Pub Date : 2024-08-14DOI: 10.1007/s40042-024-01160-1
Caden Kesselring, Andrew McGovern, Ilyong Jung
The bacterial flagellar motor is the largest and most complex biological rotary machine that exerts a torque of up to about 1000 pN to propel the swimming of flagellated bacteria. It is embedded in the cell membrane and consists of a 40 nm rotor and about 11 stators. Each stator unit, a torque generating protein complex, is driven by the proton motive force, a proton electrochemical gradient across the inner membrane. However, despite much progress, we lack sufficient evidence of how the ion flow is coupled to motor rotation. Here, we measured the motor speed as a function of the number of stators and found that the number of stators is linearly proportional to the motor speed. Our measurement shows that each stator passes about 24 ions per revolution, indicating that each proton flow can generate torque to drive the motor rotation about 14 degrees which is consistent with 26-fold periodic due to 26 FliG subunits. This result shows that the fixed number of ions yields a constant motor rotation independent of the number of stators and motor speed, indicating proton tight coupling between torque generation and proton flux.
{"title":"Single proton tight coupling in the bacterial flagellar motor","authors":"Caden Kesselring, Andrew McGovern, Ilyong Jung","doi":"10.1007/s40042-024-01160-1","DOIUrl":"10.1007/s40042-024-01160-1","url":null,"abstract":"<div><p>The bacterial flagellar motor is the largest and most complex biological rotary machine that exerts a torque of up to about 1000 pN to propel the swimming of flagellated bacteria. It is embedded in the cell membrane and consists of a 40 nm rotor and about 11 stators. Each stator unit, a torque generating protein complex, is driven by the proton motive force, a proton electrochemical gradient across the inner membrane. However, despite much progress, we lack sufficient evidence of how the ion flow is coupled to motor rotation. Here, we measured the motor speed as a function of the number of stators and found that the number of stators is linearly proportional to the motor speed. Our measurement shows that each stator passes about 24 ions per revolution, indicating that each proton flow can generate torque to drive the motor rotation about 14 degrees which is consistent with 26-fold periodic due to 26 FliG subunits. This result shows that the fixed number of ions yields a constant motor rotation independent of the number of stators and motor speed, indicating proton tight coupling between torque generation and proton flux.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 8","pages":"691 - 697"},"PeriodicalIF":0.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1007/s40042-024-01152-1
Shahin Mamedov, Shahnaz Taghiyeva
The electromagnetic transition form factors for the (N+gamma ^{*}rightarrow N^{*}) transition between the ground and excited states of nucleons is studied in the framework of the hard-wall model of AdS/QCD. The 5-dimensional equation of motion was solved for the fermion and vector fields. The profile function of the spinor field and bulk-to-boundary propagator of the vector field are presented. The interaction Lagrangian includes other kinds of terms in addition to the minimal coupling term. Using the AdS/CFT correspondence between the generating functions in the bulk and boundary theories, an expression for the transition form factors is obtained from the bulk action for the interaction between the photon and nucleon fields. We consider the (N^{*}(1440,1535,1710)rightarrow N) transitions and plot the Dirac, Pauli and electric, magnetic form factors dependencies on momentum transfer. Also, plots for the helicity amplitudes have been presented and compared to experimental data. The transition radii obtained within the soft-wall model are close to the experimental data for the radii of the nucleons at ground states.
