首页 > 最新文献

Microfluidics and Nanofluidics最新文献

英文 中文
Boundary slip moderated by interfacial hydrogen bond dynamics 界面氢键动力学缓和边界滑移
IF 2.8 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-11-02 DOI: 10.1007/s10404-023-02695-8
JinChuan Li, KeLi Zhang, JingCun Fan, HengAn Wu, FengChao Wang

Understanding the slip behaviors on the graphene surfaces is crucial in the field of nanofluidics and nanofluids. The reported values of the slip length in the literature from both experimental measurements and simulations are quite scattered. The presence of low concentrations of functional groups may have a greater impact on the flow behavior than expected. Using non-equilibrium molecular dynamics simulations, we specifically investigated the influence of hydroxyl-functionalized graphene surfaces on the boundary slip, particularly the effects related to hydrogen bond dynamics. We observed that hydroxyl groups significantly hindered the sliding motion of neighboring water molecules. Hydrogen bonds can be found between hydroxyl groups and water molecules. During the flow process, these hydrogen bonds continuously form and break, resulting in the energy dissipation. We analyzed the energy balance under different driving forces and proposed a theoretical model to describe the slip length which also considers the influence of hydrogen bond dynamics. The effects of the driving force and the surface functional group concentration were also studied.

了解石墨烯表面的滑移行为在纳米流体和纳米流体领域至关重要。从实验测量和模拟的文献中报道的滑移长度值是相当分散的。低浓度官能团的存在可能对流动行为产生比预期更大的影响。利用非平衡分子动力学模拟,我们专门研究了羟基功能化石墨烯表面对边界滑移的影响,特别是与氢键动力学相关的影响。我们观察到羟基显著地阻碍了邻近水分子的滑动运动。氢键可以在羟基和水分子之间找到。在流动过程中,这些氢键不断形成和断裂,导致能量耗散。分析了不同驱动力下的能量平衡,提出了考虑氢键动力学影响的滑移长度的理论模型。研究了驱动力和表面官能团浓度的影响。
{"title":"Boundary slip moderated by interfacial hydrogen bond dynamics","authors":"JinChuan Li,&nbsp;KeLi Zhang,&nbsp;JingCun Fan,&nbsp;HengAn Wu,&nbsp;FengChao Wang","doi":"10.1007/s10404-023-02695-8","DOIUrl":"10.1007/s10404-023-02695-8","url":null,"abstract":"<div><p>Understanding the slip behaviors on the graphene surfaces is crucial in the field of nanofluidics and nanofluids. The reported values of the slip length in the literature from both experimental measurements and simulations are quite scattered. The presence of low concentrations of functional groups may have a greater impact on the flow behavior than expected. Using non-equilibrium molecular dynamics simulations, we specifically investigated the influence of hydroxyl-functionalized graphene surfaces on the boundary slip, particularly the effects related to hydrogen bond dynamics. We observed that hydroxyl groups significantly hindered the sliding motion of neighboring water molecules. Hydrogen bonds can be found between hydroxyl groups and water molecules. During the flow process, these hydrogen bonds continuously form and break, resulting in the energy dissipation. We analyzed the energy balance under different driving forces and proposed a theoretical model to describe the slip length which also considers the influence of hydrogen bond dynamics. The effects of the driving force and the surface functional group concentration were also studied.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"27 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134795434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lab on a chip for detecting Clara cell protein 16 (CC16) for potential screening of the workers exposed to respirable silica aerosol. 用于检测克拉拉细胞蛋白 16(CC16)的芯片实验室,可用于筛查暴露于可吸入二氧化硅气溶胶的工人。
IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-11-01
Chong Ahn, Taekhee Lee, Jae Hoon Shin, Jong Seong Lee, V Thiyagarajan Upaassana, Sthitodhi Ghosh, Bon Ki Ku

Early detection of pulmonary responses to silica aerosol exposure, such as lung inflammation as well as early identification of silicosis initiation, is of great importance in disease prevention of workers. In this study, to early screen the health condition of the workers who are exposed to respirable silica dusts, an immunoassay lab on a chip (LOC) was designed, developed and fully characterized for analyzing Clara cell protein 16 (CC16) in serum which has been considered as one of the potential biomarkers of lung inflammation or lung damage due to the respirable silica dusts. Sandwich immunoassay of CC16 was performed on the LOC developed with a custom-designed portable analyzer using artificial serums spiked with CC16 protein first and then human serums obtained from the coal mine workers exposed to the respirable silica-containing dusts. The dynamic range of CC16 assay performed on the LOC was in a range of 0.625-20 ng/mL, and the achieved limit of detection (LOD) was around 0.35 ng/mL. The assay results of CC16 achieved from both the developed LOC and the conventional 96 well plate showed a reasonable corelation. The correlation between the conventional reader and the developed portable analyzer was found to be reasonable, resulting in R2 ~ 0.93. This study shows that the LOC developed for the early detection of CC16 can be potentially applied for the development of a field-deployable point-of-care testing (POCT) for the early monitoring of the field workers who are exposed to silica aerosol.

