了新的见解。
{"title":"Metabolic flux simulation of microbial systems based on optimal planning algorithms","authors":"Chen Yang,&nbsp;Boyuan Xue,&nbsp;Yiming Zhang,&nbsp;Shaojie Wang,&nbsp;Haijia Su","doi":"10.1016/j.gce.2022.04.003","DOIUrl":"10.1016/j.gce.2022.04.003","url":null,"abstract":"<div><p>The genomic scale metabolic networks of the microorganisms can be constructed based on their genome sequences, functional annotations, and biochemical reactions, reflecting almost all of the metabolic functions. Mathematical simulations of metabolic fluxes could make these functions be visualized, thereby providing guidance for rational engineering design and experimental operations. This review summarized recently developed flux simulation algorithms of microbial systems. For the single microbial systems, the optimal planning algorithm has low complexity because there is no interaction between microorganisms, and it can quickly simulate the stable metabolic states through the pseudo-steady hypothesis. Besides, the experimental conditions of single microbial systems are easier to reach or close to the optimal states of simulation, compared with polymicrobial systems. The polymicrobial culture systems could outcompete the single microbial systems as they could relieve metabolic pressure through metabolic division, resource exchange, and complex substrate co-utilization. Besides, they provide varieties of intracellular production environments, which render them the potential to achieve efficient bioproduct synthesis. However, due to the quasi-steady hypothesis that restricts the simulation of the dynamic processes of microbial interactions and the algorithm complexity, there are few researches on simulation algorithms of polymicrobial metabolic fluxes. Therefore, this review also analyzed and combed the microbial interactions based on the commonly used hypothesis of maximizing growth rates, and studied the strategies of coupling interactions with optimal planning simulations for metabolism. Finally, this review provided new insights into the genomic scale metabolic flux simulations of polymicrobial systems.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 2","pages":"Pages 146-159"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44349619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Outside Back Cover 封底
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-06-01 DOI: 10.1016/S2666-9528(23)00020-1
{"title":"Outside Back Cover","authors":"","doi":"10.1016/S2666-9528(23)00020-1","DOIUrl":"https://doi.org/10.1016/S2666-9528(23)00020-1","url":null,"abstract":"","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 2","pages":"Page OBC"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50177944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application and progress of techno-economic analysis and life cycle assessment in biomanufacturing of fuels and chemicals 技术经济分析和生命周期评估在燃料和化学品生物制造中的应用与进展
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2022.09.002
Rongzhan Fu , Lixia Kang , Chenyue Zhang , Qiang Fei

To reduce the dependency on petroleum-based products and emission of greenhouse gas, renewable biofuels and chemicals play an important role to meet the unmatched energy demands of the rapidly growing population. However, most biofuel and chemical products do not reach the commercialization stage, mainly hindered by incomparable economics to petroproducts. Techno-economic assessment (TEA) is a useful tool to estimate economic performance, and identify bottlenecks for the development of biofuel and chemical production technology, meanwhile, life cycle assessment (LCA) is applied to assess sustainability by reducing the environmental impact of biofuel and chemical production. This present review covers TEA and LCA research progress in the manufacturing of biofuels and biochemical, and discusses the impacts of TEA and LCA results on the development and optimization of biofuel and chemical production. In addition, challenges associated with TEA and LCA of biofuel and biochemical production were briefly overviewed, and potential approaches that may overcome such challenges were discussed enabling viable and sustainable biomanufacturing of fuels and chemicals. Future integrated TEA and LCA studies could significantly promote the economic and sustainable development of the biomanufacturing process.

