2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)最新文献
Pub Date : 2020-07-01DOI: 10.1109/IFCS-ISAF41089.2020.9234876
T. Imaike, Akito Shirai
In this paper, we propose a new method to improve measurement resolution of QCM (quartz crystal microbalances). In the proposed method, the oscillation waveform of the crystal oscillator is directly captured by an analog to digital converters, and the phase is calculated by digital computation. The mass of the object is detected by calculating the instantaneous frequency by time differentiation of the time-series phase information. Therefore, compared to the method using a frequency counter, there is no waiting time due to the gate time, therefore high-speed mass detection is possible. As a result of the experiment, it was confirmed that the measurement resolution was improved compared to the method using the frequency counter.
{"title":"Fully Digital QCM using Twin Quartz Sensor","authors":"T. Imaike, Akito Shirai","doi":"10.1109/IFCS-ISAF41089.2020.9234876","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234876","url":null,"abstract":"In this paper, we propose a new method to improve measurement resolution of QCM (quartz crystal microbalances). In the proposed method, the oscillation waveform of the crystal oscillator is directly captured by an analog to digital converters, and the phase is calculated by digital computation. The mass of the object is detected by calculating the instantaneous frequency by time differentiation of the time-series phase information. Therefore, compared to the method using a frequency counter, there is no waiting time due to the gate time, therefore high-speed mass detection is possible. As a result of the experiment, it was confirmed that the measurement resolution was improved compared to the method using the frequency counter.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"1 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83092727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.1109/IFCS-ISAF41089.2020.9234888
A. Hati, C. Nelson
Multipath interference can be a challenging problem in the determination of accurate outdoor and indoor localization. There are methods that exist to mitigate this problem by extracting the multipath parameters, namely, differential attenuation, carrier phase shift, and differential time-delay. One method is to transmit a narrow pulse and extract these parameters from the impulse response of the channel. Another well-established method is to use frequency dependent amplitude fading of a swept sinusoid for multipath parameters extraction. In this paper, we used the second technique for the suppression of multipath distortion. We implemented this scheme with an Ettus B120 software defined radio (SDR) and observed more than a factor of 8 (18 dB) reduction of multipath distortion under different indoor environments; our findings are supported by both simulation as well as experimental results.
{"title":"Multipath Parameter Extraction and Correction from Frequency Dependent Amplitude Fading","authors":"A. Hati, C. Nelson","doi":"10.1109/IFCS-ISAF41089.2020.9234888","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234888","url":null,"abstract":"Multipath interference can be a challenging problem in the determination of accurate outdoor and indoor localization. There are methods that exist to mitigate this problem by extracting the multipath parameters, namely, differential attenuation, carrier phase shift, and differential time-delay. One method is to transmit a narrow pulse and extract these parameters from the impulse response of the channel. Another well-established method is to use frequency dependent amplitude fading of a swept sinusoid for multipath parameters extraction. In this paper, we used the second technique for the suppression of multipath distortion. We implemented this scheme with an Ettus B120 software defined radio (SDR) and observed more than a factor of 8 (18 dB) reduction of multipath distortion under different indoor environments; our findings are supported by both simulation as well as experimental results.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"164 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75339373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.1109/IFCS-ISAF41089.2020.9234873
M. Siccardi, T. T. Thai, D. Rovera, I. Sesia
Many timing laboratories employ the Two-Way Satellite Time and Frequency Transfer (TWSTFT) technique for the comparison of their high accuracy atomic clocks and time scales and contribute to the Coordinated Universal Time (UTC). Most laboratories use the SATRE (SAtellite Time and Ranging Equipment) modems developed by TimeTech, which is currently the sole European manufacturer of TWSTFT modems. Some laboratories also participate in the 2016 BIPM pilot study on the Software-Defined Radio (SDR) receiver for TWSTFT which was proven to reduce the diurnal variation seen on “traditional” SATRE links. In this work, we developed a prototype for transmitting TWSTFT signal which is compatible with both SATRE modems and SDR receivers and present a preliminary assessment of its compatibility and performance.