早期检测接触二氧化硅气溶胶的肺部反应(如肺部炎症)以及早期识别矽肺病的诱发因素,对工人的疾病预防具有重要意义。为了早期筛查暴露于可吸入二氧化硅粉尘的工人的健康状况,本研究设计、开发了一种芯片上免疫测定实验室(LOC),并对其进行了全面鉴定,用于分析血清中的克拉细胞蛋白 16(CC16),该蛋白被认为是可吸入二氧化硅粉尘导致肺部炎症或肺损伤的潜在生物标志物之一。首先使用添加了 CC16 蛋白的人工血清,然后使用从暴露于含可吸入二氧化硅粉尘的煤矿工人处获得的人体血清,在定制设计的便携式分析仪开发的 LOC 上进行了 CC16 的三明治免疫测定。在 LOC 上进行的 CC16 检测的动态范围为 0.625-20 纳克/毫升,检出限(LOD)约为 0.35 纳克/毫升。开发的 LOC 和传统 96 孔板的 CC16 检测结果显示出合理的相关性。传统阅读器与开发的便携式分析仪之间的相关性也很合理,R2 ~ 0.93。这项研究表明,所开发的用于早期检测 CC16 的 LOC 有可能被用于开发一种可现场部署的护理点检测(POCT),以对暴露于二氧化硅气溶胶的现场工作人员进行早期监测。
{"title":"Lab on a chip for detecting Clara cell protein 16 (CC16) for potential screening of the workers exposed to respirable silica aerosol.","authors":"Chong Ahn, Taekhee Lee, Jae Hoon Shin, Jong Seong Lee, V Thiyagarajan Upaassana, Sthitodhi Ghosh, Bon Ki Ku","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Early detection of pulmonary responses to silica aerosol exposure, such as lung inflammation as well as early identification of silicosis initiation, is of great importance in disease prevention of workers. In this study, to early screen the health condition of the workers who are exposed to respirable silica dusts, an immunoassay lab on a chip (LOC) was designed, developed and fully characterized for analyzing Clara cell protein 16 (CC16) in serum which has been considered as one of the potential biomarkers of lung inflammation or lung damage due to the respirable silica dusts. Sandwich immunoassay of CC16 was performed on the LOC developed with a custom-designed portable analyzer using artificial serums spiked with CC16 protein first and then human serums obtained from the coal mine workers exposed to the respirable silica-containing dusts. The dynamic range of CC16 assay performed on the LOC was in a range of 0.625-20 ng/mL, and the achieved limit of detection (LOD) was around 0.35 ng/mL. The assay results of CC16 achieved from both the developed LOC and the conventional 96 well plate showed a reasonable corelation. The correlation between the conventional reader and the developed portable analyzer was found to be reasonable, resulting in <i>R</i><sup>2</sup> ~ 0.93. This study shows that the LOC developed for the early detection of CC16 can be potentially applied for the development of a field-deployable point-of-care testing (POCT) for the early monitoring of the field workers who are exposed to silica aerosol.</p>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"27 11","pages":"1-10"},"PeriodicalIF":2.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139401355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computation of flow rates in rarefied gas flow through circular tubes via machine learning techniques 利用机器学习技术计算稀薄气体流经圆管的流速
IF 2.8 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-10-27 DOI: 10.1007/s10404-023-02689-6
F. Sofos, C. Dritselis, S. Misdanitis, T. Karakasidis, D. Valougeorgis

Kinetic theory and modeling have been proven extremely suitable in computing the flow rates in rarefied gas pipe flows, but they are computationally expensive and more importantly not practical in design and optimization of micro- and vacuum systems. In an effort to reduce the computational cost and improve accessibility when dealing with such systems, two efficient methods are employed by leveraging machine learning (ML). More specifically, random forest regression (RFR) and symbolic regression (SR) have been adopted, suggesting a framework capable of extracting numerical predictions and analytical equations, respectively, exclusively derived from data. The database of the reduced flow rates W used in the current ML framework has been obtained using kinetic modeling and it refers to nonlinear flows through circular tubes (tube length over radius (l in [0,5]) and downstream over upstream pressure (p in [0,0.9])) in a very wide range of the gas rarefaction parameter (delta in [0,10^3]). The accuracy of both RFR and SR models is assessed using statistical metrics, as well as the relative error between the ML predictions and the kinetic database. The predictions obtained by RFR show very good fit on the simulation data, having a maximum absolute relative error of less than (12.5%). Various expressions of the form of (W=W(p,l,delta )) with different accuracy and complexity are acquired from SR. The proposed equation, valid in the whole range of the relevant parameters, exhibits a maximum absolute relative error less than (17%). To further improve the accuracy, the dataset is divided into three subsets in terms of (delta) and one SR-based closed-form expression of each subset is proposed, achieving a maximum absolute relative error smaller than (9%). Very good performance of all proposed equations is observed, as indicated by the obtained accuracy measures. Overall, the present ML-predicted data may be very useful in gaseous microfluidics and vacuum technology for engineering purposes.

