Pub Date : 2019-06-01DOI: 10.1109/PVSC40753.2019.8981366
G. Gordillo, L. Herrera, C. Otálora, C. Calderón, C. Quiñones
This work reports results concerning the effect that antisolvent treatment causes on the morphology of CsXFA1XPbI3 films synthesized by spin coating as well as the impact that the substitution of the ion Formamidinium (FA) by the ion cesium (Cs) causes both on the stability and on the properties of the CsXFA1-XPbI3 films. This substitution occurs effectively when less than 25% of FA are replaced by Cs. The influence of both FA/Cs ratio and antisolvent treatment on the optical, structural and morphological properties of CsXMA1-XPbI3 films, where also studied through spectral transmittance, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) measurements.
{"title":"Impact of antisolvent treatment and of the substitution of the ion FA by the ion Cs on the properties of CsXFA1-XPbI3 films prepared by spin coating","authors":"G. Gordillo, L. Herrera, C. Otálora, C. Calderón, C. Quiñones","doi":"10.1109/PVSC40753.2019.8981366","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8981366","url":null,"abstract":"This work reports results concerning the effect that antisolvent treatment causes on the morphology of Cs<inf>X</inf>FA<inf>1</inf>XPbI<inf>3</inf> films synthesized by spin coating as well as the impact that the substitution of the ion Formamidinium (FA) by the ion cesium (Cs) causes both on the stability and on the properties of the Cs<inf>X</inf>FA<inf>1-X</inf>PbI<inf>3</inf> films. This substitution occurs effectively when less than 25% of FA are replaced by Cs. The influence of both FA/Cs ratio and antisolvent treatment on the optical, structural and morphological properties of Cs<inf>X</inf>MA<inf>1-X</inf>PbI<inf>3</inf> films, where also studied through spectral transmittance, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) measurements.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"75 1","pages":"1161-1166"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83800850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/PVSC40753.2019.8980736
F. Khorramshahi, A. Takshi
Here, we have studied the effect of ion migration on the photoresponse of the photovoltaic perovskite devices by changing the contact material behavior in a lateral structure. Two devices were fabricated by making perovskite micro-channel using capillary motion. Indium tin oxide (ITO) Schottky contact and copper contact with a linear characteristic were used as the electrode to form two separate lateral structures with the perovskite material. The devices were characterized by scanning electron microscope (SEM) imaging and energy dispersive X-Ray spectroscopy (EDS). The electrical and optical properties of the samples were measured by the Potentiostat. In both devices, the photocurrent increased with time. A non-capacitive currentvoltage hysteresis was observed which was independent of the contact behavior with the perovskite material. However, it depended on the biasing history and lighting condition. The nonsteady state part of the photoresponse was significantly changed over time. The magnified photoresponse was attributed to the light-induced ion drift at the perovskite/contact interfaces which lead to a bandgap modification. This study may help in better understanding of the nature of the ion migration in perovskite solar cells.
{"title":"Ion Migration Magnified Photoresponse in Perovskite Devices","authors":"F. Khorramshahi, A. Takshi","doi":"10.1109/PVSC40753.2019.8980736","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980736","url":null,"abstract":"Here, we have studied the effect of ion migration on the photoresponse of the photovoltaic perovskite devices by changing the contact material behavior in a lateral structure. Two devices were fabricated by making perovskite micro-channel using capillary motion. Indium tin oxide (ITO) Schottky contact and copper contact with a linear characteristic were used as the electrode to form two separate lateral structures with the perovskite material. The devices were characterized by scanning electron microscope (SEM) imaging and energy dispersive X-Ray spectroscopy (EDS). The electrical and optical properties of the samples were measured by the Potentiostat. In both devices, the photocurrent increased with time. A non-capacitive currentvoltage hysteresis was observed which was independent of the contact behavior with the perovskite material. However, it depended on the biasing history and lighting condition. The nonsteady state part of the photoresponse was significantly changed over time. The magnified photoresponse was attributed to the light-induced ion drift at the perovskite/contact interfaces which lead to a bandgap modification. This study may help in better understanding of the nature of the ion migration in perovskite solar cells.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"6 1","pages":"1179-1182"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79649652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/PVSC40753.2019.8980666
D. Bätzner, J. Cardoso, C. Aeby, W. Frammelsberger, B. Strahm, P. Papet, B. Legradic, D. Lachenal, R. Kramer, T. Kössler, L. Andreetta, S. Pitteloud, N. Holm
When considering silicon heterojunction technology (HJT) for mass production the most frequently expressed reservations are related to the performance and cost constraints the standard TCO on the cell front side namely thin indium tin oxide (ITO) constitutes. We address these concerns with our HJT 2.0 concept in which the front electrode is made of a bi-layer of ITO that is supplemented by a silicon nitride (SiN) layer. This cell concept was developed to yield an increase in efficiency of typically 0.2% absolute due to improved cell current and a cost saving in the range of 30-40% with respect to cost of ownership (CoO).
