Pub Date : 2024-09-25DOI: 10.1007/s40042-024-01167-8
Kyuseok Kim, Hyun-Woo Jeong, Youngjin Lee
Diffusion-weighted imaging (DWI) is one of the most sensitive techniques to noise among magnetic resonance imaging (MRI) techniques. As the b-value used to acquire the DWI image increases, an image in which the difference in diffusion is emphasized can be obtained. However, DWI images with increased b-values inevitably have a major drawback in that noise is amplified. Thus, in this study, a dictionary learning (DL)-based denoising algorithm was modeled and applied to DWI images. The designed algorithm was modeled as a DL-based algorithm using the expected patch log likelihood. The DWI images were obtained by adjusting the b-value from 400 to 400 intervals. When the proposed DL-based denoising algorithm was applied to DWI, we confirmed that the contrast-to-noise ratio and coefficient of variation were improved by approximately 4.26 and 5.22 times, respectively, compared with noisy images. In conclusion, we expect that the proposed DL-based denoising algorithm will be highly efficient in acquiring DWI images using a high b-value, which is useful for observing acute cerebral infarction and microvascular disease.
扩散加权成像(DWI)是磁共振成像(MRI)技术中对噪音最敏感的技术之一。随着获取 DWI 图像所用 b 值的增加,可获得弥散差异突出的图像。然而,增加 b 值的 DWI 图像不可避免地存在一个主要缺点,即噪声会被放大。因此,本研究建立了一种基于字典学习(DL)的去噪算法模型,并将其应用于 DWI 图像。所设计的算法是利用期望补丁对数似然建立的基于词典学习的算法模型。DWI 图像是通过将 b 值从 400 调整到 400 间隔来获得的。当将所提出的基于 DL 的去噪算法应用于 DWI 时,我们证实对比度-噪声比和变异系数与噪声图像相比分别提高了约 4.26 倍和 5.22 倍。总之,我们希望所提出的基于 DL 的去噪算法能高效获取高 b 值的 DWI 图像,这对观察急性脑梗塞和微血管疾病非常有用。
{"title":"Dictionary learning-based denoising algorithm with expected patch log likelihood in diffusion-weighted magnetic resonance image","authors":"Kyuseok Kim, Hyun-Woo Jeong, Youngjin Lee","doi":"10.1007/s40042-024-01167-8","DOIUrl":"10.1007/s40042-024-01167-8","url":null,"abstract":"<div><p>Diffusion-weighted imaging (DWI) is one of the most sensitive techniques to noise among magnetic resonance imaging (MRI) techniques. As the <i>b</i>-value used to acquire the DWI image increases, an image in which the difference in diffusion is emphasized can be obtained. However, DWI images with increased <i>b</i>-values inevitably have a major drawback in that noise is amplified. Thus, in this study, a dictionary learning (DL)-based denoising algorithm was modeled and applied to DWI images. The designed algorithm was modeled as a DL-based algorithm using the expected patch log likelihood. The DWI images were obtained by adjusting the <i>b</i>-value from 400 to 400 intervals. When the proposed DL-based denoising algorithm was applied to DWI, we confirmed that the contrast-to-noise ratio and coefficient of variation were improved by approximately 4.26 and 5.22 times, respectively, compared with noisy images. In conclusion, we expect that the proposed DL-based denoising algorithm will be highly efficient in acquiring DWI images using a high b-value, which is useful for observing acute cerebral infarction and microvascular disease.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 9","pages":"763 - 771"},"PeriodicalIF":0.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s40042-024-01180-x
Maengsuk Kim, Chul Hong Park
Recently Li doping is employed to control the properties of bioceramic biphasic calcium phosphate (BCP), which consists of (beta -hbox {Ca}_{3}(hbox {PO}_4)_2) ((beta)-TCP) and hydroxyapatite(HAp). We investigated the microscopic properties of Li in BCP through first-principles electronic structure calculations. The stable microscopic structure of Li-driven state is identified by comparing the formation enthalpies of Li-driven structures: interstitial ((hbox {Li}_{int})) and substitutional ((hbox {Li}_{Ca})). It is found that the (hbox {Li}_{int}) is more stable than the substitutional state (hbox {Li}_{Ca}). The (hbox {Li}_{int}) atom is strongly coupled to three or four O atoms, which stabilizes the interstitial state. The (hbox {Li}_{int}) is calculated to be relatively more stable in (beta)-TCP than in HAp, because the electronic level of (hbox {Li}_{int}) is much lower in (beta)-TCP than in HAp.