{"title":"Electromagnetic (N+gamma ^{*}rightarrow N^{*}) transition form factors of nucleons from the hard-wall AdS/QCD model","authors":"Shahin Mamedov, Shahnaz Taghiyeva","doi":"10.1007/s40042-024-01152-1","DOIUrl":"10.1007/s40042-024-01152-1","url":null,"abstract":"<div><p>The electromagnetic transition form factors for the <span>(N+gamma ^{*}rightarrow N^{*})</span> transition between the ground and excited states of nucleons is studied in the framework of the hard-wall model of AdS/QCD. The 5-dimensional equation of motion was solved for the fermion and vector fields. The profile function of the spinor field and bulk-to-boundary propagator of the vector field are presented. The interaction Lagrangian includes other kinds of terms in addition to the minimal coupling term. Using the AdS/CFT correspondence between the generating functions in the bulk and boundary theories, an expression for the transition form factors is obtained from the bulk action for the interaction between the photon and nucleon fields. We consider the <span>(N^{*}(1440,1535,1710)rightarrow N)</span> transitions and plot the Dirac, Pauli and electric, magnetic form factors dependencies on momentum transfer. Also, plots for the helicity amplitudes have been presented and compared to experimental data. The transition radii obtained within the soft-wall model are close to the experimental data for the radii of the nucleons at ground states.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 7","pages":"541 - 551"},"PeriodicalIF":0.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1007/s40042-024-01142-3
Sangho Yoon, Taeho Kim, Su-Beom Song, Kenji Watanabe, Takashi Taniguchi, Jonghwan Kim
Van der Waals (vdW) two-dimensional semiconductors exhibit excellent optical properties due to their atomically thin thickness and unique band structures. When they are utilized in optoelectronic device applications, the devices show excellent performance as shown for transition metal dichalcogenides and graphene. However, at telecom frequencies, these demonstrations have been largely missing yet. In this study, we demonstrate that trilayer phosphorene pn-diodes can efficiently emit electroluminescence and generate photocurrent at telecom frequencies. Split gates realize electrically tunable pn-diode devices. Under reverse bias, the device shows prominent photocurrent in the photovoltaic mode. Under forward bias, the device shows prominent electroluminescence at the band edge of 0.82 eV. Interestingly, electroluminescence exhibits strong optical anisotropy due to the crystal anisotropy. Our study shows promising potential of trilayer phosphorene for efficient light emitting and photodetection device applications at telecom frequencies.
范德华(vdW)二维半导体因其原子级的薄厚度和独特的带状结构而表现出卓越的光学特性。当它们被应用于光电设备时,设备会显示出卓越的性能,过渡金属二卤化物和石墨烯就是很好的例子。然而,在电信频率上,这些演示还基本缺失。在这项研究中,我们证明了三层磷化烯 pn 二极管能在电信频率下有效地发出电致发光并产生光电流。分裂栅极实现了可电调的 pn 二极管器件。在反向偏压下,该器件在光伏模式下显示出显著的光电流。在正向偏压下,该器件在 0.82 eV 的带边缘显示出显著的电致发光。有趣的是,由于晶体的各向异性,电致发光表现出很强的光学各向异性。我们的研究表明,三层磷烯在电信频率下的高效发光和光探测器件应用方面具有广阔的发展前景。
{"title":"Electroluminescence and photocurrent generation in pn-diode of trilayer phosphorene","authors":"Sangho Yoon, Taeho Kim, Su-Beom Song, Kenji Watanabe, Takashi Taniguchi, Jonghwan Kim","doi":"10.1007/s40042-024-01142-3","DOIUrl":"10.1007/s40042-024-01142-3","url":null,"abstract":"<div><p>Van der Waals (vdW) two-dimensional semiconductors exhibit excellent optical properties due to their atomically thin thickness and unique band structures. When they are utilized in optoelectronic device applications, the devices show excellent performance as shown for transition metal dichalcogenides and graphene. However, at telecom frequencies, these demonstrations have been largely missing yet. In this study, we demonstrate that trilayer phosphorene pn-diodes can efficiently emit electroluminescence and generate photocurrent at telecom frequencies. Split gates realize electrically tunable pn-diode devices. Under reverse bias, the device shows prominent photocurrent in the photovoltaic mode. Under forward bias, the device shows prominent electroluminescence at the band edge of 0.82 eV. Interestingly, electroluminescence exhibits strong optical anisotropy due to the crystal anisotropy. Our study shows promising potential of trilayer phosphorene for efficient light emitting and photodetection device applications at telecom frequencies.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 6","pages":"520 - 524"},"PeriodicalIF":0.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1007/s40042-024-01159-8