{"title":"A TWSTFT Transmitter Prototype Compatible with SDR Receivers and SATRE Modems","authors":"M. Siccardi, T. T. Thai, D. Rovera, I. Sesia","doi":"10.1109/IFCS-ISAF41089.2020.9234873","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234873","url":null,"abstract":"Many timing laboratories employ the Two-Way Satellite Time and Frequency Transfer (TWSTFT) technique for the comparison of their high accuracy atomic clocks and time scales and contribute to the Coordinated Universal Time (UTC). Most laboratories use the SATRE (SAtellite Time and Ranging Equipment) modems developed by TimeTech, which is currently the sole European manufacturer of TWSTFT modems. Some laboratories also participate in the 2016 BIPM pilot study on the Software-Defined Radio (SDR) receiver for TWSTFT which was proven to reduce the diurnal variation seen on “traditional” SATRE links. In this work, we developed a prototype for transmitting TWSTFT signal which is compatible with both SATRE modems and SDR receivers and present a preliminary assessment of its compatibility and performance.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"204 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77030387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.1109/ifcs-isaf41089.2020.9234921
{"title":"Copyright","authors":"","doi":"10.1109/ifcs-isaf41089.2020.9234921","DOIUrl":"https://doi.org/10.1109/ifcs-isaf41089.2020.9234921","url":null,"abstract":"","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78457383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.1109/IFCS-ISAF41089.2020.9234922
K. Irie, Jun-ichi Arai, Manabu Ito, Toshiyuki Shinotsuka, Manabu Ishikawa, S. Wakamatsu
This paper describes a high stability ultra-miniature size OCXO operating within wide temperature range using a ASIC with a built-in oven for OCXO. The ASIC realized that the OCXO could be extremely downsized and the maximum operating temperature is getting higher because it has almost all functions including a built-in oven which OCXOs should have. We have achieved about +/−5 ppb in a range of −40 to +95 °C and obtained excellent temperature slope characteristics for $7.0times 5.0text{mm}$ size package.
{"title":"High Stability Ultra-Miniature Size OCXO Operating within Wide Temperature Range: Using ASIC with Built-in Oven for OCXO","authors":"K. Irie, Jun-ichi Arai, Manabu Ito, Toshiyuki Shinotsuka, Manabu Ishikawa, S. Wakamatsu","doi":"10.1109/IFCS-ISAF41089.2020.9234922","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234922","url":null,"abstract":"This paper describes a high stability ultra-miniature size OCXO operating within wide temperature range using a ASIC with a built-in oven for OCXO. The ASIC realized that the OCXO could be extremely downsized and the maximum operating temperature is getting higher because it has almost all functions including a built-in oven which OCXOs should have. We have achieved about +/−5 ppb in a range of −40 to +95 °C and obtained excellent temperature slope characteristics for $7.0times 5.0text{mm}$ size package.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"2 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78409347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.1109/IFCS-ISAF41089.2020.9234880
F. Constantin
Two-photon rotational spectroscopy of cold trapped HD+ ions may be exploited for characterization of the magnitude and orientation of a static magnetic field in the ion trap. The experimental setup and the approach for calibration of the magnetic field vector are described. A sensitivity at the 10−11 T level may be reached with Zeeman spectroscopy of a hyperfine component of the $(mathrm{v},mathrm{L}) =(0,0)rightarrow(0,2)$ transition. The orientation of a magnetic field with a magnitude at the $1 mu mathrm{T}$ level may be characterized with an uncertainty better than 30 mrad.