为了减少对石油产品的依赖和温室气体的排放,可再生生物燃料和化学品在满足快速增长人口无与伦比的能源需求方面发挥着重要作用。然而,大多数生物燃料和化学产品还没有达到商业化阶段,主要是受到石油产品无法比拟的经济性的阻碍。技术经济评估(TEA)是评估经济绩效、确定生物燃料和化学品生产技术发展瓶颈的有用工具,同时,生命周期评估(LCA)用于通过减少生物燃料和化工生产对环境的影响来评估可持续性。本综述涵盖了TEA和LCA在生物燃料和生物化学生产方面的研究进展,并讨论了TEA及LCA结果对生物燃料和化学品生产的开发和优化的影响。此外,还简要概述了与生物燃料和生物化学生产的TEA和LCA相关的挑战,并讨论了可能克服这些挑战的潜在方法,以实现燃料和化学品的可行和可持续的生物制造。未来的综合技经评估和生命周期评价研究将大大促进生物制造过程的经济和可持续发展。
{"title":"Application and progress of techno-economic analysis and life cycle assessment in biomanufacturing of fuels and chemicals","authors":"Rongzhan Fu ,&nbsp;Lixia Kang ,&nbsp;Chenyue Zhang ,&nbsp;Qiang Fei","doi":"10.1016/j.gce.2022.09.002","DOIUrl":"https://doi.org/10.1016/j.gce.2022.09.002","url":null,"abstract":"<div><p>To reduce the dependency on petroleum-based products and emission of greenhouse gas, renewable biofuels and chemicals play an important role to meet the unmatched energy demands of the rapidly growing population. However, most biofuel and chemical products do not reach the commercialization stage, mainly hindered by incomparable economics to petroproducts. Techno-economic assessment (TEA) is a useful tool to estimate economic performance, and identify bottlenecks for the development of biofuel and chemical production technology, meanwhile, life cycle assessment (LCA) is applied to assess sustainability by reducing the environmental impact of biofuel and chemical production. This present review covers TEA and LCA research progress in the manufacturing of biofuels and biochemical, and discusses the impacts of TEA and LCA results on the development and optimization of biofuel and chemical production. In addition, challenges associated with TEA and LCA of biofuel and biochemical production were briefly overviewed, and potential approaches that may overcome such challenges were discussed enabling viable and sustainable biomanufacturing of fuels and chemicals. Future integrated TEA and LCA studies could significantly promote the economic and sustainable development of the biomanufacturing process.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 2","pages":"Pages 189-198"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50178406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Synergistic utilization of carbon sources for efficient biosynthesis of N-acetylglucosamine 协同利用碳源高效生物合成n -乙酰氨基葡萄糖
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2022.04.001
Yanni Pei, Yuhan Wang, Xiaolin Shen, Jia Wang, Xinxiao Sun, Qipeng Yuan

N-acetylglucosamine (GlcNAc) is an amino monosaccharide that has a variety of bioactivities and is widely used in pharmaceutical and food industries. Production of GlcNAc by chitin hydrolysis is limited by the supply of raw materials and encounters the risk of shellfish protein contamination. For efficient biosynthesis of GlcNAc, one challenge is to balance the carbon distribution between growth and production. Here, we applied the strategy of synergistic carbon utilization, in which glycerol supports cell growth and provides the acetyl group of GlcNAc while glucose serves as the precursor to glucosamine. The efficiency of GlcNAc production was stepwise improved by blocking the product re-uptake and degradation, strengthening the biosynthetic pathway and synergistically utilizing two carbon sources. With these efforts, the final strain produced 41.5 g/L GlcNAc with a yield of 0.49 g/g of total carbon sources. In addition, we also explored the feasibility of using acetate as a cheap carbon source to partly replace glycerol. This study provides a promising alternative strategy for sustainable and efficient production of GlcNAc.

N-乙酰葡糖胺(GlcNAc)是一种具有多种生物活性的氨基单糖,广泛应用于制药和食品工业。通过几丁质水解生产GlcNAc受到原料供应的限制,并面临贝类蛋白质污染的风险。对于GlcNAc的有效生物合成,一个挑战是平衡生长和生产之间的碳分布。在这里,我们应用了协同碳利用策略,其中甘油支持细胞生长并提供GlcNAc的乙酰基,而葡萄糖作为葡糖胺的前体。通过阻断产物的再吸收和降解,加强生物合成途径,协同利用两种碳源,逐步提高了GlcNAc的生产效率。通过这些努力,最终菌株产生了41.5g/L的GlcNAc,总碳源的产率为0.49g/g。此外,我们还探索了使用乙酸盐作为廉价碳源来部分取代甘油的可行性。本研究为GlcNAc的可持续高效生产提供了一种有前景的替代策略。
{"title":"Synergistic utilization of carbon sources for efficient biosynthesis of N-acetylglucosamine","authors":"Yanni Pei,&nbsp;Yuhan Wang,&nbsp;Xiaolin Shen,&nbsp;Jia Wang,&nbsp;Xinxiao Sun,&nbsp;Qipeng Yuan","doi":"10.1016/j.gce.2022.04.001","DOIUrl":"10.1016/j.gce.2022.04.001","url":null,"abstract":"<div><p><em>N</em>-acetylglucosamine (GlcNAc) is an amino monosaccharide that has a variety of bioactivities and is widely used in pharmaceutical and food industries. Production of GlcNAc by chitin hydrolysis is limited by the supply of raw materials and encounters the risk of shellfish protein contamination. For efficient biosynthesis of GlcNAc, one challenge is to balance the carbon distribution between growth and production. Here, we applied the strategy of synergistic carbon utilization, in which glycerol supports cell growth and provides the acetyl group of GlcNAc while glucose serves as the precursor to glucosamine. The efficiency of GlcNAc production was stepwise improved by blocking the product re-uptake and degradation, strengthening the biosynthetic pathway and synergistically utilizing two carbon sources. With these efforts, the final strain produced 41.5 g/L GlcNAc with a yield of 0.49 g/g of total carbon sources. In addition, we also explored the feasibility of using acetate as a cheap carbon source to partly replace glycerol. This study provides a promising alternative strategy for sustainable and efficient production of GlcNAc.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 2","pages":"Pages 233-238"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44541691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Engineering Escherichia coli for high-yield production of ectoine 工程大肠杆菌高产产异托因
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2021.09.002
Daoan Wang , Jiamin Chen , Yang Wang , Guocheng Du , Zhen Kang