动力学理论和模型已被证明非常适用于计算稀薄气体管道流动的流量,但它们的计算成本很高,更重要的是在微系统和真空系统的设计和优化中不实用。在处理此类系统时,为了降低计算成本并提高可访问性,利用机器学习(ML)采用了两种有效的方法。更具体地说,采用了随机森林回归(RFR)和符号回归(SR),提出了一个能够分别从数据中提取数值预测和分析方程的框架。目前ML框架中使用的降低流量W数据库是通过动力学建模获得的,它指的是在很宽的气体稀薄参数(delta in [0,10^3])范围内通过圆管(管长除以半径(l in [0,5])和下游除以上游压力(p in [0,0.9]))的非线性流动。使用统计指标评估RFR和SR模型的准确性,以及ML预测与动力学数据库之间的相对误差。RFR预测结果与模拟数据拟合良好,最大绝对相对误差小于(12.5%)。由sr得到了不同精度和复杂度的(W=W(p,l,delta ))形式的表达式。所提出的方程在所有相关参数范围内都有效,其最大绝对相对误差小于(17%)。为了进一步提高准确率,将数据集按(delta)划分为三个子集,并对每个子集提出一个基于sr的封闭形式表达式,最大绝对相对误差小于(9%)。所有提出的方程都有很好的性能,正如所获得的精度测量所表明的那样。总的来说,目前的机器学习预测数据可能对气体微流体和真空技术的工程用途非常有用。
{"title":"Computation of flow rates in rarefied gas flow through circular tubes via machine learning techniques","authors":"F. Sofos,&nbsp;C. Dritselis,&nbsp;S. Misdanitis,&nbsp;T. Karakasidis,&nbsp;D. Valougeorgis","doi":"10.1007/s10404-023-02689-6","DOIUrl":"10.1007/s10404-023-02689-6","url":null,"abstract":"<div><p>Kinetic theory and modeling have been proven extremely suitable in computing the flow rates in rarefied gas pipe flows, but they are computationally expensive and more importantly not practical in design and optimization of micro- and vacuum systems. In an effort to reduce the computational cost and improve accessibility when dealing with such systems, two efficient methods are employed by leveraging machine learning (ML). More specifically, random forest regression (RFR) and symbolic regression (SR) have been adopted, suggesting a framework capable of extracting numerical predictions and analytical equations, respectively, exclusively derived from data. The database of the reduced flow rates <i>W</i> used in the current ML framework has been obtained using kinetic modeling and it refers to nonlinear flows through circular tubes (tube length over radius <span>(l in [0,5])</span> and downstream over upstream pressure <span>(p in [0,0.9])</span>) in a very wide range of the gas rarefaction parameter <span>(delta in [0,10^3])</span>. The accuracy of both RFR and SR models is assessed using statistical metrics, as well as the relative error between the ML predictions and the kinetic database. The predictions obtained by RFR show very good fit on the simulation data, having a maximum absolute relative error of less than <span>(12.5%)</span>. Various expressions of the form of <span>(W=W(p,l,delta ))</span> with different accuracy and complexity are acquired from SR. The proposed equation, valid in the whole range of the relevant parameters, exhibits a maximum absolute relative error less than <span>(17%)</span>. To further improve the accuracy, the dataset is divided into three subsets in terms of <span>(delta)</span> and one SR-based closed-form expression of each subset is proposed, achieving a maximum absolute relative error smaller than <span>(9%)</span>. Very good performance of all proposed equations is observed, as indicated by the obtained accuracy measures. Overall, the present ML-predicted data may be very useful in gaseous microfluidics and vacuum technology for engineering purposes.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"27 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-023-02689-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134797671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mechanisms and properties of inertial microfluidics: from fundamental models to biomedical applications 惯性微流体的机理和特性:从基本模型到生物医学应用
IF 2.8 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-10-25 DOI: 10.1007/s10404-023-02692-x
Shlok Mishra, Joydeb Mukherjee, Deepa Chaturvedi, Ratnesh Jain, Prajakta Dandekar

With continuous efforts of researchers all over the world, the field of inertial microfluidics is constantly growing, to cater to the requirements of diverse areas like healthcare, biological and chemical analysis, materials synthesis, etc. The scale, automation, or unique physics of these systems has been expanding their scope of applications. In this review article, we have provided insights into the fundamental mechanisms of inertial microfluidics, the forces involved, the interactions and effects of different applied forces on the suspended particles, the underlying physics of these systems, and the description of numerical studies, which are the prime factors that govern designing of effective and practical devices.. Further, we describe how various forces lead to the migration and focusing of suspended particles at equilibrium positions in channels with different cross-sections and also review various factors affecting the same. We also focus on the effect of suspended particles on the flow of fluids within these systems. Furthermore, we discuss how Dean flows are created in a curved channel and how different structures affect the creation of secondary flows, and their application to mixing, manipulating, and focusing particles as fluid. Finally, we describe various applications of microfluidics for diagnostic and other clinical purposes, and discuss the challenges and advancements in this field. We anticipate that this manuscript will elucidate the basics and quantitative aspects of inertial fluid dynamic effects for application in biomedicines, materials synthesis, chemical process control, and beyond.