冷阱HD+离子的双光子旋转光谱可以用来表征离子阱中静态磁场的大小和方向。介绍了实验装置和磁场矢量的标定方法。用塞曼光谱对$(mathrm{v},mathrm{L}) =(0,0)rightarrow(0,2)$跃迁的超精细组分可以达到10−11 T水平的灵敏度。量级为$1 mu mathrm{T}$级的磁场的方向可以用优于30 mrad的不确定度来表征。
{"title":"Characterization of a Static Magnetic Field with Two-Photon Rotational Spectroscopy of Cold Trapped HD+","authors":"F. Constantin","doi":"10.1109/IFCS-ISAF41089.2020.9234880","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234880","url":null,"abstract":"Two-photon rotational spectroscopy of cold trapped HD+ ions may be exploited for characterization of the magnitude and orientation of a static magnetic field in the ion trap. The experimental setup and the approach for calibration of the magnetic field vector are described. A sensitivity at the 10−11 T level may be reached with Zeeman spectroscopy of a hyperfine component of the $(mathrm{v},mathrm{L}) =(0,0)rightarrow(0,2)$ transition. The orientation of a magnetic field with a magnitude at the $1 mu mathrm{T}$ level may be characterized with an uncertainty better than 30 mrad.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"107 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73535826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.1109/IFCS-ISAF41089.2020.9234852
K. Bhosale, Gayathri Pillai, Sheng-Shian Li
In this work, we explore the generation of higher order harmonics in an electrostatically actuated wide-width beam resonator fabricated by a CMOS-MEMS Titanium Nitride Composite (TiN-C) platform. The explored TiN-C platform can achieve a gap of 400 nm with high transduction efficiency, low motional resistance ($R_{m}$) and enhanced frequency stability. A record-high Radius of Curvature (R.O.C of 11.9 cm) of the fabricated wide-width pseudo free-free beam is achieved among CMOS-MEMS counterparts. The fundamental mode is measured at a resonance frequency of 9.8 MHz. The second and the third higher order harmonics are observed when the resonator is excited at its fundamental flexural mode in the non-linear region. A varying AC voltage drives the resonator from the linear regime into non-linear regime for an applied DC bias of 80 V. The presence of harmonics is confirmed electrically and optically through measurement using the Spectrum Analyzer and the Laser Doppler Vibrometer (LDV) respectively.
{"title":"Nonlinearity Driven Higher Order Harmonics in CMOS-MEMS Resonators","authors":"K. Bhosale, Gayathri Pillai, Sheng-Shian Li","doi":"10.1109/IFCS-ISAF41089.2020.9234852","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234852","url":null,"abstract":"In this work, we explore the generation of higher order harmonics in an electrostatically actuated wide-width beam resonator fabricated by a CMOS-MEMS Titanium Nitride Composite (TiN-C) platform. The explored TiN-C platform can achieve a gap of 400 nm with high transduction efficiency, low motional resistance ($R_{m}$) and enhanced frequency stability. A record-high Radius of Curvature (R.O.C of 11.9 cm) of the fabricated wide-width pseudo free-free beam is achieved among CMOS-MEMS counterparts. The fundamental mode is measured at a resonance frequency of 9.8 MHz. The second and the third higher order harmonics are observed when the resonator is excited at its fundamental flexural mode in the non-linear region. A varying AC voltage drives the resonator from the linear regime into non-linear regime for an applied DC bias of 80 V. The presence of harmonics is confirmed electrically and optically through measurement using the Spectrum Analyzer and the Laser Doppler Vibrometer (LDV) respectively.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"22 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81679185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.1109/IFCS-ISAF41089.2020.9234911
A. Ozgurluk, C. Nguyen
A micromechanical structure for on-chip strain sensing maps strain-induced gap changes to resonance frequency shifts while employing differential strategies to null out bias uncertainty, all towards repeatable measurement of sub-nm displacement changes that equate to sub-$-muvarepsilon$ strain increments. The key enabler here is the use of gap-dependent electrical stiffness to shift resonance frequencies as structural elements stretch or shrink to relieve stress. An output based on the difference frequency between two close proximity structures with unequal stress arm lengths (cf. Fig. 1) removes uncertainty on the initial gap spacing and permits a $206 text{Hz}/muvarepsilon$ scale factor. The ability to precisely measure the frequency of the high-$Q$ (∼4000) structures, down to at least 1 Hz, puts the resolution of this sensor at least $5mathrm{n}varepsilon$ (or 790 Pa for polysilicon). An on-chip highly sensitive strain sensing device like this will likely be instrumental to managing stress changes over the lifetime of micromechanical circuits, such as oscillators and filters.