Ectoine is a natural macromolecule protector and synthesized by some extremophiles. It provides protections against radiation-mediated oxidative damages and is widely used as a bioactive ingredient in pharmaceutics and cosmetics. To meet its growing commercial demands, we engineered Escherichia coli strains for the high-yield production of ectoine. The ectABC gene cluster from the native ectoine producer Halomonas elongata was introduced into different Escherichia coli (E. Coil) strains via plasmids and 0.8 g L-1 of ectoine was produced in flask cultures by engineered E. coli BL21 (DE3). Subsequently, we designed the ribosome-binding sites of the gene cluster to fine-tune the expressions of genes ectA, ectB, and ectC, which increased the ectoine yield to 1.6 g L-1. After further combinatorial overexpression of Corynebacterium glutamicum aspartate kinase mutant (G1A, C932T) and the H. elongate aspartate-semialdehyde dehydrogenase to increase the supply of the precursor, the titer of ectoine reached to 5.5 g L-1 in flask cultures. Finally, the engineered strain produced 60.7 g L-1 ectoine in fed-batch cultures with a conversion rate of 0.25 g/g glucose.

Ectoine是一种天然的大分子保护剂,由一些极端微生物合成。它提供对辐射介导的氧化损伤的保护,并被广泛用作制药和化妆品中的生物活性成分。为了满足其日益增长的商业需求,我们设计了大肠杆菌菌株,用于高产量生产外泌碱。通过质粒将来自天然外泌碱产生菌Halomonas elongata的ectABC基因簇引入不同的大肠杆菌(E.Coil)菌株中,并通过工程大肠杆菌BL21(DE3)在烧瓶培养中产生0.8g L-1的外泌碱。随后,我们设计了基因簇的核糖体结合位点,以微调基因ectA、ectB和ectC的表达,从而将外泌碱产量提高到1.6 g L-1。谷氨酸棒杆菌天冬氨酸激酶突变体(G1A,C932T)和H.伸长天冬氨酸半醛脱氢酶进一步组合过表达以增加前体的供应后,在烧瓶培养中,外泌碱的滴度达到5.5g L-1。最后,工程菌株在补料分批培养中以0.25g/g葡萄糖的转化率产生60.7g L-1胞外碱。
{"title":"Engineering Escherichia coli for high-yield production of ectoine","authors":"Daoan Wang ,&nbsp;Jiamin Chen ,&nbsp;Yang Wang ,&nbsp;Guocheng Du ,&nbsp;Zhen Kang","doi":"10.1016/j.gce.2021.09.002","DOIUrl":"10.1016/j.gce.2021.09.002","url":null,"abstract":"<div><p>Ectoine is a natural macromolecule protector and synthesized by some extremophiles. It provides protections against radiation-mediated oxidative damages and is widely used as a bioactive ingredient in pharmaceutics and cosmetics. To meet its growing commercial demands, we engineered <em>Escherichia coli</em> strains for the high-yield production of ectoine. The <em>ectABC</em> gene cluster from the native ectoine producer <em>Halomonas elongata</em> was introduced into different <em>Escherichia coli (E. Coil)</em> strains <em>via</em> plasmids and 0.8 g L<sup>-1</sup> of ectoine was produced in flask cultures by engineered <em>E. coli</em> BL21 (DE3). Subsequently, we designed the ribosome-binding sites of the gene cluster to fine-tune the expressions of genes <em>ectA</em>, <em>ectB</em>, and <em>ectC</em>, which increased the ectoine yield to 1.6 g L<sup>-1</sup>. After further combinatorial overexpression of <em>Corynebacterium glutamicum</em> aspartate kinase mutant (G1A, C932T) and the <em>H. elongate</em> aspartate-semialdehyde dehydrogenase to increase the supply of the precursor, the titer of ectoine reached to 5.5 g L<sup>-1</sup> in flask cultures. Finally, the engineered strain produced 60.7 g L<sup>-1</sup> ectoine in fed-batch cultures with a conversion rate of 0.25 g/g glucose.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 2","pages":"Pages 217-223"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46731087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Bioconversion of lignocellulosic biomass into bacterial nanocellulose: challenges and perspectives 木质纤维素生物质转化为细菌纳米纤维素:挑战和前景
Q1 ENGINEERING, CHEMICAL Pub Date : 2023-06-01 DOI: 10.1016/j.gce.2022.04.007
Wenchao Li , Yuqing Shen , Huan Liu , Xinxin Huang , Bin Xu , Cheng Zhong , Shiru Jia