Neda Ghoreishi, Keivan Navi, Reza Sabbaghi-Nadooshan, Mohammad Esmaeldoust
This article investigates the performance of a 14 nm gate length heterostructure Si0.5Ge0.5/Si junctionless gate-all-around (SiGe-JLGAA) device employing SILVACO ATLAS 3D simulator. The proposed device is analyzed in three configurations: underlap, fit, and overlap, and they are compared to a conventional entire region silicon JLGAA structure. First, the choice of x = 0.5 for Ge molar fraction and the device’s physical behavior for all states are discussed. Second, many analog/radio frequency (RF) figures of merit (FoMs) in terms of transconductance (gm), gate-to-gate capacitance (CGG), cutoff frequency (fT), gain bandwidth product (GBP), transit time (τ), and transconductance frequency product (TFP) are investigated. The fit configuration SiGe-JLGAA device demonstrates gm = 67.4 µS, fT = 1033 GHz, GBP = 115 GHz, TFP = 4.2 THz/V and τ = 1.3 × 1013 s, whereas the corresponding values for a conventional device are 13.5 µS, 354 GHz, 37 GHz, 1.2 THz/V and 5.9 × 1013 s, respectively. In addition, the reliability of the proposed device in terms of linearity for the three forms is compared. Finally, using a Verilog-A model in Cadence tool, the applications of the SiGe-JLGAA device in designing two types of inverters, binary and ternary, are demonstrated. The fit form exhibits superior DC and transient characteristics compared to other structures. The proposed device significantly enhances all configurations compared to the conventional JLGAA structure, thereby opening up a wide range of applications in digital circuits.
{"title":"Displacement analysis in three configurations of Si0.5Ge0.5/Si junctionless gate-all-around FET: a study from device to binary and ternary circuit applications","authors":"Neda Ghoreishi, Keivan Navi, Reza Sabbaghi-Nadooshan, Mohammad Esmaeldoust","doi":"10.1007/s40042-024-01159-8","DOIUrl":"10.1007/s40042-024-01159-8","url":null,"abstract":"<div><p>This article investigates the performance of a 14 nm gate length heterostructure Si<sub>0.5</sub>Ge<sub>0.5</sub>/Si junctionless gate-all-around (SiGe-JLGAA) device employing SILVACO ATLAS 3D simulator. The proposed device is analyzed in three configurations: underlap, fit, and overlap, and they are compared to a conventional entire region silicon JLGAA structure. First, the choice of <i>x</i> = 0.5 for Ge molar fraction and the device’s physical behavior for all states are discussed. Second, many analog/radio frequency (RF) figures of merit (FoMs) in terms of transconductance (<i>g</i><sub>m</sub>), gate-to-gate capacitance (<i>C</i><sub>GG</sub>), cutoff frequency (<i>f</i><sub>T</sub>), gain bandwidth product (GBP), transit time (<i>τ</i>), and transconductance frequency product (TFP) are investigated. The fit configuration SiGe-JLGAA device demonstrates <i>g</i><sub>m</sub> = 67.4 µS, <i>f</i><sub>T</sub> = 1033 GHz, GBP = 115 GHz, TFP = 4.2 THz/V and <i>τ</i> = 1.3 × 10<sup>13</sup> s, whereas the corresponding values for a conventional device are 13.5 µS, 354 GHz, 37 GHz, 1.2 THz/V and 5.9 × 10<sup>13</sup> s, respectively. In addition, the reliability of the proposed device in terms of linearity for the three forms is compared. Finally, using a Verilog-A model in Cadence tool, the applications of the SiGe-JLGAA device in designing two types of inverters, binary and ternary, are demonstrated. The fit form exhibits superior DC and transient characteristics compared to other structures. The proposed device significantly enhances all configurations compared to the conventional JLGAA structure, thereby opening up a wide range of applications in digital circuits.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 8","pages":"650 - 660"},"PeriodicalIF":0.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1007/s40042-024-01161-0