{"title":"Precision Resonant Beam Strain Sensor Employing Gap-Dependent Frequency Shift","authors":"A. Ozgurluk, C. Nguyen","doi":"10.1109/IFCS-ISAF41089.2020.9234911","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234911","url":null,"abstract":"A micromechanical structure for on-chip strain sensing maps strain-induced gap changes to resonance frequency shifts while employing differential strategies to null out bias uncertainty, all towards repeatable measurement of sub-nm displacement changes that equate to sub-$-muvarepsilon$ strain increments. The key enabler here is the use of gap-dependent electrical stiffness to shift resonance frequencies as structural elements stretch or shrink to relieve stress. An output based on the difference frequency between two close proximity structures with unequal stress arm lengths (cf. Fig. 1) removes uncertainty on the initial gap spacing and permits a $206 text{Hz}/muvarepsilon$ scale factor. The ability to precisely measure the frequency of the high-$Q$ (∼4000) structures, down to at least 1 Hz, puts the resolution of this sensor at least $5mathrm{n}varepsilon$ (or 790 Pa for polysilicon). An on-chip highly sensitive strain sensing device like this will likely be instrumental to managing stress changes over the lifetime of micromechanical circuits, such as oscillators and filters.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"195 2 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85602791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.1109/IFCS-ISAF41089.2020.9234937
J. Esterline, Dewain Stange
The temperature performance of Oven Controlled Crystal Oscillators (OCXOs) and Double Oven Controlled Crystal Oscillators (DOCXOs) have been the pinnacle of quartz crystal frequency versus temperature performance for decades. DOCXOs can provide frequency versus temperature stabilities under +/− 1ppb. This superior performance comes at the cost of the power consumption of running two ovens, as well as footprint impact from the extra circuitry. Wide temperature ranges are also a challenge for DOCXOs due to the need to run the ovens at very high temperatures. This paper focuses on a secondary method of compensating OCXOs for frequency versus temperature performance using a segmented polynomial array compensation. This method of compensation can achieve results unobtainable through conventional compensation methods. A group of eight OCXOs in a $20 text{mm} times 20 text{mm}$ package with SC cut crystals were studied for this paper. The inherent mean frequency versus temperature performance of the most improved unit was ±4.29 ppb over the industrial range of −40 to 85 °C. Using 4 segments to compensate the unit the frequency versus temperature performance was reduced to mean performance of ±0.153 ppb over the industrial range. This is a 28 to 1 improvement over the OCXOs inherent performance. This compensated single oven technology provides superior temperature performance over a wider temperature range with lower power consumption than can be achieved with traditional methods. The theory of this compensation method will be discussed, and data showing the results of frequency versus temperature compensation on the qualification group will be presented.