{"title":"Alleviating performance and cost constraints in silicon heterojunction cells with HJT 2.0","authors":"D. Bätzner, J. Cardoso, C. Aeby, W. Frammelsberger, B. Strahm, P. Papet, B. Legradic, D. Lachenal, R. Kramer, T. Kössler, L. Andreetta, S. Pitteloud, N. Holm","doi":"10.1109/PVSC40753.2019.8980666","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980666","url":null,"abstract":"When considering silicon heterojunction technology (HJT) for mass production the most frequently expressed reservations are related to the performance and cost constraints the standard TCO on the cell front side namely thin indium tin oxide (ITO) constitutes. We address these concerns with our HJT 2.0 concept in which the front electrode is made of a bi-layer of ITO that is supplemented by a silicon nitride (SiN) layer. This cell concept was developed to yield an increase in efficiency of typically 0.2% absolute due to improved cell current and a cost saving in the range of 30-40% with respect to cost of ownership (CoO).","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"20 1","pages":"1471-1474"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83168494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/PVSC40753.2019.8980944
R. Darbali-Zamora, J. Hernandez-Alvidrez, A. Summers, Nicholas S. Gurule, M. Reno, Jay Johnson
Power outages are a challenge that utility companies must face, with the potential to affect millions of customers and cost billions in damage. For this reason, there is a need for developing approaches that help understand the effects of fault conditions on the power grid. In distribution circuits with high renewable penetrations, the fault currents from DER equipment can impact coordinated protection scheme implementations so it is critical to accurately analyze fault contributions from DER systems. To do this, MATLAB/Simulink/RT-Labs was used to simulate the reduced-order distribution system and three different faults are applied at three different bus locations in the distribution system. The use of Real-Time (RT) Power Hardware-in-the-Loop (PHIL) simulations was also used to further improve the fidelity of the model. A comparison between OpenDSS simulation results and the Opal-RT experimental fault currents was conducted to determine the steady-state and dynamic accuracy of each method as well as the response of using simulated and hardware PV inverters. It was found that all methods were closely correlated in steady-state, but the transient response of the inverter was difficult to capture with a PV model and the physical device behavior could not be represented completely without incorporating it through PHIL.
{"title":"Distribution Feeder Fault Comparison Utilizing a Real-Time Power Hardware-in-the-Loop Approach for Photovoltaic System Applications","authors":"R. Darbali-Zamora, J. Hernandez-Alvidrez, A. Summers, Nicholas S. Gurule, M. Reno, Jay Johnson","doi":"10.1109/PVSC40753.2019.8980944","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980944","url":null,"abstract":"Power outages are a challenge that utility companies must face, with the potential to affect millions of customers and cost billions in damage. For this reason, there is a need for developing approaches that help understand the effects of fault conditions on the power grid. In distribution circuits with high renewable penetrations, the fault currents from DER equipment can impact coordinated protection scheme implementations so it is critical to accurately analyze fault contributions from DER systems. To do this, MATLAB/Simulink/RT-Labs was used to simulate the reduced-order distribution system and three different faults are applied at three different bus locations in the distribution system. The use of Real-Time (RT) Power Hardware-in-the-Loop (PHIL) simulations was also used to further improve the fidelity of the model. A comparison between OpenDSS simulation results and the Opal-RT experimental fault currents was conducted to determine the steady-state and dynamic accuracy of each method as well as the response of using simulated and hardware PV inverters. It was found that all methods were closely correlated in steady-state, but the transient response of the inverter was difficult to capture with a PV model and the physical device behavior could not be represented completely without incorporating it through PHIL.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"21 1","pages":"2916-2922"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83184015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/PVSC40753.2019.8980600
P. Kartikay, A. Yella, S. Mallick
Perovskite solar cells, despite showing promising efficiency of more than 22%, is still far from realizing its full prospect on commercial scale, majorly owing to the cost associated with gold or silver counter electrode as well as hole transport material. Herein we report, low temperature processed carbon paste for hole transport layer free perovskite solar cell (PSC) fabricated in ambient conditions. Conductive (11.46 Ω □-1) and adherent carbon paste were prepared with acrylic and ethyl cellulose based binders. We have optimized the amount of binder required for good adherence as well as conductivity. Perovskite solar cell with the FTO/TiO2 compact layer/TiO2 mesoporous layer/MAPbI3/carbon architecture was fabricated with 7.41% power conversion efficiency. The prepared devices show promising stability for more than 500 hours.