Varun Pathania, Hyeon Sang Bark, Kyu-Ha Jang, Kitae Lee, Young Uk Jeong
Terahertz light sources with small size and high output enable a variety of new applications. Free-electron laser (FEL) is the most powerful light source in the terahertz (THz) range with perfect wavelength tunability. However, the size of the FEL facility is too large. We are developing a table-top THz FEL using a small microtron accelerator. Through the development of a high-performance and compact undulator and a new waveguide-mode resonator, we confirmed that an FEL size of 1.5 × 2 m2 is possible. One of the reasons we could design the small FEL is because we do not use electromagnets to force the electron beam into and out of the FEL resonator. We have developed an out-coupling mirror of the FEL resonator for a wide spectral range from 0.5 to 1 THz to have a structure in which the electron and THz beam transmit simultaneously without any bending magnets. The out-coupling mirror has wire-grid-polarizer (WGP) structure in the center. This paper discusses optimizing the WGP's parameters like wire thickness and period to get appropriate reflectance and transmittance in the 0.5–1 THz region and has low electron beam loss in the waveguide-based resonator using the COMSOL Multiphysics simulation. Simulations found the optimized value of wire thickness and period as 20 and 100 µm, respectively. We further calculated the TE transmittance of the WGP, which is 1-030% for the optimized values, depending on the frequency, ranging from 0.5 to 1 THz. Experiments using the THz time-domain spectroscopy method validated that the measured results agreed with those of the simulations.
太赫兹光源具有体积小、输出高的特点,可用于各种新的应用领域。自由电子激光器(FEL)是太赫兹(THz)范围内最强大的光源,具有完美的波长可调谐性。然而,自由电子激光设备的体积过于庞大。我们正在利用小型微加速器开发台式太赫兹 FEL。通过开发高性能的紧凑型减压器和新型波导模式谐振器,我们证实 1.5 × 2 m2 的 FEL 尺寸是可行的。我们之所以能设计出这么小的 FEL,其中一个原因是我们不使用电磁铁来迫使电子束进出 FEL 谐振器。我们已开发出一种适用于 0.5 至 1 太赫兹宽光谱范围的 FEL 谐振器外耦合镜,这种结构无需任何弯曲磁铁即可同时传输电子束和太赫兹光束。外耦合镜的中心具有线栅偏振器(WGP)结构。本文利用 COMSOL Multiphysics 仿真技术讨论了如何优化 WGP 的参数,如导线厚度和周期,以便在 0.5-1 THz 区域获得适当的反射率和透射率,并降低波导谐振器中的电子束损耗。仿真结果表明,导线厚度和周期的优化值分别为 20 微米和 100 微米。我们进一步计算了 WGP 的 TE 透射率,根据频率的不同,优化值为 1-030%,范围为 0.5 至 1 太赫兹。使用太赫兹时域光谱法进行的实验验证了测量结果与模拟结果一致。
{"title":"Out-coupling characteristics of partial resonator mirror for compact terahertz free-electron laser","authors":"Varun Pathania, Hyeon Sang Bark, Kyu-Ha Jang, Kitae Lee, Young Uk Jeong","doi":"10.1007/s40042-024-01161-0","DOIUrl":"10.1007/s40042-024-01161-0","url":null,"abstract":"<div><p>Terahertz light sources with small size and high output enable a variety of new applications. Free-electron laser (FEL) is the most powerful light source in the terahertz (THz) range with perfect wavelength tunability. However, the size of the FEL facility is too large. We are developing a table-top THz FEL using a small microtron accelerator. Through the development of a high-performance and compact undulator and a new waveguide-mode resonator, we confirmed that an FEL size of 1.5 × 2 m<sup>2</sup> is possible. One of the reasons we could design the small FEL is because we do not use electromagnets to force the electron beam into and out of the FEL resonator. We have developed an out-coupling mirror of the FEL resonator for a wide spectral range from 0.5 to 1 THz to have a structure in which the electron and THz beam transmit simultaneously without any bending magnets. The out-coupling mirror has wire-grid-polarizer (WGP) structure in the center. This paper discusses optimizing the WGP's parameters like wire thickness and period to get appropriate reflectance and transmittance in the 0.5–1 THz region and has low electron beam loss in the waveguide-based resonator using the COMSOL Multiphysics simulation. Simulations found the optimized value of wire thickness and period as 20 and 100 µm, respectively. We further calculated the TE transmittance of the WGP, which is 1-030% for the optimized values, depending on the frequency, ranging from 0.5 to 1 THz. Experiments using the THz time-domain spectroscopy method validated that the measured results agreed with those of the simulations.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 8","pages":"670 - 676"},"PeriodicalIF":0.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1007/s40042-024-01158-9
