Superhydrophobic surfaces have gained significant research attention for various applications, such as self-cleaning and microfluidics. To develop superhydrophobic surfaces, diverse materials and structures are used to reduce the surface energy. Specific coatings can control the intrinsic contact angle (CA) by reducing the surface energy of a material. In this study, we fabricated and evaluated polymeric superhydrophobic surfaces. The superhydrophobic surfaces exhibited microstructures consisting of two different polymers. To evaluate the wetting properties, we calculated the theoretical Cassie and Wenzel models of the surfaces and compared them to the experimental CA and roll-off angle (ROA). Furthermore, we measured the wetting properties of the surfaces by coating them with octafluorocyclobutane (C4F8) to confirm the effect of coating on the surfaces. This coated surface can control the wetting properties regardless of the material composition, demonstrating the stability of the superhydrophobic surface.