{"title":"Microscopic property of Li impurity in biphasic calcium phosphate","authors":"Maengsuk Kim, Chul Hong Park","doi":"10.1007/s40042-024-01180-x","DOIUrl":"10.1007/s40042-024-01180-x","url":null,"abstract":"<div><p>Recently Li doping is employed to control the properties of bioceramic biphasic calcium phosphate (BCP), which consists of <span>(beta -hbox {Ca}_{3}(hbox {PO}_4)_2)</span> (<span>(beta)</span>-TCP) and hydroxyapatite(HAp). We investigated the microscopic properties of Li in BCP through first-principles electronic structure calculations. The stable microscopic structure of Li-driven state is identified by comparing the formation enthalpies of Li-driven structures: interstitial (<span>(hbox {Li}_{int})</span>) and substitutional (<span>(hbox {Li}_{Ca})</span>). It is found that the <span>(hbox {Li}_{int})</span> is more stable than the substitutional state <span>(hbox {Li}_{Ca})</span>. The <span>(hbox {Li}_{int})</span> atom is strongly coupled to three or four O atoms, which stabilizes the interstitial state. The <span>(hbox {Li}_{int})</span> is calculated to be relatively more stable in <span>(beta)</span>-TCP than in HAp, because the electronic level of <span>(hbox {Li}_{int})</span> is much lower in <span>(beta)</span>-TCP than in HAp.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 10","pages":"845 - 851"},"PeriodicalIF":0.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s40042-024-01179-4
Essama Ahmed Ghaitaoui, Kamel Nassour, Said Nemmich, Brahim El Khalil Oulad Naoui, Touhami Ghaitaoui, Amar Tilmatine, Nadia Ramdani
Numerous studies have focused on analyzing and enhancing the performance of ozone generation systems to achieve higher ozone concentrations with lower energy consumption. This paper presents an experimental comparative study between a multi-tube DBD ozone generator with a parallel tube configuration and a simple DBD ozone generator with the same discharge volume, where the energy efficiency and produced ozone concentration were analyzed. Subsequently, the multi-tube ozone generator was employed for the wastewater treatment of the Moulay Slissen sewage-treatment plant in Sidi Bel Abbes. The results demonstrated that the new multi-tube ozone generator exhibited significantly improved performance in terms of energy efficiency and produced ozone concentration levels compared to the simple DBD generator. Furthermore, through the analyses conducted on the wastewater samples before and after treatment, the advanced generator proved its efficacy in improving the physicochemical and bacteriological quality of wastewater.