Graphical abstract

随着世界各地研究人员的不断努力,惯性微流体领域正在不断发展,以满足医疗保健、生物和化学分析、材料合成等不同领域的要求。这些系统的规模、自动化或独特的物理特性不断扩大其应用范围。在这篇综述文章中,我们深入了解了惯性微流体的基本机制、所涉及的力、不同作用力对悬浮颗粒的相互作用和影响、这些系统的基本物理特性以及数值研究的描述,这些都是控制有效和实用装置设计的主要因素。。此外,我们描述了各种力如何导致悬浮颗粒在不同横截面通道中平衡位置的迁移和聚焦,并回顾了影响迁移和聚焦的各种因素。我们还关注悬浮颗粒对这些系统内流体流动的影响。此外,我们还讨论了Dean流是如何在弯曲通道中产生的,不同的结构如何影响二次流的产生,以及它们在混合、操纵和聚焦作为流体的粒子方面的应用。最后,我们描述了微流体在诊断和其他临床目的中的各种应用,并讨论了该领域的挑战和进展。我们预计,这篇手稿将阐明惯性流体动力学效应的基础和定量方面,用于生物医学、材料合成、化学过程控制等领域。图形摘要
{"title":"The mechanisms and properties of inertial microfluidics: from fundamental models to biomedical applications","authors":"Shlok Mishra,&nbsp;Joydeb Mukherjee,&nbsp;Deepa Chaturvedi,&nbsp;Ratnesh Jain,&nbsp;Prajakta Dandekar","doi":"10.1007/s10404-023-02692-x","DOIUrl":"10.1007/s10404-023-02692-x","url":null,"abstract":"<div><p>With continuous efforts of researchers all over the world, the field of inertial microfluidics is constantly growing, to cater to the requirements of diverse areas like healthcare, biological and chemical analysis, materials synthesis, etc. The scale, automation, or unique physics of these systems has been expanding their scope of applications. In this review article, we have provided insights into the fundamental mechanisms of inertial microfluidics, the forces involved, the interactions and effects of different applied forces on the suspended particles, the underlying physics of these systems, and the description of numerical studies, which are the prime factors that govern designing of effective and practical devices.. Further, we describe how various forces lead to the migration and focusing of suspended particles at equilibrium positions in channels with different cross-sections and also review various factors affecting the same. We also focus on the effect of suspended particles on the flow of fluids within these systems. Furthermore, we discuss how Dean flows are created in a curved channel and how different structures affect the creation of secondary flows, and their application to mixing, manipulating, and focusing particles as fluid. Finally, we describe various applications of microfluidics for diagnostic and other clinical purposes, and discuss the challenges and advancements in this field. We anticipate that this manuscript will elucidate the basics and quantitative aspects of inertial fluid dynamic effects for application in biomedicines, materials synthesis, chemical process control, and beyond.</p><h3>Graphical abstract</h3>\u0000 <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\u0000 </div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"27 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50514203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Particle separation based on dielectrophoresis force using boundary element method and point-particle approach in a microfluidic channel 微流体通道中基于介电电泳力的边界元法和点粒子法粒子分离
IF 2.8 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-10-24 DOI: 10.1007/s10404-023-02694-9
Mostafa Olfat, Erfan Kadivar

Active sorting of particle in the dielectrophoresis microfluidic channel by applying the boundary element method and point-particle approach is investigated. In this paper, we investigate the dynamics of particle sorting for various particle sizes, electrode potential, electrode spacing, and relative permittivity. The microfluidic device consists a straight mother channel, two inlets, two outlets, and up and down triangular electrodes. The boundary element method is applied to numerically solve the integral equations of the Laplace differential equation of electric potential and Stokes differential equation. In continue, the dynamics of particle separation using the point-particle approach is investigated. Numerical results indicate that there are three different particle sorting regimes. They are called by up-outlet, down-outlet, and trapped regimes. The results illustrate that there are a good agreement between two numerical approaches.

应用边界元法和点粒子法研究了介电电泳微流体通道中粒子的主动分选。在本文中,我们研究了不同颗粒尺寸、电极电势、电极间距和相对介电常数的颗粒分选动力学。微流体装置由一个直的母通道、两个入口、两个出口和上下三角形电极组成。应用边界元法对拉普拉斯电位微分方程和斯托克斯微分方程的积分方程进行了数值求解。在继续,使用点粒子方法研究粒子分离的动力学。数值结果表明,存在三种不同的颗粒分选方式。它们被上行出口、下行出口和受困政权所召唤。结果表明,两种数值方法之间有很好的一致性。
{"title":"Particle separation based on dielectrophoresis force using boundary element method and point-particle approach in a microfluidic channel","authors":"Mostafa Olfat,&nbsp;Erfan Kadivar","doi":"10.1007/s10404-023-02694-9","DOIUrl":"10.1007/s10404-023-02694-9","url":null,"abstract":"<div><p>Active sorting of particle in the dielectrophoresis microfluidic channel by applying the boundary element method and point-particle approach is investigated. In this paper, we investigate the dynamics of particle sorting for various particle sizes, electrode potential, electrode spacing, and relative permittivity. The microfluidic device consists a straight mother channel, two inlets, two outlets, and up and down triangular electrodes. The boundary element method is applied to numerically solve the integral equations of the Laplace differential equation of electric potential and Stokes differential equation. In continue, the dynamics of particle separation using the point-particle approach is investigated. Numerical results indicate that there are three different particle sorting regimes. They are called by up-outlet, down-outlet, and trapped regimes. The results illustrate that there are a good agreement between two numerical approaches.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"27 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-023-02694-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50511015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow synthesis of 1-ethyl-3-methylimidazolium ethyl sulfate in a PTFE micro-capillary: an experimental and numerical study PTFE毛细管流动合成1-乙基-3-甲基咪唑硫酸乙酯的实验与数值研究
IF 2.8 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-10-23 DOI: 10.1007/s10404-023-02686-9
Nirvik Sen, K. K. Singh, S. Mukhopadhyay, K. T. Shenoy