Jung Rim Nam, Yong San Shin, Eun Suk Yoon
In targets like airplanes, rockets, or missiles, there are both the target and the plume. When tracking the target through imaging optics, the plume can become background depending on the perspective of the optical system. When plumes are in the background, the target image may be obscured by the saturation of the plume signals. In this study, a range-gated short-wave infrared (SWIR) imaging system was considered for the acquisition and tracking of the target against the plume background. The target signal is the illumination laser light reflected from the target and the background signal is the self-radiation of the plume. We considered a method using the illumination laser energy and the detector integration time to increase the target signal and decrease the plume signal. We analyzed the system signal-to-noise ratio (SNR) as a function of the illumination laser energy and the detector integration time. As a result, we derived system design specifications satisfying the SNR greater than 2.5.
{"title":"Performance analysis of gated SWIR imaging system for target against plume background","authors":"Jung Rim Nam, Yong San Shin, Eun Suk Yoon","doi":"10.1007/s40042-024-01158-9","DOIUrl":"10.1007/s40042-024-01158-9","url":null,"abstract":"<div><p>In targets like airplanes, rockets, or missiles, there are both the target and the plume. When tracking the target through imaging optics, the plume can become background depending on the perspective of the optical system. When plumes are in the background, the target image may be obscured by the saturation of the plume signals. In this study, a range-gated short-wave infrared (SWIR) imaging system was considered for the acquisition and tracking of the target against the plume background. The target signal is the illumination laser light reflected from the target and the background signal is the self-radiation of the plume. We considered a method using the illumination laser energy and the detector integration time to increase the target signal and decrease the plume signal. We analyzed the system signal-to-noise ratio (SNR) as a function of the illumination laser energy and the detector integration time. As a result, we derived system design specifications satisfying the SNR greater than 2.5.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 8","pages":"628 - 632"},"PeriodicalIF":0.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1007/s40042-024-01132-5
Ui-Hyun Jeong, Jea-Gun Park
Recently, there has been a global societal focus on the management of air pollution. Measurements of air pollution are conducted using various methods depending on the pollutants, including ultraviolet (UV) absorption methods for ozone (O3) and fluorescence methods for sulfur dioxide (SO2). However, the conventional silicon-based complementary metal–oxide–semiconductor image sensor (Si-CIS) is not suitable for UV measurements due to the low quantum efficiency (QE) of silicon for UV light. Consequently, different types of detection sensors are used for different air pollutants, leading to limitations in measurement locations and resulting in errors depending on the installation position. To address these limitations, we propose a quantum dot complementary metal–oxide–semiconductor image sensor (QD-CIS) capable of imaging UV light using the energy-down-shift (EDS) mechanism of quantum dots (QDs). The synthesized QDs absorb light at UV wavelengths, convert it into visible blue light through EDS, and emit luminescence. The converted intensity allows the detection of UV intensity by the CIS. Through the designed QD-CIS and UV LED illumination, we measured the sensitivity to changes in the concentrations of the representative air pollutants NO2 and SO2. The results showed a sensitivity increase of 6.83 times for NO2 and 21.39 times for SO2 compared to conventional CIS. This suggests the potential of UV imaging to overcome these limitations using existing CIS components.