{"title":"Hole transport layer free stable perovskite solar cell with low temperature processed carbon electrodes","authors":"P. Kartikay, A. Yella, S. Mallick","doi":"10.1109/PVSC40753.2019.8980600","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980600","url":null,"abstract":"Perovskite solar cells, despite showing promising efficiency of more than 22%, is still far from realizing its full prospect on commercial scale, majorly owing to the cost associated with gold or silver counter electrode as well as hole transport material. Herein we report, low temperature processed carbon paste for hole transport layer free perovskite solar cell (PSC) fabricated in ambient conditions. Conductive (11.46 Ω □-1) and adherent carbon paste were prepared with acrylic and ethyl cellulose based binders. We have optimized the amount of binder required for good adherence as well as conductivity. Perovskite solar cell with the FTO/TiO2 compact layer/TiO2 mesoporous layer/MAPbI3/carbon architecture was fabricated with 7.41% power conversion efficiency. The prepared devices show promising stability for more than 500 hours.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"36 1","pages":"0473-0476"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81063569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/PVSC40753.2019.8981385
A. Eskandari, J. Milimonfared, M. Aghaei, Aline Kirsten Vidal de Oliveira, R. Rüther
Fault detection plays a crucial role in reliability and safety of photovoltaic systems. However, the fault detection by the conventional protection devices is always difficult due to nonlinear characteristics of PV systems, Maximum Power Point Tracking (MPPT), low irradiation, and high fault impedance. In addition, it may lead to the power losses, efficiency reduction and even fire hazard. This paper proposes an innovative fault detection method based on the pattern recognition techniques and extraction of the essential features from the current-voltage (I-V) characteristics. The main benefit of this method is using less data to detect faults while improving accuracy. The primary results demonstrate that the proposed method is accurate, effective and reliable for detecting line-line faults in PV systems.
{"title":"Line-to-Line Faults Detection for Photovoltaic Arrays Based on I-V Curve Using Pattern Recognition","authors":"A. Eskandari, J. Milimonfared, M. Aghaei, Aline Kirsten Vidal de Oliveira, R. Rüther","doi":"10.1109/PVSC40753.2019.8981385","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8981385","url":null,"abstract":"Fault detection plays a crucial role in reliability and safety of photovoltaic systems. However, the fault detection by the conventional protection devices is always difficult due to nonlinear characteristics of PV systems, Maximum Power Point Tracking (MPPT), low irradiation, and high fault impedance. In addition, it may lead to the power losses, efficiency reduction and even fire hazard. This paper proposes an innovative fault detection method based on the pattern recognition techniques and extraction of the essential features from the current-voltage (I-V) characteristics. The main benefit of this method is using less data to detect faults while improving accuracy. The primary results demonstrate that the proposed method is accurate, effective and reliable for detecting line-line faults in PV systems.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"13 1","pages":"0503-0507"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84682246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/PVSC40753.2019.8980480
S. Theocharides, M. Kynigos, M. Theristis, G. Makrides, G. Georghiou
Accurate solar irradiance forecasting is important for improving forecasting precision of photovoltaic (PV) power. In this study, an intra-day (i.e. 1 to 6 hours ahead) machine learning model based on an artificial neural network (ANN) was implemented for forecasting the intra-day incident solar irradiance (GI). The methodology included the implementation of the optimal ANN topology which was trained and validated on historical yearly datasets. The forecasting results demonstrated a normalised root mean square error (nRMSE) in the range of 4.23% to 9.51%. The lowest nRMSE of 4.23% was achieved for the hour-ahead forecast while the highest nRMSE of 9.51% was observed when forecasting at a horizon of 6 hours ahead. Finally, the mean absolute percentage error (MAPE) varied from 4.10% to 8.19% for the 1 hour to 6 hours ahead forecasts respectively.