{"title":"Experimental comparative study between simple and multi-tube DBD ozone generator with same volume discharge for wastewater treatment","authors":"Essama Ahmed Ghaitaoui, Kamel Nassour, Said Nemmich, Brahim El Khalil Oulad Naoui, Touhami Ghaitaoui, Amar Tilmatine, Nadia Ramdani","doi":"10.1007/s40042-024-01179-4","DOIUrl":"10.1007/s40042-024-01179-4","url":null,"abstract":"<div><p>Numerous studies have focused on analyzing and enhancing the performance of ozone generation systems to achieve higher ozone concentrations with lower energy consumption. This paper presents an experimental comparative study between a multi-tube DBD ozone generator with a parallel tube configuration and a simple DBD ozone generator with the same discharge volume, where the energy efficiency and produced ozone concentration were analyzed. Subsequently, the multi-tube ozone generator was employed for the wastewater treatment of the Moulay Slissen sewage-treatment plant in Sidi Bel Abbes. The results demonstrated that the new multi-tube ozone generator exhibited significantly improved performance in terms of energy efficiency and produced ozone concentration levels compared to the simple DBD generator. Furthermore, through the analyses conducted on the wastewater samples before and after treatment, the advanced generator proved its efficacy in improving the physicochemical and bacteriological quality of wastewater.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 10","pages":"798 - 809"},"PeriodicalIF":0.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s40042-024-01178-5
Seok-kyu Kim, Soyeon Jeong, Jaemin Kim, Moongyu Jang
In this work, the Fermi level pinning phenomena in erbium-silicided metal–semiconductor Schottky contact is investigated for the understanding on the difficulties forming ohmic contacts between metal and semiconductor materials. The work function of erbium-silicide is extracted by using UPS (ultraviolet photoelectron spectroscopy) and I–V (current–voltage) method with metal–semiconductor diode pattern, respectively. In UPS analysis, the extracted workfunction gradually decreased with increase in the deposited erbium-silicide and saturated to 3.8 eV with 500 Å thick erbium-silicide. However, the extracted work function value of erbium-silicide by I–V method from erbium-silicide on p-type silicon substrate diode pattern is 4.4 eV which shows the strong Fermi level pinning phenomena in erbium-silicided Schottky contact. From the numerical model analysis, the main reason for Fermi level pinning in erbium-silicide is mainly attributed due to the metal induced gap state rather than chemical bonding at interface. Finally, this analysis method will be very effective for the analysis in Fermi level pinning phenomena in metal–semiconductor Schottky contacts.
本文研究了铒硅化物金属-半导体肖特基接触中的费米级针销现象,以了解金属和半导体材料之间形成欧姆接触的困难。利用紫外光电子能谱(UPS)和 I-V(电流-电压)方法,分别提取了铒硅化物与金属-半导体二极管图案的功函数。在 UPS 分析中,提取的功函数随着沉积铒硅化物的增加而逐渐降低,在厚度为 500 Å 的铒硅化物中达到饱和,为 3.8 eV。然而,用 I-V 法从 p 型硅衬底二极管图案上的硅化铒中提取的功函数值为 4.4 eV,这表明硅化铒肖特基触点中存在很强的费米级针销现象。从数值模型分析来看,铒硅化物中费米级钉化的主要原因是金属诱导的间隙态,而不是界面上的化学键。最后,这种分析方法对于分析金属-半导体肖特基接触中的费米级针销现象非常有效。
{"title":"Analysis of Fermi level pinning characteristics in erbium silicided metal–semiconductor interface","authors":"Seok-kyu Kim, Soyeon Jeong, Jaemin Kim, Moongyu Jang","doi":"10.1007/s40042-024-01178-5","DOIUrl":"10.1007/s40042-024-01178-5","url":null,"abstract":"<div><p>In this work, the Fermi level pinning phenomena in erbium-silicided metal–semiconductor Schottky contact is investigated for the understanding on the difficulties forming ohmic contacts between metal and semiconductor materials. The work function of erbium-silicide is extracted by using UPS (ultraviolet photoelectron spectroscopy) and <i>I</i>–<i>V</i> (current–voltage) method with metal–semiconductor diode pattern, respectively. In UPS analysis, the extracted workfunction gradually decreased with increase in the deposited erbium-silicide and saturated to 3.8 eV with 500 Å thick erbium-silicide. However, the extracted work function value of erbium-silicide by <i>I</i>–<i>V</i> method from erbium-silicide on p-type silicon substrate diode pattern is 4.4 eV which shows the strong Fermi level pinning phenomena in erbium-silicided Schottky contact. From the numerical model analysis, the main reason for Fermi level pinning in erbium-silicide is mainly attributed due to the metal induced gap state rather than chemical bonding at interface. Finally, this analysis method will be very effective for the analysis in Fermi level pinning phenomena in metal–semiconductor Schottky contacts.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 10","pages":"793 - 797"},"PeriodicalIF":0.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zinc oxide films doped with iron (Fe-doped ZnO) were fabricated via spray pyrolysis technique by utilizing zinc nitrate and ferric chloride as the source materials. The film manifests a hexagonal wurtzite crystalline structure. Variations in the atomic dimensions of ZnO matrix were observed with an escalation in dopant concentration ranging from 0 to 5 at.