{"title":"Ultraviolet CMOS image sensor for environment analysis via energy-down-shift mechanism of blue-light emitting quantum dots","authors":"Ui-Hyun Jeong, Jea-Gun Park","doi":"10.1007/s40042-024-01132-5","DOIUrl":"10.1007/s40042-024-01132-5","url":null,"abstract":"<div><p>Recently, there has been a global societal focus on the management of air pollution. Measurements of air pollution are conducted using various methods depending on the pollutants, including ultraviolet (UV) absorption methods for ozone (O<sub>3</sub>) and fluorescence methods for sulfur dioxide (SO<sub>2</sub>). However, the conventional silicon-based complementary metal–oxide–semiconductor image sensor (Si-CIS) is not suitable for UV measurements due to the low quantum efficiency (QE) of silicon for UV light. Consequently, different types of detection sensors are used for different air pollutants, leading to limitations in measurement locations and resulting in errors depending on the installation position. To address these limitations, we propose a quantum dot complementary metal–oxide–semiconductor image sensor (QD-CIS) capable of imaging UV light using the energy-down-shift (EDS) mechanism of quantum dots (QDs). The synthesized QDs absorb light at UV wavelengths, convert it into visible blue light through EDS, and emit luminescence. The converted intensity allows the detection of UV intensity by the CIS. Through the designed QD-CIS and UV LED illumination, we measured the sensitivity to changes in the concentrations of the representative air pollutants NO<sub>2</sub> and SO<sub>2</sub>. The results showed a sensitivity increase of 6.83 times for NO<sub>2</sub> and 21.39 times for SO<sub>2</sub> compared to conventional CIS. This suggests the potential of UV imaging to overcome these limitations using existing CIS components.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 6","pages":"482 - 489"},"PeriodicalIF":0.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1007/s40042-024-01154-z
Yongjun Yun, Jungjai Lee
We consider the holographic dark energy model with axial torsion which satisfies the cosmological principle. Subsequently, by using the torsional analogs of Friedmann equations for the new equation from Einstein–Cartan gravity theory, we obtain the equation of state for dark energy in this model. We find that the extended holographic dark energy from the particle horizon as the infrared (IR) cut-off does not give the accelerating expansion of the universe. Also, employing the future event horizon as IR cut-off still achieves the accelerating expansion of the universe. In contrast, there is a possibility that the Hubble radius as IR cut-off achieves the accelerating expansion of the universe in superluminal region for axial torsion. More precisely, the current value of ratio for torsion to the matter density, (gamma ^{0}=0.5) gives the equation of state of dark energy (omega _{Lambda }cong -1).
{"title":"Holographic dark energy with torsion","authors":"Yongjun Yun, Jungjai Lee","doi":"10.1007/s40042-024-01154-z","DOIUrl":"10.1007/s40042-024-01154-z","url":null,"abstract":"<div><p>We consider the holographic dark energy model with axial torsion which satisfies the cosmological principle. Subsequently, by using the torsional analogs of Friedmann equations for the new equation from Einstein–Cartan gravity theory, we obtain the equation of state for dark energy in this model. We find that the extended holographic dark energy from the particle horizon as the infrared (IR) cut-off does not give the accelerating expansion of the universe. Also, employing the future event horizon as IR cut-off still achieves the accelerating expansion of the universe. In contrast, there is a possibility that the Hubble radius as IR cut-off achieves the accelerating expansion of the universe in superluminal region for axial torsion. More precisely, the current value of ratio for torsion to the matter density, <span>(gamma ^{0}=0.5)</span> gives the equation of state of dark energy <span>(omega _{Lambda }cong -1)</span>.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 8","pages":"698 - 703"},"PeriodicalIF":0.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1007/s40042-024-01149-w
Young Kyu Lee, Sang Hee Ahn, Chankyu Kim, Wonjoong Cheon, Haksoo Kim, Se Byeong Lee, Young Kyung Lim, Jong Hwi Jeong, Young-Nam Kang, Dongho Shin