In this work, we have reported continuous flow synthesis of 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid in a PTFE micro-capillary. A Y-shaped microfluidic junction is used to mix the incoming reactants. Effects of independent parameters like velocity, reaction temperature, and micro-capillary diameter on product yield, rate of production, and space–time yield are reported. Yield is seen to increase monotonically as reaction temperature is increased, while it reduces with an increase in diameter of the micro-capillary. A maxima in yield is observed as flow velocity is increased. A space–time yield of 1258.4 g/min.L is obtained at a reaction temperature of 80 0C using a 300 µm micro-capillary. A two-dimensional computational fluid dynamics (CFD) model of the reacting system has been developed to confirm and explain the observed experimental trends. The simulations were able to qualitatively predict the experimental trends. The simulations also investigated the effect of shapes of different obstacles placed in the flow path.

在本工作中,我们报道了在PTFE微毛细管中连续流动合成1-乙基-3-甲基咪唑鎓硫酸乙酯离子液体。Y形微流体接头用于混合进入的反应物。报道了速度、反应温度和微毛细管直径等独立参数对产物产率、产率和时空产率的影响。产率随着反应温度的升高而单调增加,而随着微毛细管直径的增加而降低。随着流速的增加,观察到产量的最大值。使用300µm微毛细管在80℃的反应温度下获得1258.4 g/min.L的时空产率。已经开发了反应系统的二维计算流体动力学(CFD)模型,以证实和解释观察到的实验趋势。模拟能够定性地预测实验趋势。模拟还研究了流动路径中不同障碍物形状的影响。
{"title":"Flow synthesis of 1-ethyl-3-methylimidazolium ethyl sulfate in a PTFE micro-capillary: an experimental and numerical study","authors":"Nirvik Sen,&nbsp;K. K. Singh,&nbsp;S. Mukhopadhyay,&nbsp;K. T. Shenoy","doi":"10.1007/s10404-023-02686-9","DOIUrl":"10.1007/s10404-023-02686-9","url":null,"abstract":"<div><p>In this work, we have reported continuous flow synthesis of 1-ethyl-3-methylimidazolium ethyl sulfate ionic liquid in a PTFE micro-capillary. A Y-shaped microfluidic junction is used to mix the incoming reactants. Effects of independent parameters like velocity, reaction temperature, and micro-capillary diameter on product yield, rate of production, and space–time yield are reported. Yield is seen to increase monotonically as reaction temperature is increased, while it reduces with an increase in diameter of the micro-capillary. A maxima in yield is observed as flow velocity is increased. A space–time yield of 1258.4 g/min.L is obtained at a reaction temperature of 80 <sup>0</sup>C using a 300 µm micro-capillary. A two-dimensional computational fluid dynamics (CFD) model of the reacting system has been developed to confirm and explain the observed experimental trends. The simulations were able to qualitatively predict the experimental trends. The simulations also investigated the effect of shapes of different obstacles placed in the flow path.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"27 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-023-02686-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50509032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the behavior of prolate spheroids in a standing surface acoustic wave field 长椭球体在驻波场中的行为
IF 2.8 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-10-21 DOI: 10.1007/s10404-023-02690-z
Sebastian Sachs, Hagen Schmidt, Christian Cierpka, Jörg König

The active manipulation of particle and cell trajectories in fluids by high-frequency standing surface acoustic waves (sSAW) allows to separate particles and cells systematically depending on their size and acoustic contrast. However, process technologies and biomedical applications usually operate with non-spherical particles, for which the prediction of acoustic forces is highly challenging and remains a subject of ongoing research. In this study, the dynamical behavior of prolate spheroids exposed to a three-dimensional acoustic field with multiple pressure nodes along the channel width is examined. Optical measurements reveal an alignment of the particles orthogonal to the pressure nodes of the sSAW, which has not been reported in literature so far. The dynamical behavior of the particles is analyzed under controlled initial conditions for various motion patterns by imposing a phase shift on the sSAW. To gain detailed understanding of the particle dynamics, a three-dimensional numerical model is developed to predict the acoustic force and torque acting on a prolate spheroid. Considering the acoustically induced streaming around the particle, the numerical results are in excellent agreement with experimental findings. Using the proposed numerical model, a dependence of the acoustic force on the particle shape is found in relation to the acoustic impedance of the channel ceiling. Hence, the numerical model presented herein promises high progress for the design of separation devices utilizing sSAW, exploiting an additional separation criterion based on the particle shape.