% (atomic percent). The incorporation of Fe into the lattice was found to influence the optical transmittance properties and resulted in a decrement of the optical bandgap from 3.28 eV to 2.90 eV. X-ray diffraction (XRD) analysis confirmed that the films are monophasic, retaining a wurtzite structure characteristic of pure ZnO. Comprehensive material characterization was conducted by utilizing a suite of analytical techniques, including scanning electron microscopy (SEM), ultraviolet–visible (UV–Vis) spectroscopy and X-ray photoelectron spectroscopy (XPS), to substantiate the successful synthesis of the nanocomposite and to evaluate various attributes such as surface area, structural and morphological features, chemical composition, and purity. The gas-sensing efficacy of the Fe-doped ZnO films towards nitrogen dioxide (NO2) was assessed, revealing a significant gas response of 31.81% at an operational temperature of 400 degrees Celsius for a NO2 concentration of 100 parts per million (ppm). This gas-sensing performance is characterized by prompt response and recovery times, recorded at 23 s and 61 s, respectively. In addition, it was determined that the sensor response is contingent upon the operating temperature.
{"title":"Synthesis and characterization of Fe-doped ZnO films for enhanced NO2 gas-sensing applications","authors":"Mahalingeshwar Vishwanath Hiremath, Naeemakhtar Momin, Mrunal Vishnu Kangralkar, Jayappa Manjanna, Balachandra Gajanan Hegde, Devidas Gaibanna Byalollikar","doi":"10.1007/s40042-024-01173-w","DOIUrl":"10.1007/s40042-024-01173-w","url":null,"abstract":"<div><p>Zinc oxide films doped with iron (Fe-doped ZnO) were fabricated via spray pyrolysis technique by utilizing zinc nitrate and ferric chloride as the source materials. The film manifests a hexagonal wurtzite crystalline structure. Variations in the atomic dimensions of ZnO matrix were observed with an escalation in dopant concentration ranging from 0 to 5 at.% (atomic percent). The incorporation of Fe into the lattice was found to influence the optical transmittance properties and resulted in a decrement of the optical bandgap from 3.28 eV to 2.90 eV. X-ray diffraction (XRD) analysis confirmed that the films are monophasic, retaining a wurtzite structure characteristic of pure ZnO. Comprehensive material characterization was conducted by utilizing a suite of analytical techniques, including scanning electron microscopy (SEM), ultraviolet–visible (UV–Vis) spectroscopy and X-ray photoelectron spectroscopy (XPS), to substantiate the successful synthesis of the nanocomposite and to evaluate various attributes such as surface area, structural and morphological features, chemical composition, and purity. The gas-sensing efficacy of the Fe-doped ZnO films towards nitrogen dioxide (NO<sub>2</sub>) was assessed, revealing a significant gas response of 31.81% at an operational temperature of 400 degrees Celsius for a NO<sub>2</sub> concentration of 100 parts per million (ppm). This gas-sensing performance is characterized by prompt response and recovery times, recorded at 23 s and 61 s, respectively. In addition, it was determined that the sensor response is contingent upon the operating temperature.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 9","pages":"772 - 782"},"PeriodicalIF":0.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1007/s40042-024-01168-7
Pankaj Saha, Myeonghun Park
Non-trivial sound speed may occur in various interesting scenarios in cosmology and affect the growth of primordial perturbation in the early Universe. This can lead to several observable signatures in the Baryon Acoustic Oscillations, CMB anisotropies, Dark Matter–Baryon Interactions, and the large-scale structure. On the other hand, the vacuum state of curvature perturbation could be expressed as a two-mode squeezed state. In this paper, we study the effects of the non-trivial speed of sound of the perturbations on the evolution of quantum discord for the primordial curvature perturbation using the squeezed formalism. Quantum discord, a measure of the non-classical correlations or quantum correlations between two subsystems of a quantum system, is closely related to the concept of entanglement in the field of quantum information science. We show that the effective speed of sound of primordial perturbations affects the final freeze-in amplitude of the quantum discord. This should provide us with a way to discern the effective speed of sound from quantum discord. We further argue that this may help us further understand the connection between the scrambling time and the effective speed of sounds of the perturbations. These connections can usher a direction when understanding the early Universe from a quantum information point of view.