{"title":"Secondary Frequency Versus Temperature Compensation of an OCXO Using a Segmented Polynomial Array","authors":"J. Esterline, Dewain Stange","doi":"10.1109/IFCS-ISAF41089.2020.9234937","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234937","url":null,"abstract":"The temperature performance of Oven Controlled Crystal Oscillators (OCXOs) and Double Oven Controlled Crystal Oscillators (DOCXOs) have been the pinnacle of quartz crystal frequency versus temperature performance for decades. DOCXOs can provide frequency versus temperature stabilities under +/− 1ppb. This superior performance comes at the cost of the power consumption of running two ovens, as well as footprint impact from the extra circuitry. Wide temperature ranges are also a challenge for DOCXOs due to the need to run the ovens at very high temperatures. This paper focuses on a secondary method of compensating OCXOs for frequency versus temperature performance using a segmented polynomial array compensation. This method of compensation can achieve results unobtainable through conventional compensation methods. A group of eight OCXOs in a $20 text{mm} times 20 text{mm}$ package with SC cut crystals were studied for this paper. The inherent mean frequency versus temperature performance of the most improved unit was ±4.29 ppb over the industrial range of −40 to 85 °C. Using 4 segments to compensate the unit the frequency versus temperature performance was reduced to mean performance of ±0.153 ppb over the industrial range. This is a 28 to 1 improvement over the OCXOs inherent performance. This compensated single oven technology provides superior temperature performance over a wider temperature range with lower power consumption than can be achieved with traditional methods. The theory of this compensation method will be discussed, and data showing the results of frequency versus temperature compensation on the qualification group will be presented.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"55 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85640139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.1109/IFCS-ISAF41089.2020.9234833
K. Coleman, J. Walker, Wanlin Zhu, S. Ko, P. Mardilovich, S. Trolier-McKinstry
Understanding the failure mechanisms of piezoelectric thin films is critical for the commercialization of piezoelectric microelectromechanical systems. This paper describes the failure of $0.6 mu mathrm{m}$ lead zirconate titanate (PZT) thin films on Si wafers with different in-plane stresses under large electric fields. The films failed by a combination of cracking and thermal breakdown events. It was found that the crack initiation and propagation behavior varied with the stress state of the films. The total stress required for crack initiation was estimated to be near 500 MPa. As expected, cracks propagated perpendicular to the maximum tensile stress direction. Thermal breakdown events and cracks were correlated, suggesting coupling between electrical and mechanical failure. It was also found that films that were released from the underlying substrates were less susceptible to failure by cracking. It was proposed that during electric field loading the released film stacks were able to bow and alleviate some of the stress. Released films may also experience enhanced domain wall motion that increases their fracture toughness. The results indicate that both applied stress and clamping conditions play important roles in the electromechancial failure of piezoelectric thin films.
了解压电薄膜的失效机制对压电微机电系统的商业化至关重要。本文描述了$0.6 mu mathm {m}$锆钛酸铅(PZT)薄膜在不同面内应力的硅晶片上在大电场作用下的失效。由于开裂和热击穿事件的共同作用,薄膜失效。结果表明,裂纹的萌生和扩展行为随薄膜应力状态的变化而变化。裂纹萌生所需的总应力估计在500 MPa左右。正如预期的那样,裂纹垂直于最大拉应力方向扩展。热击穿事件和裂纹相关,表明电气和机械故障之间存在耦合。研究还发现,从底层基材中释放出来的薄膜不易因开裂而失效。提出在电场加载过程中,释放的薄膜层能够弯曲并减轻部分应力。释放的薄膜也可能经历增强的畴壁运动,从而增加其断裂韧性。结果表明,外加应力和夹紧条件对压电薄膜的机电破坏都有重要影响。
{"title":"Failure Mechanisms of Lead Zirconate Titanate Thin Films during Electromechanical Loading","authors":"K. Coleman, J. Walker, Wanlin Zhu, S. Ko, P. Mardilovich, S. Trolier-McKinstry","doi":"10.1109/IFCS-ISAF41089.2020.9234833","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234833","url":null,"abstract":"Understanding the failure mechanisms of piezoelectric thin films is critical for the commercialization of piezoelectric microelectromechanical systems. This paper describes the failure of $0.6 mu mathrm{m}$ lead zirconate titanate (PZT) thin films on Si wafers with different in-plane stresses under large electric fields. The films failed by a combination of cracking and thermal breakdown events. It was found that the crack initiation and propagation behavior varied with the stress state of the films. The total stress required for crack initiation was estimated to be near 500 MPa. As expected, cracks propagated perpendicular to the maximum tensile stress direction. Thermal breakdown events and cracks were correlated, suggesting coupling between electrical and mechanical failure. It was also found that films that were released from the underlying substrates were less susceptible to failure by cracking. It was proposed that during electric field loading the released film stacks were able to bow and alleviate some of the stress. Released films may also experience enhanced domain wall motion that increases their fracture toughness. The results indicate that both applied stress and clamping conditions play important roles in the electromechancial failure of piezoelectric thin films.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"90 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80478167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}