通过高频驻波(sSAW)对流体中粒子和细胞轨迹的主动操纵,可以根据粒子和细胞的大小和声学对比度系统地分离粒子和细胞。然而,工艺技术和生物医学应用通常使用非球形颗粒,对其声学力的预测极具挑战性,并且仍然是正在进行的研究的主题。在本研究中,研究了长椭球体在沿通道宽度具有多个压力节点的三维声场中的动力学行为。光学测量揭示了粒子与sSAW的压力节点正交的排列,这在迄今为止的文献中尚未报道。通过对sSAW施加相移,分析了在受控的初始条件下各种运动模式下粒子的动力学行为。为了获得对粒子动力学的详细理解,建立了一个三维数值模型来预测作用在椭球上的声学力和力矩。考虑到颗粒周围的声学诱导流动,数值结果与实验结果非常一致。使用所提出的数值模型,发现了声力对颗粒形状的依赖性与通道顶部的声阻抗有关。因此,本文提出的数值模型有望在利用sSAW的分离装置设计方面取得巨大进展,利用了基于颗粒形状的额外分离标准。
{"title":"On the behavior of prolate spheroids in a standing surface acoustic wave field","authors":"Sebastian Sachs,&nbsp;Hagen Schmidt,&nbsp;Christian Cierpka,&nbsp;Jörg König","doi":"10.1007/s10404-023-02690-z","DOIUrl":"10.1007/s10404-023-02690-z","url":null,"abstract":"<div><p>The active manipulation of particle and cell trajectories in fluids by high-frequency standing surface acoustic waves (sSAW) allows to separate particles and cells systematically depending on their size and acoustic contrast. However, process technologies and biomedical applications usually operate with non-spherical particles, for which the prediction of acoustic forces is highly challenging and remains a subject of ongoing research. In this study, the dynamical behavior of prolate spheroids exposed to a three-dimensional acoustic field with multiple pressure nodes along the channel width is examined. Optical measurements reveal an alignment of the particles orthogonal to the pressure nodes of the sSAW, which has not been reported in literature so far. The dynamical behavior of the particles is analyzed under controlled initial conditions for various motion patterns by imposing a phase shift on the sSAW. To gain detailed understanding of the particle dynamics, a three-dimensional numerical model is developed to predict the acoustic force and torque acting on a prolate spheroid. Considering the acoustically induced streaming around the particle, the numerical results are in excellent agreement with experimental findings. Using the proposed numerical model, a dependence of the acoustic force on the particle shape is found in relation to the acoustic impedance of the channel ceiling. Hence, the numerical model presented herein promises high progress for the design of separation devices utilizing sSAW, exploiting an additional separation criterion based on the particle shape.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"27 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10404-023-02690-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50503151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow rate variations in microfluidic circuits with free surfaces 具有自由表面的微流体回路中的流速变化
IF 2.8 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-10-19 DOI: 10.1007/s10404-023-02691-y
Taha Messelmani, Isabela Zarpellon Nascimento, Eric Leclerc, Cécile Legallais, Adam Meziane, William César, Rachid Jellali, Anne Le Goff

We investigate analytically and experimentally the flow rate through a biochip in a circuit involving a peristaltic pump and reservoirs with liquid/air interfaces. Peristaltic pumps are a convenient way to achieve recirculation in microfluidic circuits. We consider different cases: reservoirs in contact with ambient air, tight reservoirs, and imperfect tightness leading to air or liquid leaks. We demonstrate that if changes in hydraulic resistance are slow enough, i.e., if cells do not proliferate too fast, the system may reach an equilibrium, with a difference in liquid height between inlet and outlet reservoir compensating the pressure drop in the biochip. We compute the flow rate through the biochip in the transient regime as well as the characteristic time. We also show that depending on the circuit dimensions, this equilibrium may never be reached. We provide guidelines to design tubings and reservoirs to avoid this situation and ensure a smooth recirculation at a desired flow rate, which is a necessary condition for dynamic cell culture.

我们通过分析和实验研究了在包括蠕动泵和具有液体/空气界面的储存器的电路中通过生物芯片的流速。蠕动泵是在微流体回路中实现再循环的一种方便方式。我们考虑不同的情况:储液器与环境空气接触,储液器密封,以及导致空气或液体泄漏的不完全密封。我们证明,如果水力阻力的变化足够慢,即如果细胞增殖不太快,系统可能会达到平衡,入口和出口储液器之间的液体高度差会补偿生物芯片中的压降。我们计算了在瞬态状态下通过生物芯片的流速以及特征时间。我们还表明,根据电路的尺寸,这种平衡可能永远不会达到。我们提供了设计管道和储液器的指南,以避免这种情况,并确保在所需流速下顺利再循环,这是动态细胞培养的必要条件。
{"title":"Flow rate variations in microfluidic circuits with free surfaces","authors":"Taha Messelmani,&nbsp;Isabela Zarpellon Nascimento,&nbsp;Eric Leclerc,&nbsp;Cécile Legallais,&nbsp;Adam Meziane,&nbsp;William César,&nbsp;Rachid Jellali,&nbsp;Anne Le Goff","doi":"10.1007/s10404-023-02691-y","DOIUrl":"10.1007/s10404-023-02691-y","url":null,"abstract":"<div><p>We investigate analytically and experimentally the flow rate through a biochip in a circuit involving a peristaltic pump and reservoirs with liquid/air interfaces. Peristaltic pumps are a convenient way to achieve recirculation in microfluidic circuits. We consider different cases: reservoirs in contact with ambient air, tight reservoirs, and imperfect tightness leading to air or liquid leaks. We demonstrate that if changes in hydraulic resistance are slow enough, i.e., if cells do not proliferate too fast, the system may reach an equilibrium, with a difference in liquid height between inlet and outlet reservoir compensating the pressure drop in the biochip. We compute the flow rate through the biochip in the transient regime as well as the characteristic time. We also show that depending on the circuit dimensions, this equilibrium may never be reached. We provide guidelines to design tubings and reservoirs to avoid this situation and ensure a smooth recirculation at a desired flow rate, which is a necessary condition for dynamic cell culture.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"27 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50497800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A compact modularized power-supply system for stable flow generation in microfluidic devices 一种用于微流体装置中稳定流动产生的紧凑型模块化电源系统
IF 2.8 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-10-19 DOI: 10.1007/s10404-023-02693-w
Weihao Li, Wuyang Zhuge, Youwei Jiang, Kyle Jiang, Jun Ding, Xing Cheng