{"title":"Quantum discord in the early universe with non-trivial sound speed","authors":"Pankaj Saha, Myeonghun Park","doi":"10.1007/s40042-024-01168-7","DOIUrl":"10.1007/s40042-024-01168-7","url":null,"abstract":"<div><p>Non-trivial sound speed may occur in various interesting scenarios in cosmology and affect the growth of primordial perturbation in the early Universe. This can lead to several observable signatures in the Baryon Acoustic Oscillations, CMB anisotropies, Dark Matter–Baryon Interactions, and the large-scale structure. On the other hand, the vacuum state of curvature perturbation could be expressed as a two-mode squeezed state. In this paper, we study the effects of the non-trivial speed of sound of the perturbations on the evolution of quantum discord for the primordial curvature perturbation using the squeezed formalism. Quantum discord, a measure of the non-classical correlations or quantum correlations between two subsystems of a quantum system, is closely related to the concept of entanglement in the field of quantum information science. We show that the effective speed of sound of primordial perturbations affects the final <i>freeze-in</i> amplitude of the quantum discord. This should provide us with a way to discern the effective speed of sound from quantum discord. We further argue that this may help us further understand the connection between the scrambling time and the effective speed of sounds of the perturbations. These connections can usher a direction when understanding the early Universe from a quantum information point of view.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 9","pages":"705 - 711"},"PeriodicalIF":0.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1007/s40042-024-01176-7
Sangsu An, Changhan Lee, Youngji Cho, Jiho Chang, Jaejin Park, Moonjin Lee
We implemented a sensor to measure the concentration of solvents in water and evaluated the accuracy of the sensor. The sensor’s measurement results were compared using cyclic voltammetry, which measures the chemical potential of the solution. A film was produced using Indium-Tin-Oxide (ITO) nanoparticles. Structural and electrical properties of the film, which are closely related to sensor operating characteristics, were investigated. X-Ray Diffraction (XRD) measurements showed that the ITO nanoparticle size is ~ 35 nm. Hall effect measurements at 300 K showed that the carrier concentration n was 4.2–9.2 × 1018 cm⁻3 and the mobility μ was 0.13–0.68 cm2/Vs. Hall measurements show that grain boundary scattering is the main factor limiting the mobility of ITO film. The response of the sensor to three representative organic solvents methanol (MeOH), ethanol (EtOH), and isopropyl alcohol (IPA) was evaluated at various concentrations of each substance. The electrochemical potential of the analyte was determined using cyclic voltammetry (CV) measurements, and the sensor response was calculated using a simple model. The measurement results of the ITO sensor and the results obtained using CV measurement were consistent with each other within a maximum offset values of 4.9%.