{"title":"Intra-day Solar Irradiance Forecasting Based on Artificial Neural Networks","authors":"S. Theocharides, M. Kynigos, M. Theristis, G. Makrides, G. Georghiou","doi":"10.1109/PVSC40753.2019.8980480","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980480","url":null,"abstract":"Accurate solar irradiance forecasting is important for improving forecasting precision of photovoltaic (PV) power. In this study, an intra-day (i.e. 1 to 6 hours ahead) machine learning model based on an artificial neural network (ANN) was implemented for forecasting the intra-day incident solar irradiance (GI). The methodology included the implementation of the optimal ANN topology which was trained and validated on historical yearly datasets. The forecasting results demonstrated a normalised root mean square error (nRMSE) in the range of 4.23% to 9.51%. The lowest nRMSE of 4.23% was achieved for the hour-ahead forecast while the highest nRMSE of 9.51% was observed when forecasting at a horizon of 6 hours ahead. Finally, the mean absolute percentage error (MAPE) varied from 4.10% to 8.19% for the 1 hour to 6 hours ahead forecasts respectively.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"28 1","pages":"1628-1631"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88760901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/PVSC40753.2019.8980474
Andreas Livera, M. Theristis, G. Makrides, S. Ransome, J. Sutterlueti, G. Georghiou
Photovoltaic (PV) power prediction is important for monitoring the performance of PV plants. The scope of this work is to develop a methodology for deriving an optimized location and technology independent machine learning (ML) model for power prediction. The prediction accuracy results demonstrated that the performance of the ML model was primarily affected by the dataset split method. In particular, for a 70:30 % train and test set approach, the ML model achieved a normalized root mean square error (nRMSE) of 0.88 % when using randomly selected samples compared to 0.94 % when using continuous samples. The accuracy of the developed model was also affected by the duration of the train set. For a random 70:30 % train and test set approach, the constructed ML topology achieved a nRMSE of 0.88 %, while when the dataset was split into a 30:30 % portion, the nRMSE was 0.95 %. Moreover, when low irradiance conditions were filtered out and 70 % of the entire dataset was randomly chosen for model training, a nRMSE of 1.41 % was obtained demonstrating that the model’s accuracy was not improved. Finally, for a random 10:30 % train and test set approach, the FNNN achieved the lowest nRMSE of 1.10 % when the model was trained using the prevailing irradiance classes.
{"title":"Optimal development of location and technology independent machine learning photovoltaic performance predictive models","authors":"Andreas Livera, M. Theristis, G. Makrides, S. Ransome, J. Sutterlueti, G. Georghiou","doi":"10.1109/PVSC40753.2019.8980474","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980474","url":null,"abstract":"Photovoltaic (PV) power prediction is important for monitoring the performance of PV plants. The scope of this work is to develop a methodology for deriving an optimized location and technology independent machine learning (ML) model for power prediction. The prediction accuracy results demonstrated that the performance of the ML model was primarily affected by the dataset split method. In particular, for a 70:30 % train and test set approach, the ML model achieved a normalized root mean square error (nRMSE) of 0.88 % when using randomly selected samples compared to 0.94 % when using continuous samples. The accuracy of the developed model was also affected by the duration of the train set. For a random 70:30 % train and test set approach, the constructed ML topology achieved a nRMSE of 0.88 %, while when the dataset was split into a 30:30 % portion, the nRMSE was 0.95 %. Moreover, when low irradiance conditions were filtered out and 70 % of the entire dataset was randomly chosen for model training, a nRMSE of 1.41 % was obtained demonstrating that the model’s accuracy was not improved. Finally, for a random 10:30 % train and test set approach, the FNNN achieved the lowest nRMSE of 1.10 % when the model was trained using the prevailing irradiance classes.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"28 1","pages":"1270-1275"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80644106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/PVSC40753.2019.8980831
Todd Karin, C. B. Jones, Anubhav Jain
A large body of previous research indicates that climate affects photovoltaic (PV) degradation both in terms of steady power loss and hazardous failures. However, the geographic distribution of climate stressors has not yet been characterized in a systematic way. Most typically the Köppen-Geiger classification scheme is used for comparing PV degradation across different climates. However, Köppen-Geiger uses temperature and rainfall to develop zones relevant for botany and lacks the ability to distinguish locations based on climate stressors more relevant to PV degradation. Prior work has shown that specific stressors (e.g. high temperature, temperature cycling, damp heat, wind stress and UV exposure) induce multiple PV degradation modes such as solder bond degradation, corrosion by moisture intrusion, wind-induced cell cracking, encapsulant discoloration and others. We introduce a climate zone classification system specific to PV, PhotoVoltaic Climate Zones (PVCZ-2019 or PVCZ) that defines zones based on the geographic distribution in PV stressor intensity. This climate zone scheme provides quantitative thresholds on the climate stress experienced in each zone which can provide a basis for future work on the impact of climate on PV degradation and failure.