The miniaturization of microfluidic systems plays a pivotal role in achieving portability and compactness. However, conventional microfluidic systems heavily rely on external bulky facilities, such as syringe pumps and compressed air supplies, for continuous flow, which restricts their dissemination across various applications. To address this limitation, micropumps have emerged as a potential solution for portable power supply in microfluidic systems, with piezoelectric micropumps being widely adopted. Nonetheless, the inherent pulsatile mechanism of piezoelectric micropumps leads to unstable flow, necessitating appropriate mitigation for applications requiring flow stability. This research introduces an innovative hybrid pumping system that integrates a wirelessly controlled micropump with a 3D-printed modular microfluidic low-pass-filter. The primary objective of this system is to offer a portable and stable flow source for microfluidic applications. The system design and characterization are based on a three-element circuit model. Experimental results demonstrate a highly stabilized flow rate of 657 ± 7 µL/min. Furthermore, the versatility of the system is showcased by successfully forming droplets with a polydispersity ranging from 1.5% to 4%, comparable to that of bulky commercial pumping systems. This hybrid pumping system offers a promising solution for applications necessitating portable and stable flow sources, and its reconfigurability suggests potential integration into multifunctional microfluidic platforms.

微流体系统的小型化在实现便携性和紧凑性方面发挥着关键作用。然而,传统的微流体系统严重依赖外部庞大的设施,如注射泵和压缩空气供应,以实现连续流动,这限制了它们在各种应用中的传播。为了解决这一限制,微泵已成为微流体系统中便携式电源的潜在解决方案,压电微泵被广泛采用。尽管如此,压电微泵固有的脉动机制会导致流动不稳定,因此需要对需要流动稳定性的应用进行适当的缓解。本研究介绍了一种创新的混合泵送系统,该系统将无线控制的微型泵与3D打印的模块化微流体低通过滤器集成在一起。该系统的主要目标是为微流体应用提供便携式和稳定的流动源。系统的设计和表征是基于三元件电路模型。实验结果表明,657的流量高度稳定 ± 7µL/min。此外,该系统的多功能性通过成功形成多分散性在1.5%至4%范围内的液滴而得到展示,与大型商业泵送系统相当。这种混合泵送系统为需要便携式和稳定流源的应用提供了一种很有前途的解决方案,其可重新配置性表明有可能集成到多功能微流体平台中。
{"title":"A compact modularized power-supply system for stable flow generation in microfluidic devices","authors":"Weihao Li,&nbsp;Wuyang Zhuge,&nbsp;Youwei Jiang,&nbsp;Kyle Jiang,&nbsp;Jun Ding,&nbsp;Xing Cheng","doi":"10.1007/s10404-023-02693-w","DOIUrl":"10.1007/s10404-023-02693-w","url":null,"abstract":"<div><p>The miniaturization of microfluidic systems plays a pivotal role in achieving portability and compactness. However, conventional microfluidic systems heavily rely on external bulky facilities, such as syringe pumps and compressed air supplies, for continuous flow, which restricts their dissemination across various applications. To address this limitation, micropumps have emerged as a potential solution for portable power supply in microfluidic systems, with piezoelectric micropumps being widely adopted. Nonetheless, the inherent pulsatile mechanism of piezoelectric micropumps leads to unstable flow, necessitating appropriate mitigation for applications requiring flow stability. This research introduces an innovative hybrid pumping system that integrates a wirelessly controlled micropump with a 3D-printed modular microfluidic low-pass-filter. The primary objective of this system is to offer a portable and stable flow source for microfluidic applications. The system design and characterization are based on a three-element circuit model. Experimental results demonstrate a highly stabilized flow rate of 657 ± 7 µL/min. Furthermore, the versatility of the system is showcased by successfully forming droplets with a polydispersity ranging from 1.5% to 4%, comparable to that of bulky commercial pumping systems. This hybrid pumping system offers a promising solution for applications necessitating portable and stable flow sources, and its reconfigurability suggests potential integration into multifunctional microfluidic platforms.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"27 12","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50497799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mould-free soft-lithography approach for rapid, low-cost and bulk fabrication of microfluidic chips using photopolymer sheets 一种无模软光刻方法,用于使用光聚合物片材快速、低成本和批量制造微流控芯片
IF 2.8 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-10-10 DOI: 10.1007/s10404-023-02688-7
R. Rahul, Nikhil Prasad, R. R. Ajith, P. Sajeesh, R. S. Mini, Ranjith S. Kumar