我们设计了一种传感器来测量水中的溶剂浓度,并评估了传感器的准确性。我们使用循环伏安法对传感器的测量结果进行了比较,循环伏安法测量的是溶液的化学势。使用氧化铟锡(ITO)纳米粒子制作了一层薄膜。薄膜的结构和电气特性与传感器的工作特性密切相关,研究人员对薄膜的结构和电气特性进行了调查。X 射线衍射 (XRD) 测量显示,ITO 纳米粒子的尺寸约为 35 纳米。在 300 K 下进行的霍尔效应测量表明,载流子浓度 n 为 4.2-9.2 × 1018 cm-3,迁移率 μ 为 0.13-0.68 cm2/Vs。霍尔测量结果表明,晶界散射是限制 ITO 薄膜迁移率的主要因素。在每种物质的不同浓度下,对传感器对三种代表性有机溶剂甲醇(MeOH)、乙醇(EtOH)和异丙醇(IPA)的响应进行了评估。分析物的电化学势是通过循环伏安法(CV)测量确定的,传感器的响应则是通过一个简单的模型计算得出的。ITO 传感器的测量结果与使用 CV 测量得到的结果一致,最大偏移值为 4.9%。
{"title":"Study on the accuracy of Indium-Tin-Oxide (ITO) nanoparticle sensor based on solvent detection characteristics in water","authors":"Sangsu An, Changhan Lee, Youngji Cho, Jiho Chang, Jaejin Park, Moonjin Lee","doi":"10.1007/s40042-024-01176-7","DOIUrl":"10.1007/s40042-024-01176-7","url":null,"abstract":"<div><p>We implemented a sensor to measure the concentration of solvents in water and evaluated the accuracy of the sensor. The sensor’s measurement results were compared using cyclic voltammetry, which measures the chemical potential of the solution. A film was produced using Indium-Tin-Oxide (ITO) nanoparticles. Structural and electrical properties of the film, which are closely related to sensor operating characteristics, were investigated. X-Ray Diffraction (XRD) measurements showed that the ITO nanoparticle size is ~ 35 nm. Hall effect measurements at 300 K showed that the carrier concentration <i>n</i> was 4.2–9.2 × 10<sup>18</sup> cm⁻<sup>3</sup> and the mobility <i>μ</i> was 0.13–0.68 cm<sup>2</sup>/Vs. Hall measurements show that grain boundary scattering is the main factor limiting the mobility of ITO film. The response of the sensor to three representative organic solvents methanol (MeOH), ethanol (EtOH), and isopropyl alcohol (IPA) was evaluated at various concentrations of each substance. The electrochemical potential of the analyte was determined using cyclic voltammetry (CV) measurements, and the sensor response was calculated using a simple model. The measurement results of the ITO sensor and the results obtained using CV measurement were consistent with each other within a maximum offset values of 4.9%.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 10","pages":"861 - 866"},"PeriodicalIF":0.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1007/s40042-024-01177-6
Joonho Jang
Twisted trilayer graphene hosts two moiré superlattices originating from two interfaces between graphene layers. However, the system is generally unstable to lattice relaxation at small twist angles and is expected to show a significantly modified electronic band structure. In particular, a helical trilayer graphene—whose two twisted angles have the same sign—provides an attractive platform with a flat band isolated by large energy gaps near the magic angle, but the interplay between the lattice and the electronic degrees of freedom is not well understood. Here, we performed a large-scale molecular dynamics simulation to study the lattice relaxation of helical trilayer graphenes and evaluated their electronic spectra with a tight-binding model calculation. The comparison of the electronic spectra with and without the lattice relaxation reveals how the lattice relaxation significantly modifies the electronic spectra, particularly near the charge neutrality point. We also investigated the local density of states to visualize the spatially varying electronic spectra that accord with macroscopic domain patterns of moiré lattice stackings. We propose these characteristic spectral features in the electronic degrees of freedom of a relaxed helical trilayer graphene to be confirmed by scanning probe techniques, such as scanning single-electron transistors and scanning tunneling microscopes.