{"title":"Erratum: A deep learning method for predicting proton beam range and spread-out Bragg peak in passive scattering mode","authors":"Young Kyu Lee, Sang Hee Ahn, Chankyu Kim, Wonjoong Cheon, Haksoo Kim, Se Byeong Lee, Young Kyung Lim, Jong Hwi Jeong, Young-Nam Kang, Dongho Shin","doi":"10.1007/s40042-024-01149-w","DOIUrl":"10.1007/s40042-024-01149-w","url":null,"abstract":"","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 3","pages":"279 - 279"},"PeriodicalIF":0.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1007/s40042-024-01155-y
Jenefa Archpaul, Edward Naveen VijayaKumar, Manoranjitham Rajendran, Thompson Stephan, Punitha Stephan, Rishu Chhabra, Saurabh Agarwal, Wooguil Pak
Quantum state tomography (QST) forms the foundational framework in quantum computing, enabling precise characterization of quantum states through specialized measurement arrays. This is crucial for assessing the fidelity and coherence of quantum states in various quantum systems. The complexity and high dimensionality of quantum states require advanced statistical methods to meet modern quantum paradigms’ precision and computational needs, as traditional methods often struggle with inefficiencies and inaccuracies. Conventional approaches in QST typically use linear inversion and maximum likelihood estimators, which often face computational redundancies and perform sub-optimally in high-dimensional quantum architectures. This exposition introduces pioneering statistical methodologies that combine Bayesian Inference, Variational Quantum Eigensolver, and Quantum Neural Networks to achieve enhanced fidelity approximation. The analytical discussion is supported by synthetic quantum states, demonstrating the efficacy and applicability of these statistical methods across various quantum matrices. Preliminary empirical results show a significant increase in fidelity and a notable reduction in error margins, highlighting the potential of these advanced statistical methodologies in optimizing quantum state reconstructions. Additionally, leveraging the inherent symmetry properties in quantum systems could further improve the efficiency and accuracy of state reconstructions, offering additional pathways for advancing the field.
{"title":"Enhancing quantum state tomography: utilizing advanced statistical techniques for optimized quantum state reconstructions","authors":"Jenefa Archpaul, Edward Naveen VijayaKumar, Manoranjitham Rajendran, Thompson Stephan, Punitha Stephan, Rishu Chhabra, Saurabh Agarwal, Wooguil Pak","doi":"10.1007/s40042-024-01155-y","DOIUrl":"10.1007/s40042-024-01155-y","url":null,"abstract":"<div><p>Quantum state tomography (QST) forms the foundational framework in quantum computing, enabling precise characterization of quantum states through specialized measurement arrays. This is crucial for assessing the fidelity and coherence of quantum states in various quantum systems. The complexity and high dimensionality of quantum states require advanced statistical methods to meet modern quantum paradigms’ precision and computational needs, as traditional methods often struggle with inefficiencies and inaccuracies. Conventional approaches in QST typically use linear inversion and maximum likelihood estimators, which often face computational redundancies and perform sub-optimally in high-dimensional quantum architectures. This exposition introduces pioneering statistical methodologies that combine Bayesian Inference, Variational Quantum Eigensolver, and Quantum Neural Networks to achieve enhanced fidelity approximation. The analytical discussion is supported by synthetic quantum states, demonstrating the efficacy and applicability of these statistical methods across various quantum matrices. Preliminary empirical results show a significant increase in fidelity and a notable reduction in error margins, highlighting the potential of these advanced statistical methodologies in optimizing quantum state reconstructions. Additionally, leveraging the inherent symmetry properties in quantum systems could further improve the efficiency and accuracy of state reconstructions, offering additional pathways for advancing the field.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 8","pages":"677 - 690"},"PeriodicalIF":0.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}