Nanocellulose has various outstanding properties and great potential for replacing petrochemical products. The utilization of lignocellulose to produce nanocellulose is of great significance to the sustainable development of the economy and society. However, the direct extraction of nanocellulose from lignocellulose by chemical method is challenged by toxic chemicals utilization, energy and time consumption, and waste water generation. Therefore, this paper addressed the conversion of lignocellulosic biomass into bacterial nanocellulose (BNC) by the biological method. Moreover, this article highlights the recent advances in potentials and challenges of lignocellulosic biomass for BNC production through the bioconversion process, including biomass pretreatment, enzymatic hydrolysis, glucose and xylose fermentation, GA accumulation, and inhibitor tolerant. The development in metabolic and evolutionary engineering to enhance the production capacity of BNC-producing strain is also discussed. It is expected to provide guidance on the effective bioproduction of nanocellulose from lignocellulosic biomass.

纳米纤维素具有多种优异的性能,在取代石化产品方面具有巨大的潜力。利用木质纤维素生产纳米纤维素对经济社会的可持续发展具有重要意义。然而,通过化学方法从木质纤维素中直接提取纳米纤维素受到有毒化学品利用、能源和时间消耗以及废水产生的挑战。因此,本文采用生物法将木质纤维素生物质转化为细菌纳米纤维素(BNC)。此外,本文强调了木质纤维素生物质通过生物转化过程生产BNC的潜力和挑战的最新进展,包括生物质预处理、酶水解、葡萄糖和木糖发酵、GA积累和抑制剂耐受性。还讨论了代谢和进化工程的发展,以提高BNC生产菌株的生产能力。它有望为木质纤维素生物质有效生物生产纳米纤维素提供指导。
{"title":"Bioconversion of lignocellulosic biomass into bacterial nanocellulose: challenges and perspectives","authors":"Wenchao Li ,&nbsp;Yuqing Shen ,&nbsp;Huan Liu ,&nbsp;Xinxin Huang ,&nbsp;Bin Xu ,&nbsp;Cheng Zhong ,&nbsp;Shiru Jia","doi":"10.1016/j.gce.2022.04.007","DOIUrl":"10.1016/j.gce.2022.04.007","url":null,"abstract":"<div><p>Nanocellulose has various outstanding properties and great potential for replacing petrochemical products. The utilization of lignocellulose to produce nanocellulose is of great significance to the sustainable development of the economy and society. However, the direct extraction of nanocellulose from lignocellulose by chemical method is challenged by toxic chemicals utilization, energy and time consumption, and waste water generation. Therefore, this paper addressed the conversion of lignocellulosic biomass into bacterial nanocellulose (BNC) by the biological method. Moreover, this article highlights the recent advances in potentials and challenges of lignocellulosic biomass for BNC production through the bioconversion process, including biomass pretreatment, enzymatic hydrolysis, glucose and xylose fermentation, GA accumulation, and inhibitor tolerant. The development in metabolic and evolutionary engineering to enhance the production capacity of BNC-producing strain is also discussed. It is expected to provide guidance on the effective bioproduction of nanocellulose from lignocellulosic biomass.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 2","pages":"Pages 160-172"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48928612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
Green Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1