{"title":"Effect of lattice relaxation on electronic spectra of helically twisted trilayer graphene: large-scale atomistic simulation approach","authors":"Joonho Jang","doi":"10.1007/s40042-024-01177-6","DOIUrl":"10.1007/s40042-024-01177-6","url":null,"abstract":"<div><p>Twisted trilayer graphene hosts two moiré superlattices originating from two interfaces between graphene layers. However, the system is generally unstable to lattice relaxation at small twist angles and is expected to show a significantly modified electronic band structure. In particular, a helical trilayer graphene—whose two twisted angles have the same sign—provides an attractive platform with a flat band isolated by large energy gaps near the magic angle, but the interplay between the lattice and the electronic degrees of freedom is not well understood. Here, we performed a large-scale molecular dynamics simulation to study the lattice relaxation of helical trilayer graphenes and evaluated their electronic spectra with a tight-binding model calculation. The comparison of the electronic spectra with and without the lattice relaxation reveals how the lattice relaxation significantly modifies the electronic spectra, particularly near the charge neutrality point. We also investigated the local density of states to visualize the spatially varying electronic spectra that accord with macroscopic domain patterns of moiré lattice stackings. We propose these characteristic spectral features in the electronic degrees of freedom of a relaxed helical trilayer graphene to be confirmed by scanning probe techniques, such as scanning single-electron transistors and scanning tunneling microscopes.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 9","pages":"727 - 736"},"PeriodicalIF":0.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1007/s40042-024-01151-2
Donghyup Ha, SeungHyun Lee, Mitra Ghergherehchi, Sangbeen Lee, Hyojeong Choi, Ho Namgoong, Jong-Seo Chai
An X-band electron LINAC comprising 23 cells was fabricated and tuned for radiation therapy. The fabrication process used oxygen-free high-conductivity copper, which was divided into roughing and finishing stages to minimize machining errors. Resonance frequency measurements and tuning were performed for the half-cell, the unit cell with two half-cells combined, and all cells after assembly. Finally, the electric field inside the entire RF cavity was measured and tuned using a bead-pull test. The reason for the multi-step measurement and tuning was to minimize the number of tunings. Most of the tuning was done in the direction of increasing the frequency, and only a few were done in the direction of decreasing the frequency. All cells were tuned the same way. The finalized cavity had a resonance frequency of 9.306 GHz and a coupling coefficient of 1.277. Performance validation was performed through the percentage depth dose (PDD) test, confirming good agreement with the results for 6 MV X-rays.
我们制作并调谐了一个由 23 个单元组成的 X 波段电子 LINAC,用于放射治疗。制造过程使用无氧高导电铜,分为粗加工和精加工两个阶段,以尽量减少加工误差。对半电池、两个半电池组合的单元电池以及组装后的所有电池进行了共振频率测量和调谐。最后,使用拉珠测试对整个射频腔内的电场进行了测量和调谐。之所以采用多步骤测量和调谐,是为了尽量减少调谐次数。大多数调谐都是沿着频率增加的方向进行的,只有少数调谐是沿着频率降低的方向进行的。所有单元的调谐方法相同。最终确定的腔体共振频率为 9.306 千兆赫,耦合系数为 1.277。通过深度剂量百分比(PDD)测试进行了性能验证,证实与 6 MV X 射线的结果非常吻合。
{"title":"High precision tuning of RF cavity for 6 MeV SKKU X-band medical LINAC","authors":"Donghyup Ha, SeungHyun Lee, Mitra Ghergherehchi, Sangbeen Lee, Hyojeong Choi, Ho Namgoong, Jong-Seo Chai","doi":"10.1007/s40042-024-01151-2","DOIUrl":"10.1007/s40042-024-01151-2","url":null,"abstract":"<div><p>An X-band electron LINAC comprising 23 cells was fabricated and tuned for radiation therapy. The fabrication process used oxygen-free high-conductivity copper, which was divided into roughing and finishing stages to minimize machining errors. Resonance frequency measurements and tuning were performed for the half-cell, the unit cell with two half-cells combined, and all cells after assembly. Finally, the electric field inside the entire RF cavity was measured and tuned using a bead-pull test. The reason for the multi-step measurement and tuning was to minimize the number of tunings. Most of the tuning was done in the direction of increasing the frequency, and only a few were done in the direction of decreasing the frequency. All cells were tuned the same way. The finalized cavity had a resonance frequency of 9.306 GHz and a coupling coefficient of 1.277. Performance validation was performed through the percentage depth dose (PDD) test, confirming good agreement with the results for 6 MV X-rays.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 7","pages":"591 - 599"},"PeriodicalIF":0.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}