Most of the existing microfluidic chip fabrication techniques are very complex, time-consuming, costly, and are not amenable to mass manufacturing. Impending commercialization of lab-on-a-chip devices demand development of new microfabrication methods that involve least procedural complexities using cost-effective materials. This paper proposes an inexpensive and time-efficient procedure for constructing microfluidic devices on a flexographic sheet which is available as commercial-off-the-shelf material, using a mould-free soft-lithography approach. Microchannel design is transferred to a negative-resist photopolymer sheet (PPS) using collimated ultraviolet (UV) rays and etching is performed to remove unexposed material. The microchannel network is sealed on the top by a photopolymer sheet of the same material and pressure-assisted bonding is performed in the presence of UV. The cross-linking between photopolymers in the mating surfaces ensures relatively high bond strength and perfect sealing. Simple and complex microchannel network with 100–500 (upmu)m width is created using this method and various characterization tests are performed. A functional leakage test ensured that the fabricated chip could withstand 200 kPa pressure at a maximum flow rate of 12 mL/min. Cell culture, biomolecule visualization, and droplet mixing dynamics are studied in the microchip to demonstrate its practical utility. Moreover, a large-area chip with 260 (times) 190 mm(^2) is created using PPS with this three-step method. Most importantly, this method could mass produce 24 microchips with multiple designs within a span of 2 h. In other words, the average time incurred for the fabrication of a single microchip (50 (times) 30 mm(^2)) is less than 5 min. Results suggest that it is a promising method flexible enough to create large-sized chips and to bulk-fabricate microchips having versatile channel designs with high fidelity. Since flexographic infrastructure and materials are very cheap and common in resource-limited settings, the proposed method assumes more importance in the context of rapid commercialization of lab-on-a-chip devices.

现有的微流控芯片制造技术大多复杂、耗时、成本高,不适合批量生产。即将商业化的芯片实验室设备需要开发新的微加工方法,这些方法涉及的程序复杂性最小,使用成本效益高的材料。本文提出了一种廉价且省时的方法,用于在柔性版片上构建微流体装置,该柔性版片可作为商业现成材料使用,使用无模软光刻方法。微通道设计被转移到负阻光敏聚合物片(PPS)使用准直紫外线(UV)射线和蚀刻进行去除未暴露的材料。微通道网络在顶部由相同材料的光聚合物片密封,并在紫外线存在下进行压力辅助键合。配合表面的光聚合物之间的交联确保了相对较高的结合强度和完美的密封性。使用该方法创建了100-500 (upmu) m宽度的简单和复杂微通道网络,并进行了各种表征测试。通过功能泄漏测试,确保制作的芯片能够承受200 kPa的压力,最大流量为12 mL/min。细胞培养,生物分子可视化和液滴混合动力学在微芯片的研究,以证明其实际用途。此外,还利用该三步法制作出了260 (times) 190 mm (^2)的PPS大面积芯片。最重要的是,这种方法可以在2小时内批量生产24个具有多种设计的微芯片。换句话说,制造单个微芯片(50 (times) 30 mm (^2))的平均时间不到5分钟。结果表明,这是一种有前途的方法,足够灵活,可以制造大尺寸芯片,并批量制造具有高保真度的多通道设计的微芯片。由于柔版基础设施和材料在资源有限的环境中非常便宜和常见,因此所提出的方法在芯片实验室设备快速商业化的背景下更为重要。
{"title":"A mould-free soft-lithography approach for rapid, low-cost and bulk fabrication of microfluidic chips using photopolymer sheets","authors":"R. Rahul,&nbsp;Nikhil Prasad,&nbsp;R. R. Ajith,&nbsp;P. Sajeesh,&nbsp;R. S. Mini,&nbsp;Ranjith S. Kumar","doi":"10.1007/s10404-023-02688-7","DOIUrl":"10.1007/s10404-023-02688-7","url":null,"abstract":"<div><p>Most of the existing microfluidic chip fabrication techniques are very complex, time-consuming, costly, and are not amenable to mass manufacturing. Impending commercialization of lab-on-a-chip devices demand development of new microfabrication methods that involve least procedural complexities using cost-effective materials. This paper proposes an inexpensive and time-efficient procedure for constructing microfluidic devices on a flexographic sheet which is available as commercial-off-the-shelf material, using a mould-free soft-lithography approach. Microchannel design is transferred to a negative-resist photopolymer sheet (PPS) using collimated ultraviolet (UV) rays and etching is performed to remove unexposed material. The microchannel network is sealed on the top by a photopolymer sheet of the same material and pressure-assisted bonding is performed in the presence of UV. The cross-linking between photopolymers in the mating surfaces ensures relatively high bond strength and perfect sealing. Simple and complex microchannel network with 100–500 <span>(upmu)</span>m width is created using this method and various characterization tests are performed. A functional leakage test ensured that the fabricated chip could withstand 200 kPa pressure at a maximum flow rate of 12 mL/min. Cell culture, biomolecule visualization, and droplet mixing dynamics are studied in the microchip to demonstrate its practical utility. Moreover, a large-area chip with 260 <span>(times)</span> 190 mm<span>(^2)</span> is created using PPS with this three-step method. Most importantly, this method could mass produce 24 microchips with multiple designs within a span of 2 h. In other words, the average time incurred for the fabrication of a single microchip (50 <span>(times)</span> 30 mm<span>(^2)</span>) is less than 5 min. Results suggest that it is a promising method flexible enough to create large-sized chips and to bulk-fabricate microchips having versatile channel designs with high fidelity. Since flexographic infrastructure and materials are very cheap and common in resource-limited settings, the proposed method assumes more importance in the context of rapid commercialization of lab-on-a-chip devices.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"27 11","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134796107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microfluidics and Nanofluidics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1