{"title":"Photovoltaic Degradation Climate Zones","authors":"Todd Karin, C. B. Jones, Anubhav Jain","doi":"10.1109/PVSC40753.2019.8980831","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980831","url":null,"abstract":"A large body of previous research indicates that climate affects photovoltaic (PV) degradation both in terms of steady power loss and hazardous failures. However, the geographic distribution of climate stressors has not yet been characterized in a systematic way. Most typically the Köppen-Geiger classification scheme is used for comparing PV degradation across different climates. However, Köppen-Geiger uses temperature and rainfall to develop zones relevant for botany and lacks the ability to distinguish locations based on climate stressors more relevant to PV degradation. Prior work has shown that specific stressors (e.g. high temperature, temperature cycling, damp heat, wind stress and UV exposure) induce multiple PV degradation modes such as solder bond degradation, corrosion by moisture intrusion, wind-induced cell cracking, encapsulant discoloration and others. We introduce a climate zone classification system specific to PV, PhotoVoltaic Climate Zones (PVCZ-2019 or PVCZ) that defines zones based on the geographic distribution in PV stressor intensity. This climate zone scheme provides quantitative thresholds on the climate stress experienced in each zone which can provide a basis for future work on the impact of climate on PV degradation and failure.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"1 1","pages":"0687-0694"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85269806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/PVSC40753.2019.8980809
San Theingi, O. Ilic, Colton R. Bukowsky, R. Nuzzo, A. Alivisatos, J. Geisz, P. Stradins, H. Atwater, David R. Needell, Haley Bauser, Megan E. Phelan, W. Nemeth, Dawn Findley, Hanxiao Su, Brent A. Koscher, Zach Nett
Luminescent solar concentrator (LSC) tandem-on-silicon (Si) provides a route towards achieving higher than 30% overall efficiency which can overcome the theoretical efficiency limit of a single junction Si cell. Here, we present optical coupling and performance of high Voc passivated contact Si bottom cell for LSC tandem-on-Si where the top module consists of highly efficient luminophores and an array of micro InGaP cells embedded in a poly (lauryl methacrylate) waveguide. In this device configuration, InGaP cell area coverage is only ~0.5% of the total LSC area which significantly reduces the high cost III-V material usage. The performance of Si sub-cell is investigated under LSC spectrum and is compared against the measurement done under 1 μm thick InGaP filter which mimics the spectrum seen by Si bottom cell in a conventional III-V/Si tandem. Voc of greater than 700 mV has been observed for the passivated contact Si bottom cell in these tandem applications.
{"title":"Luminescent Solar Concentrator Tandem-on-Silicon with above 700mV Passivated Contact Silicon Bottom Cell","authors":"San Theingi, O. Ilic, Colton R. Bukowsky, R. Nuzzo, A. Alivisatos, J. Geisz, P. Stradins, H. Atwater, David R. Needell, Haley Bauser, Megan E. Phelan, W. Nemeth, Dawn Findley, Hanxiao Su, Brent A. Koscher, Zach Nett","doi":"10.1109/PVSC40753.2019.8980809","DOIUrl":"https://doi.org/10.1109/PVSC40753.2019.8980809","url":null,"abstract":"Luminescent solar concentrator (LSC) tandem-on-silicon (Si) provides a route towards achieving higher than 30% overall efficiency which can overcome the theoretical efficiency limit of a single junction Si cell. Here, we present optical coupling and performance of high Voc passivated contact Si bottom cell for LSC tandem-on-Si where the top module consists of highly efficient luminophores and an array of micro InGaP cells embedded in a poly (lauryl methacrylate) waveguide. In this device configuration, InGaP cell area coverage is only ~0.5% of the total LSC area which significantly reduces the high cost III-V material usage. The performance of Si sub-cell is investigated under LSC spectrum and is compared against the measurement done under 1 μm thick InGaP filter which mimics the spectrum seen by Si bottom cell in a conventional III-V/Si tandem. Voc of greater than 700 mV has been observed for the passivated contact Si bottom cell in these tandem applications.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"47 1","pages":"0747-0749"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86975346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}